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INTRODUCTION

A gene network is a group of conjointly function-
ing genes providing for execution of a vital function,
regulation of physiological processes, response to
environmental stimulus, etc. [1]. In addition to the
genes any gene network includes several types of
essential components such as: (i) mRNA and proteins
encoded by these genes; (ii) pathways of signal trans-
mission from the cell membrane to nucleus providing
for activation of genes in response to external control
stimuli; and (iii) external signals, hormones, and
metabolites transmitting physiological control influ-
ences, thus, switching a gene network modes.

Any gene network includes negative (stabilizing
parameters of a gene network at a certain level) and
positive feedbacks (deviating them from the initial
state, thus, providing for their transition to a new func-
tional state) [2]. Closed control circuits with negative
and positive feedbacks provide for autoregulation of
gene networks [3]. Control proteins and low-molecu-
lar compounds binding target sites in DNA, RNA, and
proteins are the molecular basis of such control circuit
functioning.

There is a number of deeply explored gene net-
works: erythrocyte differentiation control, antiviral
response, cholesterol biosynthesis in the cell, heat
shock response, seed germination control, nitrogen
fixation control, etc. [1, 4, 5]. Simulations were built
for some gene networks [6–12] and the methods and
programming resources for their modeling and
numeric investigation of dynamics were proposed
[13–22].

Actual problems of the gene network theory
includes prediction of qualitative properties of a gene
network functioning from the data on its structural and
functional organization [23–29].

Qualitative properties of gene network functioning
required for understanding the laws of their activity
include: (i) the capacity of a gene network to exist in
several (or single) stable states with constant concen-
tration of the substances (stationary states); and
(ii) continuous oscillating pattern of the changes in a
gene network components concentration (oscilla-
tions).

In this work we explored the qualitative behavior
of assumed gene networks constructed from two ele-
mentary units—genetic elements and control links.
Numeric analysis of a large number of models of
assumed gene networks with cyclic structure allowed
us to formulate a test predicting all its limit properties
without calculations, i.e., to predict the pres-
ence/absence as well as the number of stationery
and/or cyclic modes of its functioning. The
approaches presented below can be used to describe
both gene networks and metabolic systems.
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) include a gene, its
mRNA, and the protein encoded in this mRNA as well
as the processes providing for synthesis of mRNA,
protein, and protein multimerization (monomeric
form of the protein is considered as a special case in
the model). Diagram of a genetic element (G) is given
in Fig. 1a. We assume that the products of genes
expression have ultimate half-life; hence, a genetic
element also includes the processes of mRNA and
protein degradation (not shown on the genetic element
diagram).
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) describe the effect
of some genetic elements on the other ones decreasing

(negative association) or increasing (positive associa-
tion) synthesis rate of the latter ones. Control links are
shown as arrows connecting the genetic elements
(Fig. 1a–f). Direction of arrows indicates direction of
a control link action. This is also reflected by indices
at 
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. The first index shows the number of the genetic
element affecting functional activity of another
genetic element with the number in the second index
position. Control link 
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 indicates that the product of
genetic element 

 

g

 

i

 

 controls the activity of genetic ele-
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. For instance, Fig. 1b shows a gene network
composed of two genetic elements 
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Fig. 1.

 

 Examples of assumed gene networks built of two types of standard elements—genetic elements and control links; (a) dia-
gram of a genetic element of assumed gene network, see text for other explanations; (b) gene network S(2,2): (
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) test predicts two
stable points; (c) gene network S(3,2): (
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) test predicts single stable point; (d) gene network S(3,3): (
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) test predicts three stable
points; (e) gene network composed of four genes and nine control links: calculations reveal single stable point and single stable
limit cycle; (f) gene network S(6,2): (
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) test predicts two stable points; (g) structural graph of gene network S(6,4): (
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) test pre-
dicts two stable limit cycles.
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two control links 
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 providing for mutual reg-
ulation of these elements.

