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Abstract

Two players, a leader and a follower, open facilities and compete to attract clients from a given
market. Each player has a budget and maximizes own market share. Each client splits own demand
probabilistically over all opened facilities by the gravity rule. The goal is to find the location and
design of the leader facilities to maximize his market share. We present a matheuristic for this game
based on the best response strategy. Computational results for the discrete games are discussed.

1 Introduction

We consider the discrete facility location and design problem in which two players, a leader and a fol-
lower, compete to attract clients from a given market. Each player has a budget and maximizes own
market share. Each client splits demand probabilistically over all facilities in the market proportionally
with utility to each facility. The location and design of the facilities are to be determined so as to maxi-
mize the market share of the leader. For this Stackelberg game we present an alternating heuristic based
on the best response strategy. For a given solution of a player, we reformulate the problem for another
player as a linear integer program and find the optimal solution by a solver. The algorithm is terminated
if we reach a Nash equilibrium or come upon the previously visited solution. Computational experiments
indicate that the algorithm takes a small number of steps and produces optimal or near optimal solutions.

2 Mathematical model

Assume that the setI of potential facility locations and the setJ of clients are finite. For each facility
i ∈ I we have the setRi of design scenarios [1] and this set is finite as well. For each pairi ∈ I, r ∈
Ri we have the fixed costsfir andgir of opening facilityi with design scenarior by the leader and
by the follower, respectively. Moreover, we know the attractivenessair of the leader facility and the
similar parameterbir of the follower facility. The last two features are important for describing the client
behavior. Each clientj splits own demandwj probabilistically over all facilities directly proportional
with attraction to each facility and inversely proportional to the distancedij between clientj and facility
i [1]. We consider the utility functionuijr of leader facilityi with design scenarior for client j and the
similar functionvijr for follower facility:

uijr = air/(dij + 1)β, vijr = bir/(dij + 1)β, i ∈ I, r ∈ Ri, j ∈ J,

whereβ is a distance sensitivity parameter. Now we introduce the decision variables for the players:
xir is equal to 1 if facilityi is opened by the leader with design scenarior and 0 otherwise;
yir is equal to 1 if facilityi is opened by the follower with design scenarior and 0 otherwise.
For clientj, the total utilityUj from the leader facilities and the total utilityVj from the follower facilities
are defined as:

Uj =
∑

i∈I

∑

r∈Ri

uijrxir, Vj =
∑

i∈I

∑

r∈Ri

vijryir, j ∈ J.

The total market share of the leader is given by
∑

j∈J wjUj/(Uj + Vj). The leader wishes to maximize
own market share, anticipating that the follower will react to the decision by opening own facilities. The
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market share of the follower is given by
∑

j∈J wjVj/(Uj + Vj). The follower maximizes own market
share. In opposite to [2], we assume that the players can open facilities at the same site. This Stackelberg
game can be presented as the following nonlinear 0–1 bilevel optimization problem:

max
x

∑

j∈J

wj

∑
i∈I

∑
r∈Ri

uijrxir∑
i∈I

∑
r∈Ri

uijrxir +
∑

i∈I

∑
r∈Ri

vijry∗ir
(1)

subject to ∑

i∈I

∑

r∈Ri

firxir ≤ Bl; (2)

∑

r∈Ri

xir ≤ 1, i ∈ I; (3)

xir ∈ {0, 1}, r ∈ Ri, i ∈ I; (4)

wherey∗ir is the optimal solution for the follower problem:

max
y

∑

j∈J

wj

∑
i∈I

∑
r∈Ri

vijryir∑
i∈I

∑
r∈Ri

uijrxir +
∑

i∈I

∑
r∈Ri

vijryir
(5)

subject to ∑

i∈I

∑

r∈Ri

giryir ≤ Bf ; (6)

∑

r∈Ri

yir ≤ 1, i ∈ I; (7)

yir ∈ {0, 1}, r ∈ Ri, i ∈ I. (8)

Objective functions (1) and (5) are market shares of the players. Inequalities (2) and (6) are the budget
constraints:Bl is the budget of the leader,Bf is the budget of the follower. Inequalities (3) and (7)
ensure a unique design scenario for each open facility.

