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Abstract: In the competitive p-median problem, two decision makers, the leader and the
follower, compete to attract clients from a given market. The leader opens his facilities,
anticipating that the follower will react to the decision by opening his/her own facilities. The
leader and the follower try to maximize their own profits. This is the Stackelberg game. We
present it as a linear bilevel 0–1 problem. It is known that the problem is ΣP

2 -complete. We
develop a hybrid memetic algorithm for it where the follower problem is solved by commercial
software. To obtain an upper bound for this maximization problem, we reformulate the bilevel
problem as a single level mixed integer programming problem with exponential number of
constraints and variables. Removing some of them, we get the desired upper bound. For finding
an appropriate family of constraints and variables, we use metaheuristics again. As a result, we
get near optimal solutions for the bilevel problem with an a posteriori bound for deviation from
the global optimum. Computational results for Euclidian test instances are discussed.

Keywords: Memetic algorithm, (r | p)–centroid problem, competitive location, bilevel
programming.

1. INTRODUCTION

Much effort in the discrete location theory has aimed
at developing insights concerning the classical models
with one decision maker only. In this paper, we study
a competitive model with two noncooperative decision
markers: the leader and the follower. They compete to
attract clients from a given market and wish to maximize
their own profits. In fact, this is the noncooperative
Stackelberg game. Following Hakimi (Hakimi (1990)), we
call it the (r|p)-centroid problem. We present the game
as a 0–1 linear bilevel problem and develop a hybrid
memetic algorithm for finding near optimal solutions.
The Probabilistic Tabu Search heuristic (PTS) is used to
improve each element of the population. To compute the
leader profit, we have to solve the follower problem by
commercial software.

In order to get an upper bound for this maximization
problem, we rewrite the bilevel problem as a single level
mixed integer linear program with exponential number of
constraints and variables. Similar approach is suggested
in (Rodriguez and Perez (2008)) for partial enumer-
ation. If we extract a small family of constraints and
variables, we get an upper bound. The PTS heuristic is
used for generating the family. For comparison, we de-
scribe the upper bound from (Kochetov et al. (2009)).
Computational experiments for Euclidean test instances
from the benchmark library Discrete Location Prob-
lems (http://math.nsc.ru/AP/benchmarks/Competitive/
p−med−comp−eng.html) indicate that new upper bound
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dominates the previous one and the difference between the
upper and lower bounds is small.

The paper is organized as follows. In Section 2, we present
a mathematical statement of the problem. In Section 3,
the lower bounds are discussed. We present three lower
bounds; two of them are quite simple, while the last one
is based on the metaheuristic approach for the bilevel
mathematical formulation. In Section 4, two upper bounds
are described. These bounds are obtained as the optimal
solution for the mixed integer linear programming prob-
lems. In Section 5, computational results are reported.
Finally, in Section 6 we point out some conclusions and
promising directions for future research.

2. THE COMPETITIVE P -MEDIAN PROBLEM

We are given a set I = {1, . . . , m} of facilities and a set J =
{1, . . . , n} of clients. A matrix (gij) defines the distances
between clients and facilities. If client j is serviced from
a facility, he gives a profit wj > 0. The leader and the
follower open facilities. First, the leader opens p facilities.
Later on, the follower opens r facilities. Each client chooses
the closest open facility. We need to find p facilities for the
leader to maximize his profit.

Let us present this game as a linear 0–1 bilevel program-
ming problem. Define the decision variables:

xi =
{

1 if facility i is opened by the leader,
0, otherwise,

yi =
{

1 if facility i is opened by the follower,
0, otherwise,



zj =
{

1 if client j is serviced by the leader,
0 if client j is serviced by the follower.

For a given solution x, we can define the set of facilities
which allow to capture client j by the follower:

Ij(x) = {i ∈ I| gij < min
l∈I

(glj |xl = 1)}, j ∈ J.

Note that we consider conservative clients. If a client has
the same distances to the closest leader and the closest
follower facilities, he prefers the leader facility. So, the
follower never opens a facility at a site where the leader
has opened a facility. Other models of the client behavior
can be found in (Drenzer (2004)).