 

Assumed gene network

 

 is any set of genetic ele-
ments mutually linked by certain number of control
links. Let regulators denote the products exercising
control links as well as the corresponding genetic ele-
ments. Presumably multimeric forms of proteins are
regulators in the general case. Hence, the arrows indi-
cating control links in Fig. 1b–f start from a multim-
eric protein. We assume that one of gene expression
stages preceding synthesis of a regulator product is
controlled: transcription, mRNA degradation, splic-
ing, translation, etc. That is why the arrows indicating
control links in Fig. 1b–f point to one of intermediate
stages of protein synthesis. Examples of six assumed
gene networks are presented in Fig. 1. As was already
mentioned, the gene network presented in Fig. 1b is
composed of two genes 
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 and 
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 as well as two con-
trol links 
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 and 
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. The gene network in Fig. 1c
includes three genes 
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 as well as three con-
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; the gene network in Fig. 1d
includes the same three genes 
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 related by
six control links: 

 

σ12, σ23, σ31, σ13, σ21, and σ32. In the
case presented in Fig. 1e the gene network includes
four genetic elements, while those presented in Fig. 1f
and 1g include six genetic elements each. The
assumed gene network in Fig. 1g is presented as a
structural graph (explained below).

Structural Graph of Control Links
in a Gene Network

If numbered points denote genetic elements and
arrows denote control links, we obtain an oriented
graph. Consequently, arbitrary oriented graph can be
used to build a gene network if the sense of genetic
elements and control links is assigned to the points
and oriented edges, respectively. Let us assume that
the gene corresponding to the node of the graph is a
regulator of activity of the gene corresponding to the
node including this edge. Such graph can be naturally
called a graph of structure of a gene network control
links or a structural graph. The graph of a gene net-
work structure is exemplified in Fig. 1g. Edge desig-
nations are not given not to overload the diagram.
Two-way arrows between the nodes correspond to two
edges of opposite direction connecting these two
nodes. Gene network corresponding to the graph in
Fig. 1g includes six genetic elements (g1–g6) and
18 control links.

Since any oriented graph generates specific
assumed gene network, extreme variety of assumed
gene networks can be constructed from the genetic
elements and control links. For instance, three, four,
five, and six genetic elements can give rise to 16, 218,
9608, and 1,540,944 gene networks with different
structural graphs without loops, respectively (loop is

an oriented edge beginning and ending in the same
node which corresponds to autoregulation) [30].

Formal Description of Assumed
Gene Network Models

Let there be n genetic elements gi. Let pi denote a
protein encoded by genetic element gi. Let Di = {j1, …,

} denote a set of numbers of genetic elements con-
trolling gi. It is clear that Di taken for all i = 1, …, n
completely define control links, i.e., define structural
graph of the network. Let us describe the dynamics of
a gene network functioning according to the following
set of differential equations:

(1)

Here βi are rate constants of the processes decreasing
pi concentration of the final product of the ith genetic
element (degradation, transport from the compart-
ment, etc.); αi, γi, j, and κi, j are coefficients controlling
the activity of protein pi synthesis for regulators pj;
while hi, j and mi, j indicate the rate of pj influence on gi
activity. In the simplest case hi, j and mi, j have the
sense of dimension (in the sense of number of sub-
units) of the regulator molecule, while in the general
case they describe complexity of the control processes
and can be non-integral. By implication the parame-
ters βi, αi, γi, j, κi, j, hi, j, and mi, j are nonnegative num-
bers.

Equation (1) demonstrates that if κi, j = 0 the jth
genetic element is an inhibitor of the ith one, other-
wise the influence of jth regulator on the ith element
can be either positive and negative. This is defined by
the hi, j and mi, j values. If hi, j = mi, j the activation takes
place. Otherwise (when 0 < hi, j < mi, j) for low pj the
activity of ith genetic element will increase with pj

value and decrease at high pj .

Note that strict inequality hi, j > mi, j can formally be
true when unlimited activation takes place. However,
we shall confine ourselves to accepting natural addi-
tional conditions hi, j ≤ mi, j and κi, j = 0 if γi, j = 0 that
disallow it.

Clearly, the structural graph of the network com-
pletely defines the pattern of system (1). Vice versa,
the pattern of system (1) completely defines structural
graph of the network. Hence, there is pairwise 1-2-1
correspondence between the assumed gene networks,
oriented graphs, and systems of type (1). Hence, ori-
ented graphs have the same sense for systems (1) and
gene networks, i.e., they are structural graphs.

jki

d pi

dt
--------

α i κ i j, p j
hi j,

j Di∈
∑+

 
 
 

1 γi j, p j
mi j,

j Di∈
∑+

 
 
 
-------------------------------------------- βi pi, i– 1 n, .= =
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Here emerges the question if stationary points
and/or limit cycles can be predicted and counted
solely on the basis of structural graph of system (1)
without numeric calculations?

