
1

 Kononov Alexander Veniaminovich

IM, room 324
Thursday 11:40

Approximation algorithms

2

We will study

NP-hard optimization problem

3

What you should know!
•  Problem
•  Instance
•  Optimization problem
•  Input size of an instance
•  Algorithm
•  Running time
•  Polynomial time algorithm
•  Linear programming (a linear program)
•  NP-hard problem

4

Some books in Combinatorial
Optimization

•  M. R. Garey, D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completness, W. H. Freeman, 1979.

•  C. H. Papadimitriou, K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity, Prentice
Hall INC, Englewood Cliffs, New Jersey, 1982.

•  Korte B., Vygen J., Combinatorial Optimization:
theory and algorithms, (Algorithms and Combinatorics
21), Springer, Berlin, 2010.

5

Problem

 A problem will be a general question to be answered,
usually possessing several parameters, or free
variables, whose values are left unspecified.

 A problem Π is described by giving:
•  a general description of all its parameters,
•  a statement of what properties the answer, or solution,

is required to satisfy.
 An instance I of a problem is obtained by specifying

particular values for all the problem parameters.

6

Vertex cover

•  Given an undirected graph G = (V, E), and a cost
function on vertices c: V → Q+.

•  Find a minimum cost vertex cover.
•  Vertex cover is a set V′ ⊆ V such that every edge

has at least one endpoint incident at V′ .

An instance of Vertex cover

c1=5
c2=7

c3=1

c4=5

c5=3 c6=15

8

Input size

 The input to an algorithm usually consists of a list of
numbers. If all these numbers are integers, we can code
them in binary representation, using O(log(|a|+2)) bits
for storing an integer a.

 The input size of an instance with rational data is the
total number of bits needed for the binary
representation.

9

Optimization problem
 An NP-optimization problem Π is either a minimization or a

maximization problem. It consists of:
•  A set of valid instances, ΩΠ, recognizable in polynomial time.

We will assume that all numbers specified in an input are
rationals.

•  Each instance I ∈ ΩΠ has a set of feasible solutions SolΠ(I). We
require that SolΠ(I) ≠ ∅, and that every solution σ ∈ SolΠ(I) is of
length polynomially bounded in |I|. This means that there is a
polynomial time algorithm that, given a pair (I, σ), decides
whether σ ∈ SolΠ(I).

•  There is a polynomial time computable objective function hΠ,
that assigns a nonnegative rational number to each pair (I, σ).
The objective function is frequently given a physical
interpretation, such as cost, length, weight, etc.

10

Optimal solution

•  An optimal solution for an instance I ∈ ΩΠ of
minimization (maximization) problem is a feasible
solution σ* ∈ SolΠ that achieves the smallest (largest)
objective function value, i.e. hΠ(I, σ*) ≤ hΠ(I, σ) for
all σ ∈ SolΠ (I).

•  We will use OPTΠ(I) or OPT(I) to denote the
objective function value of an optimal solution to
instance I.

A feasible solution

c1=5
c2=7

c3=1

c4=5

c5=3 c6=15

An optimal solution

c1=5
c2=7

c3=1

c4=5

c5=3 c6=15

13

Algorithm
An algorithm consists of
•  a set of valid inputs,
•  a sequence of instructions each of which can be composed of

elementary steps (variable assignments, conditional jumps (if –
then – go to), and simple arithmetic operations like addition,
subtraction, multiplication, division and comparison of
numbers),

•  For each valid input the computation of the algorithm is a
uniquely defined finite series of elementary steps which
produces a certain output.

14

Running time
•  The time requirements of an algorithm are

conveniently expressed in terms of a single variable,
the “size” of a problem instance, which is intended to
reflect the amount of input data needed to describe
the instance.

•  The time complexity function for an algorithm
expresses its time requirements by giving, for each
possible input length, the largest amount of time
needed by the algorithm to solve a problem instance
of that size.

15

Polynomial algorithm

•  An algorithm with rational input is said to run in polynomial

time if there is an integer k such that it runs in O(xk) time,
where x is the input size, and all numbers in intermediate
computations can be stored with O(xk) bits.

•  An algorithm with arbitrary input is said to run in strongly
polynomial time if there is an integer k such that it runs in
O(nk) time for any input consisting of n numbers and it runs in
polynomial time for rational input.

•  In the case k =1 we have a linear-time algorithm.

16

NP-hard problem

•  An optimization problem Π is called NP-hard
if all problems in NP polynomially reduce to Π.

•  For any NP-hard problem, there does not exist
an exact polynomial-time algorithm, unless
P = NP.

 Almost all interesting optimization

problems are NP-hard.

17

What we can do with NP-hard
problems?

•  Solve by enumeration algorithms.
•  Solve by approximation algorithms:

–  heuristics, metaheuristics
–  approximation algorithms with guaranteed worst-

case performance ratio.
 We will study approximation algorithms with

guaranteed approximation ratio.

18

Approximation algorithm

 An ρ-approximation algorithm for an

optimization problem is a polynomial-time
algorithm that for all instances of the problem
produces a solution whose value is within a
factor of ρ of the value of an optimal solution.

