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Transfer Line Balancing Problem 

Transfer Line Balancing Problem (TLBP) was introduced in [3] In comparison with the 
well-known assembly line balancing problems, TLBP has many new assumptions reflecting the 
particularities of the machining environment. Machining transfer lines are usually paced and 
serial. They consist of a sequence of stations linked by an automated material handling device. In 
lines of this type, each station is equipped by a special machine-tool which performs machining 
operations block by block. All operations of each block are executed simultaneously using one 
multi-spindle head. The parallel execution of operations is possible due to the fact that the multi-
spindle heads carry several simultaneously activated tools. When machining at the current station 
is finished (all blocks installed on this machine have been activated) the part is moved to the next 
station. The time span between two movements can not exceed the given time value T0 referred 
to as line cycle time. The balancing problem consists in assigning the given set of operations to 
parallel blocks and stations under given assignment restrictions. 

The objective is to configure a serial machining line that consists of a number of linearly 
ordered machines. All the machines are linked by an automated material handling device without 
buffers between machines. Each machine is equipped with multi-spindle heads activated 
sequentially by changing the active spindle head or by moving the part to successive spindle 
heads. These multi-spindle heads perform different machining operations on the manufactured 
part. This type of equipment allows performing simultaneously several operations by tools fixed 
in the spindle head and activated simultaneously. The part transport is synchronized: all parts of 
the line are transferred simultaneously to the next station. 

The line balancing problem in the assembly environment is well-studied in the literature 
(see e.g. [1]). The TLBP has a number of unique characteristics such as parameterized operation 
times, non-strict precedence constraints, and parallel operations execution. These features make 
it impossible to use directly the optimization methods developed for the Assembly Line 
Balancing Problems. Several exact (e.g. mixed-integer programming and graph approaches) and 
heuristic (e.g. FSIC and multi-start decomposition algorithm) methods have been developed for 
the TLBP, a summarized description of these methods is given in [6]. Later, in [7, 2] it was 
proposed to use greedy randomized adaptive search procedure (GRASP) and a genetic algorithm 
(GA) for solving this problem. 

Notation  

Let N (i ∈ N) be the set of all operations i required to machine a part. Then, a solution of  
TLBP can be represented by a collection }},...,{},...,,...,{{ 1111 1 mmnmn NNNNP = , determining 

an assignment of operations to a sequence of machines (k = 1, 2, …, m) and repartition of 
operations assigned to the same machine  k  to nk  blocks.  Let Nk be the work content (i.e. a set of 
operations) for machine k (k = 1, 2, …, m) and  Nkl  be the set of operations grouped into 
common block  l (l =1, 2, …, nk) of machine k. 

To distinguish the pieces of equipment and corresponding sets of operations, the 
following notions are used: “station” for a set of operations assigned to a machine and “block” 
for a set of operations assigned to a spindle head.  
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The following input data is assumed to be known about the set of operations:  

• Precedence constraints between the operations. The technological process defines a 
partial order relation over operation set N. They can be represented by digraph G = (N, D). The 
arc (i, j) ∈ N×N  belongs to set  D  if and only if operation j cannot precede operation i. Such 
precedence constraints are called non strict because if operation i is a predecessor of operation j 
then either operation i can be executed before j or i and j can be executed simultaneously using a 
compound tool; 

• Inclusion constraints containing the groups of operations that must be assigned to the 
same machine, because of a required machining tolerance. They are can be represented by ES, a 
family of subsets from N, such that all operations of the same subset e∈ES must be assigned to 
the same station. No two sets from ES can include the same operation; otherwise such sets 
should be united. 

• Station exclusion constraints containing the groups of operations that cannot be 
assigned to the same machine because of their technological incompatibility. They can be 
represented by ES , a family of subsets from N, such that each subset ESe ∈  cannot be  assigned 
to the same station as a whole. 

• Block exclusion constraints containing the groups of operations that cannot be 
assigned to the same spindle head because of their technological incompatibility. They can be 
represented by EB , a family of subsets from N, such that the same subset EBe ∈  cannot belong 
to the same block as a whole.  

The following input data describes the machinery that can be used in the line design:   

• τ b is an auxiliary time needed for activation of a spindle head; 

• τ S is an auxiliary time needed for loading/unloading the part on a machine; 

• C1 is the relative cost of one station; 

• C2 is the relative cost of one block; 

• n0 is the maximal number of blocks per station; 

The following data describes the line constraints to be respected: 

• m0 is the maximal authorized number of stations; this parameter is introduced in order 
to reduce the number of feasible solutions. Its value can be obtained by analyzing the available 
factory area or the maximum authorized line investment cost, or calculated as an upper bound on 
m. 