Here we confine ourselves to analysis of the limit
properties of system (1) tracks under the following
conditions: κi, j = 0, αi = α ≠ 0, γi, j = 1, βi = 1, and mi, j =
m ≠ 0. Hence, we consider the systems with negative
control links only and all genetic elements are
assumed to have identical genetic properties.

This leaves only two independent parameters in the
system: α and m. The parameter α describes the max-
imum rate of genetic products  synthesis, while
parameter m describes the complexity (nonlinearity)
of the gene function inhibition by the inhibitors. The
desired complexity in the real gene networks can be
attained by multimerization of repressor proteins
and/or sufficient number of intermediate stages.

Hereafter the systems of type (1) with the above-
mentioned restrictions will be referred to as (1') sys-
tems. Numeric calculations demonstrate that (1') sys-
tems can have both stable functioning modes and limit
cycles.

Figure 2 exemplifies numeric calculation for a
gene network model composed of four genes g1, g2, g3,
and g4 related by 9 negative associations σ12, σ23, σ31,
σ14, σ24, σ34, σ41, σ42, and σ43. The corresponding gene
network is presented in Fig. 1e. The calculations were
carried out at m = 3 and α = 5. The most straightfor-
ward interpretation of the value m = 3 is that trimers
are active forms of regulators.

Investigation of these gene networks demonstrated
that it has two limit modes of functioning each real-
ized according to the initial data—concentrations p1,
p2, p3, and p4. If the initial concentrations p1 = 1, p2 =
p3 = p4 = 0 the limit oscillating mode is realized when
concentrations of all products periodically and contin-
uously oscillate (Fig. 2a). Figure 2b illustrates the
same calculation in phase coordinates (p2, p3).

In the case of the initial data p1 = 1, p2 = p3 = 0, and
p4 = 1.5 the same system enters the region of station-
ary mode with constant concentrations of all four
components of the model (Fig. 2c).

Let us now consider a special case of (1') systems
describing gene networks with additional assumption
that each genetic element controls activity of the same
number (k – 1) of other genetic elements. Let us fur-
ther assume that the gene network graph is symmetric,
i.e., its nodes can be numbered so that each genetic
element gi is inhibited by genetic elements with num-
bers mn(i – 1), …, mn(i – k + 1), where

mn j( )
j,   if   1 j n≤ ≤
n i,   if   i 0.≤+




=

Then system (1) is transformed to

(2)

Test for Determining the Structure
of Negative Associations in Symmetric Gene 

Network, Number of Stable Points, and Limit 
Cycles from Structural Graph

Gene networks with symmetric structural graphs
were called symmetric or S(n,k) networks while the
corresponding systems (2) were called M(n,k) models,
where n is the number of genetic elements in the net-
work and (k – 1) is the number of a given gene regula-
tors. Examples of five symmetric gene networks are
given in Fig. 1 (b, c, d, f, and g). It is easy to calculate
that exactly n – 1 different symmetric networks exist
for a given n.

The table presents the results of numeric analysis
of stable functioning modes of all possible variants of
symmetric networks with the number of genes from 2
to 9. Analysis included numeric solution of a set of
differential equations (2) for various initial concentra-
tions Pi (i = 1, …, n). The calculations were carried out
at m = k + 1 and α = k + 1.

For instance, only stable points were revealed in
the models presented in rows 1–8 of the table while
the models presented in rows 9–11 conversely have no
stationary points but have 1, 2, and 3 stationary limit
cycles, respectively.

The calculations have revealed 3 stationary points,
2 stationary points, and 2 stationary limit cycles for
the model M(3,3) corresponding to the gene network
presented in Fig. 1c, model M(6,2) (Fig. 1e), and
model M(6,4) (Fig. 1f), respectively.

Let us specifically consider two models out of all
presented in the table. The first one is model M(2,2).
The calculation has revealed two stationary modes;
hence, it describes “molecular trigger”—a gene net-
work S(2,2) in Fig. 1a. Trigger properties of the corre-
sponding gene network have been confirmed experi-
mentally [31, 32] and are manifested as two stationary
modes. The second model—M(3,2)—describes
assumed gene network S(3,2) (Fig. 1b). The numeric
calculations indicate existence of single stationary
limit cycle in it. This gene network was also con-
structed by genetic engineering methods and its oscil-
lating mode has been observed in the experiment [33].

