Length-Bounded Maximum Multicommodity Flow with Unit Edge-Lengths

A flow in a digraph G = (V, E) from origin vertex $s \in V$ to destination vertex $t \in V$ is a nonnegative function $f : E \to \mathbf{R}_+$ such that for each node $v \in V, v \neq s, v \neq t$ holds

$$\sum_{(v',v)\in E} f(v',v) - \sum_{(v,v')\in E} f(v,v') = 0$$

and

$$|f| = \sum_{(s,v')\in E} f(s,v') - \sum_{(v',s)\in E} f(v',s) = \sum_{(v',t)\in E} f(v',t) - \sum_{(t,v')\in E} f(t,v')$$

is the amount of flow sent from s to t in f.

If P_1, \ldots, P_r are paths from s to t, then a sum of path-flows along P_1, \ldots, P_r gives a network flow from s to t again. Given that

$$f = \sum_{j=1}^{r} f^{P_j}$$

, we will say that f is routed along the set of paths P_1, \ldots, P_r .

We will assume that flow f_i of commodity i, i = 1, ..., k, has an origin $s_i \in V$ and a destination $t_i \in V$. If $f_1, f_2, ..., f_k$ are flows of k commodities, then $F = (f_1, f_2, ..., f_k)$ is called a *multicommodity flow* in G.

An input instance of the maximum multicommodity flow (MCF) consists of a directed network G = (V, E), where |V| = n, |E| = m, an edge capacity function $u: E \to \mathbf{R}_+$ and a specification $(s_i, t_i, d_i) \in V \times V \times \mathbf{R}^+$ of commodity *i* for $i = 1, \ldots, k$. The objective is to maximize $\sum_{i=1}^{k} |f_i|$, so that the sum of flows on any edge $e \in E$ does not exceed u(e) and $|f_i| \leq d_i$, $i = 1, \ldots, k$.

The Length-Bounded Maximum Multicommodity Flow with Unit Edge-Lengths (LBMCF1) has the same input, extended by an upper bound $L \in \mathbb{Z}^+$ and asks for a maximum MCF where the sum of flows on any $e \in E$ does not exceed u(e), $|f_i| \leq d_i$, $i = 1, \ldots, k$, and the flow of each commodity is routed along a set of paths at most L edges long.

A special case of this problem where all edges have a unit length requires that the flow of each commodity is routed along a set of paths at most L edges long. Obviously, the maximum MCF may be considered a special case of LBMCF1, assuming L = n. W.l.o.g. we will assume that all pairs (s_i, t_i) are unique, since otherwise the demands with identical pairs (s_i, t_i) may be summed together in one demand.

An LP formulation of LBMCF1, involving O(Lkn + m) constraints and O(Lkm) variables, may be constructed using a multicommodity flow in a supplementary time-expanded network [2]. The node set V' contains a copy V_t of the node set V of graph G for every discrete time step $t, t = 1, \ldots, L$. For every

directed edge $(v, w) \in E$ there is an edge in E' from vertex $v_t \in V_t$ in time layer t to vertex $w_{t+1} \in V_{t+1}$. Besides that, E' contains edges (v_t, v_{t+1}) for all $v_t \in V_t$, $t = 1, \ldots, L-1$. A multicommodity flow is sought in this time-expanded network under additional constraints which require that for each $e = (v, w) \in E$ the sum of all flows traversing the edges (v_t, w_{t+1}) , $t = 1, \ldots, L-1$ is at most u(e). For all $i = 1, \ldots, k$, the origin of commodity i is placed in the copy s_{i1} of vertex s_i at level 1 and the destination is placed in the copy t_{iL} of vertex t_i at level L. The resulting LP formulation is as follows

$$\max\sum_{i=1}^{k} \sum_{e'=(s_{i1}, v_2) \in E'} x_i(e'), \tag{1}$$

$$\sum_{e'=(s_{i1},v_2)\in E'} x_i(e') \le d_i, \quad i = 1,\dots,k,$$
(2)

$$\sum_{i=1}^{k} \sum_{e'=(v_t, w_{t+1}) \in E'} x_i(e') \le u(e), \quad e = (v, w) \in E,$$
(3)

$$\sum_{e'=(v_{t-1},w_t)\in E'} x_i(e') = \sum_{e'=(w_t,v_{t+1})\in E'} x_i(e'),$$
(4)

$$i = 1, \dots, k, \quad w_t \in V_t, \quad t = 2, \dots, L - 1,$$

$$\sum_{e(v_{L-1},w_L)\in E'} x_i(e') = 0, \quad i = 1,\dots,k, \quad w_L \in V_L \setminus \{t_{Li}\},$$
(5)

where variables $x_i(e') \ge 0$ give the amount of flow of commodity *i* over edge $e' \in E'$.

References

e'

- T.C. Hu, Integer Programming and Network Flows, Addison-Wesley Publishing Company, Reading, MA, 1970.
- [2] P. Kolman and C. Scheideler, Improved bounds for the unsplittable flow problem, J. Algor. 61 (1) (2006), pp 20–44.