Now the model can be written as a linear 0–1 bilevel
programming problem:

max
x

∑

j∈J

wjz
∗
j (x) (1)

s.t. ∑

i∈I

xi = p, (2)

xi ∈ {0, 1}, i ∈ I, (3)

where z∗j (x), y∗i (x) is the optimal solution of the follower
problem:

max
y,z

∑

j∈J

wj(1− zj) (4)

s.t. ∑

i∈I

yi = r, (5)

1− zj ≤
∑

i∈Ij(x)

yi, j ∈ J, (6)

xi + yi ≤ 1, i ∈ I, (7)
yi, zj ∈ {0, 1}, i ∈ I, j ∈ J. (8)

The objective function (1) defines the total profit of the
leader. Equation (2) guarantees that the leader opens
exactly p facilities. The objective function (4) defines
the total profit of the follower. Equation (5) guarantees
that the follower opens exactly r facilities. Constraint (6)
determines the values of z by the decision variables y of
the follower. Constraint (7) admits to open a facility by at
most one decision maker. Note that the sum of the leader
and the follower profits is a constant,

∑
j∈J wj . So, we deal

with the (r | p)–centroid problem which is ΣP
2 -complete

(Noltemeier et al. (2007)).

Note that the optimal value for the problem does not
change if we replace 0–1 variables zj by continuous vari-
ables 0 ≤ zj ≤ 1. So, we deal with the mixed integer linear
programming problem for the follower.

Matrix (gij) is used to define the set Ij(x). In fact, we can
use not only the distances, but any kind of preferences for
the clients. For example, a client may prefer a facility with
the minimal traveling and waiting time rather than with
the minimal distance. In (Vasil’ev et al. (2009)) the facility
location models with general client preferences are studied.
With almost no change, we can use the preferences in the
definition of set Ij(x). However, we preserve the distances
for simplicity.

3. LOWER BOUNDS

An arbitrary feasible solution of the problem (1)–(8)
produces a lower bound. For a given solution x, we have
to solve the maximum coverage problem (4)–(8) to get
a feasible solution. It is an NP–hard problem (Hakimi
(1990)). We use the commercial CPLEX software for it.
So, the rest of this section is devoted to describing various
strategies for the selection of solution x.

The first and the simplest strategy is to ignore the follower.
The leader opens facilities to minimize the total distance
between clients and his facilities. He wishes to service all
clients and solves the classical p-median problem. We use
an optimal solution of this problem as solution x for the
lower bound. This strategy is not so bad despite ignoring
the follower. As we can see in our computational experi-
ments, the leader losses more than half of the market, but
we can improve the lower bound by a few percentages only.

The second strategy is more sophisticated. The leader
anticipates that the follower will react to his decision. So,
the (p+r) facilities will be opened. According to the second
strategy, the leader solves the (p+ r)-median problem and
opens p most profitable facilities. As we will see below, this
strategy is not perfect.

The most powerful strategy is to solve the problem (1)–(8).
We develop a Hybrid Memetic Algorithm (HMA) where
tabu search approach (Glover and Laguna (1997)) is used
to improve the elements of the population. Now we present
the general framework of our method.

Hybrid Memetic Algorithm

1 Generate an initial population of the leader solutions.
2 Repeat until the stopping condition is met:

2.1 Select two solutions x1, x2 from the population.
2.2 Create a solution x by a recombination of x1, x2.
2.3 Apply random modification to x .
2.4 Improve the solution by the PTS heuristic.
2.5 Update the population.

3 Return the best found solution.

We use the total number of iterations 2.1–2.5 as the
stopping condition.

3.1 Initial population

To create a high quality initial population at Step 1 of
the framework, we apply the standard local improvement
algorithm with random starting points. The well–known
Swap neighborhood for the p-median problem (Mladenović
et al. (2007)) is used for the improvements. Remind that
we have to solve the maximum coverage problem in order
to compute the objective function value for each element
of the neighborhood. The CPLEX software is very effective
for this type of problems (Caprara et al. (2000)). However,
the Swap neighborhood contains p(m − p) elements. It is
a time–consuming procedure. To reduce the running time,
we use the first improvement pivoting rule, randomization
of the neighborhood, and solve the linear programming
relaxations to estimate the neighboring solutions.