19

Approximation schemes

 Let Π be a minimization problem.
•  An approximation scheme for problem Π is a family of (1+ ε)-

approximation algorithms Aε for problem Π over all ε > 0.
•  A polynomial-time approximation scheme (PTAS) for

problem Π is an approximation scheme whose time complexity
is polynomial in the input size for the fixed ε.

•  A fully polynomial-time approximation scheme (FPTAS) for
problem Π is an approximation scheme whose time complexity
is polynomial in the input size and also polynomial in 1/ε.

20

Algorithm

•  How to design an approximation algorithm?
– The study of the combinatorial structure of the

problem
– The study of properties of optimal solutions
– The design of algorithms, based on these

properties
•  Generalization and extension of techniques

accumulated in the construction of algorithms
for polynomially solvable problems.

21

Linear Programming

()

.,,1for 0

 min

11

11111

11

nix
bxaxa

bxaxa

xcxcxz

i

mnmnm

nn

nn

…

…
!

…

…

=≥

≥++

≥++

→++=

22

Polynomially solvable problems

•  The minimum spanning tree problems
•  The maximum flow problem
•  The assignment problem
•  The maximum weight matching problem

●●●

23

How do we establish the
approximation guarantee?

•  Can we compare the cost of the solution
produced by the algorithm with the cost of an
optimal solution?

24

How do we establish the
approximation guarantee?

•  Can we compare the cost of the solution
produced by the algorithm with the cost of an
optimal solution?

•  However, for such problems, not only is it
NP-hard to find an optimal solution, but it is
also NP-hard to compute the cost of an optimal
solution.

25

Lower bound

•  We should find a “good” polynomial time
computable lower bound on the cost of an
optimal solution.

•  Moreover, it is interesting that a “good” lower
bound usually provides a key step in the design
of approximation algorithms.

26

Cardinality vertex cover

•  Given an undirected graph G = (V, E).
•  Find a minimum cardinality vertex cover.

27

Maximum and maximal matching

 Given a graph G = (V, E), a subset of the edges M ⊆ E is said
to be a matching if no two edges of M share an endpoint.

•  A matching of maximum cardinality in G is called a
maximum matching.

•  A matching that is maximal under inclusion is called a
maximal matching.

 The size of a maximal matching in G provides a lower bound

on the size of any vertex cover. This is so because any vertex
cover has to pick at least one endpoint of each matched edge.

28

 Simple Algorithm

1.  Find a maximal matching in G.
2.  Output the set of matched vertices.

29

Approximation ratio of
the Simple Algorithm

Theorem 1.1

 The Simple Algorithm is a factor 2 approximation
algorithm for the cardinality vertex cover problem.

Proof:

•  No edge can be left uncovered by the set of
vertices picked ― otherwise such an edge
could have been added to the matching,
contradicting its maximality.

•  Let M be the matching picked. As argued
above, |M| ≤ OPT.

•  The approximation factor follows from the
observation that the cover picked by the
algorithm has cardinality 2 |M|.

30

Can we improve the approximation
guarantee?

– Can the approximation guarantee of the Simple
Algorithm be improved by a better analysis?

– Can an approximation algorithm with a better
guarantee be designed using the lower bounding
scheme of the Simple Algorithm, i.e. size of a
maximal matching in G?

–  Is there some other lower bounding method that
can lead to an improved approximation guarantee
for vertex cover?

Tight example

The analysis presented in Theorem 1.1 is tight.

Can we improve the approximation
guarantee?

– Can the approximation guarantee of the Simple
Algorithm be improved by a better analysis? NO!

– Can an approximation algorithm with a better
guarantee be designed using the lower bounding
scheme of the Simple Algorithm, i.e. size of a
maximal matching in G?

–  Is there some other lower bounding method that
can lead to an improved approximation guarantee
for vertex cover?

Comparing the cost of the solution
with the lower bound

Comparing the cost of the solution
with the lower bound

Can we improve the approximation
guarantee?

– Can the approximation guarantee of the Simple
Algorithm be improved by a better analysis? NO!

– Can an approximation algorithm with a better
guarantee be designed using the lower bounding
scheme of the Simple Algorithm, i.e. size of a
maximal matching in G? NO!

–  Is there some other lower bounding method that
can lead to an improved approximation guarantee
for vertex cover?

37

Books
•  Кононов А.В., Кононова П.А. Приближенные алгоритмы
для NP-трудных задач, Учебное пособие, НГУ, 2014.

•  Approximation Algorithms for NP-hard problems, edited by
D. Hochbaum, PWS Publishing Company, 1997.

•  V. Vazirani Approximation Algorithms, Springer-Verlag,
Berlin, 2001.

•  P. Schuurman, G. Woeginger Approximation Schemes –
A Tutorial, chapter of the book “Lecture on Scheduling”, to
appear in 2008.

•  D. P. Williamson, D. B. Shmoys The Design of Approxi-
mation Algorithms, Cambridge University Press, 2011.

Exercises
1.  Consider the following problem.

Problem MST:
Given an undirected graph G = (V, E), weights of edges
c: E → Q and positive rational number B.
Is there a spanning tree of weight B or less in G.
Whether problem MST belongs to NP. Explain your answer.

2.  Formulate the cardinality vertex cover problem as an integer
problem.

3.  Obtain the dual program for the LP-relaxation of the integer
problem from exercise 2.

38