• T0 is the maximal admissible line cycle time (desired productivity). 

To calculate the line cycle time that represents the time delay between the production of 
two products and to verify the line cycle constraint, the following calculation has to be made:  

 • For each operation j, its required working stroke length λj and the maximal admissible 
feed per minute sj are given. The working stroke length includes the required depth of cut and the 
distance between the tool and the part surface. 
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• The block processing time tb(Nkl) is determined as follows:  

t b(Nkl) = max{λj | j ∈ Nkl} / min{sj | j ∈ Nkl } + τ b. 

• Since the blocks of the same station are activated sequentially, the station processing 

time tS(Nk) is equal to the sum of its block processing times: ∑
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Mixed integer program (MIP) for solving TLBP [4, 6].  

Model notations: 

q is the index of block, e.g., for the block l of a station k, q = (k – 1)n0 + l;  

q0 is the maximal possible value of q, q0 = m0n0; 

S(k) = {(k – 1)n0 + 1, …, kn0} is the set of block indices for a station k;  

Q(j) is the set of indices q (blocks) where operation j can be assigned; 

K(j) is the set of indices k (stations) where operation j can be assigned;  

e is a set of operations which is an element of ES, ES or EB ; 

j(e) is some fixed operation from the set e.  

tj = λj /sj is the execution time of operation j if it is performed alone in a block. 

tij = max{λi, λj} / min{si, sj} is the execution time of two operations i, j if they are 
performed in one block. In case sj are all identical, this value is not used. 

Variables: 

Xjq is a binary decision variable (1 if operation j is assigned to block q and 0 otherwise); 

Fq ≥ 0 is an auxiliary variable for determining the time of block q;  

Yq∈{0, 1} is an auxiliary variable that indicates if block q exists or not; 

Zk ∈{0, 1} is an auxiliary variable that indicates if station k exists or not. The variables Yq 
and Zk are used to count the number of blocks and stations, respectively. 

To reduce the number of decision variables and constraints, the intervals of possible 
values of block Q(j) and station K(j) numbers for each operation are obtained from the analysis 
of all the constraints (for details, see [5]). 

To reduce the number of decision variables and constraints, the intervals of possible 
values of block Q(j) and station K(j) numbers for each operation are obtained from the analysis 
of all the constraints (for details, see [5]). 

The objective function is represented by (1). The precedence constraints are formulated in 
(2). Constraints (3) reflect the fact that each operation must be assigned to exactly one block. 
Constraints (4) determine the necessity of grouping certain operations in the same station. 
Constraints (5)–(6) deal with the impossibility of grouping certain operations in one block or 
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executing certain operations at the same station, respectively. Constraints (7) and (7′) determine 
the block processing times: here condition (7) corresponds to the case of single operation in 
block, while (7′) covers the cases of two or more operations. In case sj are all identical, inequality 
(7’) is redundant. Constraint (8) is the constraint on the cycle time. Constraints (9) ensure that 
block q exists in the design decision if and only if  Xjq = 1 at least for one j. Constraints (10) 
ensure that station k exists in the design decision if and only if  Yq = 1 at least for one q∈S(k). 
Constraints (11) guarantee that block q is created in station k only if block q – 1 exists for this 
station. Constraints (12) ensure that station k can be created only if station k – 1 exists at the line. 
Inequalities (11) and (12) mainly serve as symmetry-breaking cuts in this model (note that by a 
simple modification of (10) one could make these inequalities redundant). Bounds (13) are also 
imposed to reduce the polyhedron of linear relaxation. 
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Fq ≥ (ti + τ b) Xiq,    i∈N,    q∈Q(i)                                                                          (7) 

Fq ≥ (tij + τ b)(Xiq + Xjq  – 1),      i,j ∈N,    i < j,    q∈Q(i)∩ Q(j)                            (7′) 
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Yq ≥ Xjq,     j∈N,     q∈Q(j);                                                                                    (9) 

Zk ≥ Yq,     k=1, 2,…, m0,     q = (k – 1)n0 + 1;                                                      (10) 

Yq–1 – Yq ≥ 0,     q∈S(k)\{(k – 1)n0 + 1},     k = 1, 2,…, m0;                                 (11) 

Zk–1 – Zk ≥ 0,      k = 2, 3,…, m0;                                                                          (12) 

Fq ∈ [0, T0 – τ s – τ b],     q = 1, 2,…, q0.                                                             (13) 
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