The efficiency and robustness of the memetic algorithm
depend on the population. We need distinct local optima.



So, a new local optimum obtained is included into the
population if the Hamming distance from this solution
to each solution in the population is at least a given
threshold. In our computational experiments, we use the
threshold d0, 6pe.

3.2 Main operators and parameters

The selection, recombination, random modification (mu-
tation), and replacement operators are used in the frame-
work. The well–known tournament selection (Sastry et al.
(2005)) is applied to pick up two solutions x1, x2. We select
k solutions from the population at random and choose the
best one as a parent. In our experiments, we put k = 5.

The recombination or crossover operator is a variant of the
famous uniform crossover (Sastry et al. (2005)). The new
solution x will contain all open facilities which are common
for the parents. The rest of the open facilities are chosen
at random with probability 0,5 from solutions x1, x2.

To involve a certain diversification, we use the random
modifications of the offsprings. The common bit–flip mu-
tations are not appropriate for the problem, for we may
get an unfeasible solution. So, we produce some random
modification according to the Swap neighborhood.

To update the population at the Step 2.5, we use the
steady–state–no–duplicates technique. We check that no
duplicate solutions are added to the population. Moreover,
we calculate the Hamming distance between the new
solution and the population and update the population
if the distance is at least the threshold d0, 6pe.

3.3 Tabu search

In the well–known memetic algorithms, the standard local
improvement procedure is applied to each element of the
population. The algorithm deals with local optima only,
and this feature promotes to finding global optimum or
near optimal solutions. In our computational experiments
for the case wj = 1, j ∈ J , we discover a lot of local optima
and plateaus. The standard local improvement procedure
is not efficient for this case (Alekseeva and Orlov (2008)).
We need more powerful approach here. To this end, we
develop the PTS heuristic and apply it instead of the
local improvement. In (Benati and Laporte (1994)) a
tabu search algorithm is studied for the problem but a
greedy procedure is applied for the follower problem. We
use commercial software for it.

To reduce the running time at each step, we use a random-
ized neighborhood Nq(x), q > 0. It is the random part of
the Swap neighborhood, where each element is included
into the set Nq(x) with probability q independently from
other elements. This modification of the basic Tabu Search
has the asymptotic convergence property (Goncharov and
Kochetov (2002)).

In order to calculate the objective function value for
each element of the neighborhood, we need to solve the
follower problem. As we have mentioned above, it is an
NP-hard problem. To reduce the running time, we replace
the problem by its linear programming relaxation. Hence,
we have a polynomial time procedure for finding the

best element in the neighborhood. Below, we present the
general framework of the PTS algorithm.

Probabilistic Tabu Search

1 Get offspring x from HMA and put Tabu = Ø.
2 Repeat until the stopping condition is met:

2.1 Generate the neighborhood Nq(x).
2.2 If Nq(x)\Tabu 6= Ø, then find the best element x′

in the set Nq(x)\Tabu; else x′ := x.
2.3 Put x := x′, update Tabu.

3 Return the best found solution.

The set Tabu for the current solution contains some solu-
tions from the Swap neighborhood. The pairs of swapping
facilities are storied during the certain number of itera-
tions, and the corresponding solutions are included into
the set Tabu. We use the PTS algorithm for finding the
high quality offspring at Step 2.4 of the HMA framework.
Moreover, we collect the high quality solutions for the
follower. As we will see below, any family of the follower
solutions gives an upper bound for the maximal profit (1)
of the leader.

4. UPPER BOUNDS

In (Kochetov et al. (2009)), the main idea of getting an
upper bound for the leader profit is to include some addi-
tional constraints into the follower problem. The maximal
profit for the follower will decrease in this case. So, the
total profit for the leader will grow. If the additional
constraints allow us to rewrite the bilevel problem as a
single level linear 0–1 program, then we may compute the
upper bound by CPLEX software. Generating appropriate
constraints is the most difficult task here. Below we will
illustrate this approach.