3 Matheuristic

Suppose that the leader has made own decisionX. To calculate his market share, we need the follower
optimal solution. For solving the problem (5)–(8), we introduce a large numberW and new variables:

zj = 1/(
∑

i∈I

∑

r∈Ri

vijryir + Uj), yijr = wjvijrzj , r ∈ Ri, i ∈ I, j ∈ J.

Note thatUj is a constant in the follower problem. We rewrite this nonlinear problem as the following
mixed integer linear program:

max
∑

j∈J

∑

i∈I

∑

r∈Ri

yijr (9)

subject to (6), (7) and ∑

i∈I

∑

r∈Ri

yijr + wjUjzj ≤ wj , j ∈ J ; (10)

0 ≤ yijr ≤ wjyir, r ∈ Ri, i ∈ I, j ∈ J ; (11)

yijr ≤ wjvijrzj ≤ yijr + W (1− yir), r ∈ Ri, i ∈ I, j ∈ J ; (12)

yir ∈ {0, 1}, yijr ≥ 0, zj ≥ 0, r ∈ Ri, i ∈ I, j ∈ J. (13)

The main idea of the alternating method is the following [4]. For the solutionX, we compute the
best-possible solutionY for the follower. Once that is done, the leader assumes the role of the follower
and reoptimizes his decision by solving the corresponding problem for the given solutionY . This process
is then repeated until one of Nash equilibria is discovered or the previously visited solution is detected.
The best found solution for the leader is returned as the result of the method. In starting solution, the
leader ignores the follower.
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Bl\Bf 10 20 30 40 50 60 70 80 90 100

10 50 37 28 21 17 14 12
20 63 50 39 31∗ 25 22 20
30 72 61 50 43 36 31∗ 28∗ 25 23∗

40 79 69∗ 58 50 43∗ 39 35 32∗ 30∗

50 83 75 64 57∗ 50 45 41 38 35
60 86 78 68∗ 61 55 50 46 42 40 38
70 88 80 72∗ 65 59 54 50 46 44 41
80 75 68∗ 62 58 54 50 47 45
90 77∗ 70∗ 65 60 56 53 50 48
100 62 59 55 52 50

Table 1: The leader market share (%),|J | = |I| = 50

4 Computational results

We conducted computational experiments to test the method. We consider three design scenarios for
each facility: basic(r = 1), average(r = 2), and improved(r = 3) with corresponding attractiveness
ai1 = bi1 = 3, ai2 = bi2 = ai1 + ξi1, andai3 = bi3 = ai2 + ξi2 whereξi1 andξi2 are chosen at random
with uniform distribution from intervals [1,6] and [1,9], respectively. The fixed costs were generated by
the rule:gir = fir = µirair + µ′ir, whereµir andµ′ir were drawn randomly from the intervals [1,5] and
[5,10], respectively. The demandwj of each client was drawn randomly from the interval [1,10]. The
location of each client was generated randomly in the square100× 100. The facilities can be opened at
the same sites where the clients are located. The matrixdij is the Euclidean distance matrix,β = 1.

Table 1 shows our preliminary results for the different pairs of budgets(Bl, Bf ). Note that in case
Bl = Bf the leader can get at most half of the market, because the follower can use the same solution as
the leader. As we can see, the heuristic gives50% for the leader. Hence, we get the global optimum. In
other cases, we have no upper bound. Following [3], we say that so-calledfirst entry paradoxoccurs if
the leader market share is less than100% ·Bl/(Bl +Bf ). Numbers in boldface in the Table 1 correspond
to the paradox. The average number of steps for the heuristic is about 3, the maximal number is 6 in our
experiments. The running time depends on the budgets of the players. For large budgets, the running time
can exceed one hour per iteration for PC Pentium Core 2 Duo 2.66 GHz, RAM 2GB. The corresponding
cells are empty in the table. In other cases, we find optimal solutions of the problem (5)–(8) in a few
minutes. In the most cases we have got a Nash equilibrium. Numbers with stars(∗) indicate the cases
where we have no Nash equilibrium. Thus, we may conclude that the method is efficient and, as a rule,
the follower has an advantage over the leader in this game, but in average at most2%.
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