
1 Mathematical model

Assume that the set I of potential facility locations and the set J of clients
are finite. For each facility i ∈ I we have the set Ri of design scenarios and
this set is finite as well. For each pair i ∈ I, r ∈ Ri we have the fixed costs
fir and gir of opening facility i with design scenario r by the leader and by
the follower, respectively. Moreover, we know the attractiveness air of the
leader facility and the similar parameter bir of the follower facility. The last
two features are important for describing the client behavior. Each client j
splits own demand wj probabilistically over all facilities directly proportional
with attraction to each facility and inversely proportional to the distance dij

between client j and facility i. Following [1], we consider the utility function
uijr of leader facility i with design scenario r for client j and the similar
function vijr for follower facility:

uijr = air/(dij + 1)β, vijr = bir/(dij + 1)β, i ∈ I, r ∈ Ri, j ∈ J,

where β is a distance sensitivity parameter. Now we introduce the decision
variables for the players:
xir is equal to 1 if facility i is open by the leader with design scenario r and
0 otherwise;
yir is equal to 1 if facility i is open by the follower with design scenario r and
0 otherwise.
For client j, the total utility Uj from the leader facilities and the total utility
Vj from the follower facilities are defined as:

Uj =
∑
i∈I

∑
r∈Ri

uijrxir, Vj =
∑
i∈I

∑
r∈Ri

vijryir, j ∈ J.

The total market share of the leader is given by
∑

j∈J wjUj/(Uj + Vj). The
leader wishes to maximize own market share, anticipating that the follower
will react to the decision by opening own facilities. The market share of
the follower is given by

∑
j∈J wjVj/(Uj + Vj). The follower maximizes own

market share. In opposite [2], we assume that the players can open facilities
at the same site. This Stackelberg game can be presented as the following
nonlinear 0–1 bilevel optimization problem [3]:

max
x

∑
j∈J

wj

∑
i∈I

∑
r∈Ri

uijrxir∑
i∈I

∑
r∈Ri

uijrxir +
∑

i∈I

∑
r∈Ri

vijry∗ir
(1)

1



subject to ∑
i∈I

∑
r∈Ri

firxir ≤ Bl; (2)

∑
r∈Ri

xir ≤ 1, i ∈ I; (3)

xir ∈ {0, 1}, r ∈ Ri, i ∈ I; (4)

where y∗ir is the optimal solution for the follower problem:

max
y

∑
j∈J

wj

∑
i∈I

∑
r∈Ri

vijryir∑
i∈I

∑
r∈Ri

uijrxir +
∑

i∈I

∑
r∈Ri

vijryir

(5)

subject to ∑
i∈I

∑
r∈Ri

giryir ≤ Bf ; (6)

∑
r∈Ri

yir ≤ 1, i ∈ I; (7)

yir ∈ {0, 1}, r ∈ Ri, i ∈ I. (8)

Objective functions (1) and (5) are market shares of the players. Inequalities
(2) and (6) are the budget constraints: Bl is the budget of the leader, Bf is
the budget of the follower. Inequalities (3) and (7) ensure the only design
scenario for each open facility.
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