Suppose the follower ranks facilities according to some
criteria. He uses this ranking instead of the optimal so-
lution of the problem (4)–(8). Without loss of generality,
we may assume that this ranking is 1, 2, . . . ,m. So, the
first facility is the most desirable for the follower, while the
last facility is the most undesirable one. He opens facilities
according to this ranking, taking into account the decision
of the leader. If the follower wants to open facility i but
it has been opened by the leader, then the follower has to
consider facility i + 1. Such a strategy does not guarantee
the optimality for the follower. So, the leader will get more
profit, and we obtain an upper bound.

Now the follower behavior is described by the following
constraints. For a given solution x, we have

xi + yi ≥ yk, i, k ∈ I, k > i,

xi + yi ≤ 1, i ∈ I,
∑

i∈I

yi = r.

The first constraint forbids to open facility k by the
follower if a more preferable facility is available. Two other
constraints are taken from the follower problem (4)–(8).

Let us introduce new auxiliary variable ujk ∈ {0, 1} to
describe the assignment of the clients to facilities:



ujk =
{

1 if client j is serviced from facility k,
0, otherwise.

Variables ujk are determined from the following con-
straints by variables x and y:

∑

k∈I

ujk = 1, j ∈ J,

ujk ≤ xk + yk, j ∈ J, k ∈ I,

ujk +
∑

i∈Skj

uji ≥ xk + yk, k ∈ I, j ∈ J,

where Skj is the set of facilities which are more desirable
for client j than the facility k, Skj = {i ∈ I | gij < gkj}.
According to the first equality, each client must be serviced
by the leader or the follower facility. The second constraint
guarantees that each client is serviced by an open facility
only. The last constraint requires to service each client
from the most desirable open facility.

Now variables zj can be determined from the following
constraints by variables ujk, xk, yk:

zj ≥ ujk − yk, j ∈ J, k ∈ I,

1− zj ≥ ujk − xk, j ∈ J, k ∈ I.

These constraints require to service client j by the leader
facility if ujk = 1, yk = 0, and by the follower facility if
ujk = 1, yk = 1. The optimal values of the variables can
be found from the following linear 0–1 program:

max
∑

j∈J

wjzj

s.t. ∑

i∈I

xi = p,

∑

i∈I

yi = r,

yi + xi ≥ yk, i, k ∈ I, k > i,∑

k∈I

ujk = 1, j ∈ J,

ujk ≤ xk + yk, j ∈ J, k ∈ I,

ujk +
∑

i∈Skj

uji ≥ xk + yk, k ∈ I, j ∈ J,

zj ≥ ujk − yk, j ∈ J, k ∈ I,

1− zj ≥ ujk − xk, j ∈ J, k ∈ I,

xi, yi, ujk, zj ∈ {0, 1}, k, i ∈ I, j ∈ J.

The optimal value of the problem provides us the upper
bound for the leader profit. We can compute the bound,
for example, by CPLEX software.

Another approach to get an upper bound deals with the
reduction of opportunities for the follower. We replace the
set of all solutions possible for him by a small family
F . Clearly, this way gives us an upper bound. Now we
rewrite the bilevel problem as a single level problem with
a large number of variables and constraints. The number of
variables and constraints will depend on the cardinality of

family F . If the family is small, we can solve this problem
and get a new upper bound.

For y ∈ F we put
Ij(y) =

{
i ∈ I|gij ≤ min

l∈I
(glj |yl = 1)

}
, j ∈ J.

This set shows facilities for the leader which allow him
to keep client j if the follower will use solution y. Let us
introduce new variables:

zjy =





1 if client j is serviced by the leader when
the follower uses solution y,

0 if client j is serviced by the follower when
the follower uses solution y,

W ≥ 0 is the total profit of the leader.

We need to find a solution x with the maximal profit for
the leader when the follower uses family F for his answer.
The correspondent optimization problem can be presented
as the linear 0–1 program:

max W

s.t. ∑

j∈J

wjzjy ≥ W, y ∈ F ,

zjy ≤
∑

i∈Ij(y)

xi, y ∈ F , j ∈ J,

∑

i∈I

xi = p,

xi, zjy ∈ {0, 1}, i ∈ I, j ∈ J, y ∈ F .