The table demonstrates that the limit properties of
systems (2) with various structural graphs indeed dif-
fer. However, the differences can be observed within
fixed structural graph of a model with different param-
eters m and α. For instance, å(n,2) models have sin-
gle stable mode at n > 1, m = 1, and any positive α. At
the same time, we have shown that models å(n,2) (n =

d pi/dt pi α / pmn i 1–( )
m … pmn i k– 1+( )

m+ +( ),+=

i 1 n, .=
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2, …, 9) have a spectrum of various stable functioning
modes (both cycles and stationary states) at m = 3 and
α = 3.

More complex variants of limit behavior of the
models with fixed structure at different parameters α
and m are also possible. Here emerges the question as
to which properties of gene networks depend on the
structural graph and which depend on specific values
of the parameters? Analysis of the models presented in
the table as well as other M(n, k) models allowed us to
formulate the following empirical test.

The (n,k) Test
If n divides evenly by k, there are such m0 and α0

that M(n,k) model has k stable singular points at any
m > m0 and α > α0. There are no limit cycles in this
model. If n does not divide evenly by k, there are such
m0 and α0 that the M(n,k) model has d stationary limit
cycles and no stable points at any m > m0 and α > α0
(d is the greatest common divisor of n and k).

We have also found tests for the general case of (1')
systems predicting all stationary limit modes of the
corresponding gene network functioning from the
structural graph. However, they are not presented here
because of publication volume limitations.

Note that the (n,k) test does not rule out other func-
tioning modes at m ≤ m0 and α ≤ α0 but gives us no
information about it.

Practical requirements for the analysis of behav-
ioral dynamics of the real gene networks as well as
construction of gene networks with predefined proper-
ties deserve numeric investigation of the correspond-
ing mathematical models, analysis of the solution sta-
bility, and investigation of the systems behavior for
various parameters of the gene networks (e.g.,
[31, 33]). An integrated approach based on the data
obtained from the (n,k) test and methods of numeric
analysis can be used in this case. Let us consider two
examples.

1. Gene network S(6,6). According to the (n,k) test
it should have 6 stable points at certain m > m0 and α >
α0. Their search can be performed, for instance, by the
previously developed STEP software package [34].
The package is universal and can be used to study
arbitrary sets of differential autonomous equations.

STEP investigation of the M(6,6) model for m > 6
and α > 6 has revealed 83 stationary points and only
six of them proved to be stable. Hence, in this case
specific values m0 = 6 and α0 = 6 were determined
when the (n,k) test is satisfied for the considered gene

0 1 2 3
Concentration p2, arb. units

1

2

3
Concentration p3, arb. units

(b)

0 5 10
Time, arb. units

2

6
Concentration, arb. units (c)

4

p2, p3p1

p4

0 5 74.8 79.8
Time, arb. units

1

2

3
Concentration, arb. units

(a)

10 84.8

p4

p3 p2 p1

Fig. 2. Example of dynamic behavior of a gene network simulation presented in Fig. 1e with various initial parameters; calculations
were carried out at m = 3 and α = 5; (a) approaching stable limit cycle at the initial products concentrations p1 = 1 and p2 = p3 = p4 =
0; (b) phase curve (2, p3) at the same calculations conditions; (c) approaching stationary conditions at the initial products concen-
trations p1 = 1, p2 = p3 = 0, and p4 = 1.5.
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network. In addition STEP package allows us to refine
qualitative pattern of S(6,6) gene network behavior for
m < 6 and α < 6. For instance, 13 stationary points
including 7 stable ones have been revealed for m > m0
and 1 < α ≤ 3. At m < 6 “symmetric solution” is stable
for any positive α.

2. Gene network S(6,2). According to the (n,k) test
it should have 2 stable points for certain m > m0 and
α > α0. The region where the (n,k) test is satisfied
revealed by STEP package is defined by the limits
m0 = 2 and α0 = 2. Five stationary points and single
limit cycle are revealed within it. Only two points are
stable, while other points and the limit cycle are unsta-
ble.

A detailed description of gene network complex
analysis using (n,k) test and numeric methods will be
presented in the nearest future at the Web site of the
computer system GeneExpress-2 we are now develop-
ing.

The approach presented in this work opens new
possibilities for analysis of the real gene network
structure. We believe that its further development will
bring us the solution of practically important problem
of constructing gene networks with predefined
dynamic properties and limit functioning modes (the
number of stationary and/or oscillating variants of the
dynamic behavior). The fact that qualitative behavior
of a gene network depends on the graph structure and
can certainly change after appearance/disappearance
of just one control link brings new possibilities to
explaining the laws of gene networks evolution (their
evolutionary complication, in particular) as well as to
interpreting the influence of mutations on functioning
of genetic networks and the controlled processes.
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