The objective function is the total profit of the leader. The
first constraint guarantees that the follower uses his best
answer from family F . The second constraint determines
the market share for each solution of the follower. The
last constraint allows the leader to open p facilities only. If
we replace family F by the set of all possible solutions
for the follower, we get a reformulation of the bilevel
problem (1)–(8). In (Rodriguez and Perez (2008)) a
similar reformulation is considered with a lot of additional
constraints and variables.

Note that the optimal value for the problem does not
change if we replace 0–1 variables zjy by continuous
variables 0 ≤ zjy ≤ 1. So, we need to solve the mixed
integer linear programming problem with small number of
0–1 variables. Of course, the optimum depends on family
F . We create this family by the PTS algorithm at the step
2.4 of the HMA framework.

5. COMPUTATIONAL RESULTS

The developed memetic algorithm is coded in GAMS
(General Algebraic Modeling System) and tested on the
instances from the benchmark library Discrete Location
Problems (http://math.nsc.ru/AP/benchmarks/Compe-
titive/p−med−comp−eng.html). For all instances, we have
n = m = 100, p = r = 10, wj = 1. The elements of matrix
(gij) are defined as Euclidian distances between points i, j
in the two dimensional Euclidean plane. The points are
chosen at random with the uniform distribution in the
square 7000× 7000. All experiments are carried out at the
PC Pentium Intel Core 2, 1.87 GHz, RAM 2 Gb, running



under the Windows XP Professional operating system.
Note that the exact method (Rodriguez and Perez (2008))
allows to solve the instances with n = m ≤ 50, r = p ≤ 5
only.

Table 1. Upper and lower bounds

Code LB(p) LB(p + r) HMA UB0 UB1

111 41 31 50 74 54
211 41 36 49 70 57
311 46 41 48 73 55
411 41 39 49 72 58
511 48 40 48 70 55
611 42 39 47 67 57
711 49 37 51 73 55
811 42 37 48 74 55
911 47 35 49 68 54
1011 46 33 49 70 54

Table 1 shows the upper and lower bounds for the in-
stances. The first column indicates the codes of the in-
stances. Columns LB(p), LB(p + r), HMA present lower
bounds for the strategies based on the classical p-median
problem, the (p + r)-median problem, and the hybrid
memetic algorithm. As we can see, the HMA lower bound
dominates the other ones. Nevertheless, the differences
between HMA and LB(p) bounds are small. For instance
511, these bounds coincide! We observe that LB(p) is a
good approximation for the leader behavior. Moreover,
the running time for the LB(p) is a few seconds for
GAMS(CPLEX) software. However, for HMA bounds,
we need about 7 hours of running time if we stop the
algorithm after 100 iterations with the population size 25.

Columns UB0 and UB1 show two upper bounds from the
previous section. To compute UB0, we need a ranking
of the facilities for the follower. Actually, we have m!
opportunities for it. It is not clear how to find the best
one. In our experiments, we use the ranking obtained
by the Lagrangian relaxation approach (Alekseeva and
Kochetova (2008)). In order to compute bound UB1,
we need a family F . As we mentioned above, there are
a lot of near optimal solutions in these instances. So, we
collect some of them by the PTS algorithm at step 2.4 of
the memetic framework. We use the families of 400 best
found solutions for the follower. The Table 1 shows that the
bound UB1 dominates UB0 substantially. Nevertheless, we
cannot prove the optimality of the HMA lower bounds by
increasing the families. We believe that the lower bound
corresponds to the global optima for these instances. So,
we need more intelligent search strategies for creating
family F .

6. CONCLUSIONS AND FURTHER RESEARCH

We consider the competitive p-median problem and de-
velop hybrid memetic algorithm for finding near optimal
solutions for this bilevel problem. Commercial software
is used to compute optimal strategy for the follower and
calculate total profit of the leader. In order to get an upper
bound, we introduce some restrictions for the follower
behavior and reformulate the bilevel problem as a single
level mixed integer programming problem. The optimal
solution for this problem provides us the desired upper
bound.

Our computational results show a gap between the upper
and lower bounds. However, it is quite small. We believe
that the HMA solutions are optimal, but we need other
families to prove the optimality. As further research,
it could be interesting to investigate new strategies for
the family selection. Some ideas can be taken from the
column generation scheme, which can be easily described
for the problem. Moreover, it is a promising area for the
matheuristics as well.
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