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We will study 
       
 

NP-hard optimization problem 
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What you should know! 
•  Problem 
•  Instance 
•  Optimization problem 
•  Input size of an instance 
•  Algorithm 
•  Running time  
•  Polynomial time algorithm 
•  Linear programming (a linear program) 
•  NP-hard problem 
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Some books in Combinatorial 
Optimization 

•  M. R. Garey, D. S. Johnson, Computers and 
Intractability: A Guide to the Theory of NP-
Completness, W. H. Freeman, 1979. 

•  C. H. Papadimitriou, K. Steiglitz, Combinatorial 
Optimization: Algorithms and Complexity, Prentice 
Hall INC, Englewood Cliffs, New Jersey, 1982. 

•  Korte B., Vygen J., Combinatorial Optimization: 
theory and algorithms, (Algorithms and Combinatorics 
21), Springer, Berlin, 2010. 
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Problem 

    A problem will be a general question to be answered, 
usually possessing several parameters, or free 
variables, whose values are left unspecified.   

    A problem Π is described by giving: 
•  a general description of all its parameters, 
•  a statement of what properties the answer, or solution, 

is required to satisfy. 
    An instance I of a problem is obtained by specifying 

particular values for all the problem parameters.  
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Vertex cover 

•  Given  an undirected graph G = (V, E), and a cost 
function on vertices c: V → Q+. 

•  Find a minimum cost vertex cover. 
•  Vertex cover is a set V′ ⊆ V  such that every edge 

has at least one endpoint incident at V′ . 



An instance of Vertex cover  

c1=5 
c2=7 

c3=1 

c4=5 

c5=3 c6=15 
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Input size 

   The input to an algorithm usually consists of a list of 
numbers. If all these numbers are integers, we can code 
them in binary representation, using O(log(|a|+2)) bits 
for storing an integer a.  

    The input size of an instance with rational data is the 
total number of bits needed for the binary 
representation.  
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Optimization problem 
    An NP-optimization problem Π is either a minimization or a 

maximization problem. It consists of:  
•  A set of valid instances, ΩΠ, recognizable in polynomial time. 

We will assume that all numbers specified in an input are 
rationals. 

•  Each instance I ∈ ΩΠ has a set of feasible solutions  SolΠ(I). We 
require that SolΠ(I) ≠ ∅, and that every solution σ ∈ SolΠ(I)  is of 
length polynomially bounded in |I|. This means that there is a 
polynomial time algorithm that, given a pair (I, σ), decides 
whether σ ∈ SolΠ(I).  

•  There is a polynomial time computable objective function hΠ, 
that assigns a nonnegative rational number to each pair (I, σ). 
The objective function is frequently given a physical 
interpretation, such as cost, length, weight, etc. 
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Optimal solution 

•  An optimal solution for an instance I ∈ ΩΠ of 
minimization (maximization) problem is a feasible 
solution σ* ∈ SolΠ  that achieves the smallest (largest) 
objective function value, i.e. hΠ(I, σ*) ≤ hΠ(I, σ) for 
all σ ∈ SolΠ (I).  

•  We will use OPTΠ(I) or OPT(I) to denote the 
objective function value of an optimal solution to 
instance I.  



A feasible solution 

c1=5 
c2=7 

c3=1 

c4=5 

c5=3 c6=15 



An optimal solution 

c1=5 
c2=7 

c3=1 

c4=5 

c5=3 c6=15 
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Algorithm 
An algorithm consists of 
•  a set of valid inputs,  
•  a  sequence of instructions each of which can be composed of 

elementary steps (variable assignments, conditional jumps (if – 
then – go to), and simple arithmetic operations like addition, 
subtraction, multiplication, division and comparison of 
numbers),  

•  For each valid input the computation of the algorithm is a 
uniquely defined finite series of elementary steps which 
produces a certain output. 
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Running time 
•  The time requirements of an algorithm are 

conveniently expressed in terms of a single variable, 
the “size” of a problem instance, which is intended to 
reflect the amount of input data needed to describe 
the instance. 

•   The time complexity function for an algorithm 
expresses its time requirements by giving, for each 
possible input length, the largest amount of time 
needed by the algorithm to solve a problem instance 
of that size. 
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Polynomial algorithm 
 
•   An algorithm with rational input is said to run in polynomial 

time if there is an integer k such that it runs in O(xk) time,  
where x is the input size, and all numbers in intermediate 
computations can be stored with O(xk) bits. 

•   An algorithm with arbitrary input is said to run in strongly 
polynomial time if there is an integer k such that it runs in 
O(nk) time for any input consisting of n numbers and it runs in 
polynomial time for rational input. 

•  In the case k =1 we have a linear-time algorithm. 
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NP-hard problem  

•  An optimization problem Π is called NP-hard 
if all problems in NP polynomially reduce to Π. 

•  For any NP-hard problem, there does not exist 
an exact polynomial-time algorithm, unless         
P = NP. 

 
   Almost all interesting optimization  

problems are NP-hard. 
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What we can do with NP-hard 
problems? 

•  Solve by enumeration algorithms. 
•  Solve by approximation algorithms: 

–  heuristics, metaheuristics 
–  approximation algorithms with guaranteed worst-

case performance ratio. 
  We will study approximation algorithms with 

guaranteed approximation ratio. 
   



18 

Approximation algorithm 

    
    An ρ-approximation algorithm for an 

optimization problem is a polynomial-time 
algorithm that for all instances of the problem 
produces a solution whose value is within a 
factor of ρ of the value of an optimal solution. 
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Approximation schemes 

  Let Π be a minimization problem.  
•  An approximation scheme for problem Π is a family of (1+ ε)-

approximation algorithms Aε for problem Π over all ε > 0.   
•  A polynomial-time approximation scheme (PTAS) for 

problem Π is an approximation scheme whose time complexity 
is polynomial in the input size for the fixed ε. 

•  A fully polynomial-time approximation scheme (FPTAS) for 
problem Π is an approximation scheme whose time complexity 
is polynomial in the input size and also polynomial in 1/ε. 
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Algorithm 

•  How to design an approximation algorithm? 
– The study of the combinatorial structure of the 

problem 
– The study of properties of optimal solutions 
– The design of algorithms, based on these 

properties 
•  Generalization and extension of techniques 

accumulated in the construction of algorithms 
for polynomially solvable problems. 



21 

Linear Programming 
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Polynomially solvable problems 

•  The minimum spanning tree problems 
•  The maximum flow problem 
•  The assignment problem 
•  The maximum weight matching problem 

●●● 
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How do we establish the 
approximation guarantee? 

•  Can we compare the cost of the solution 
produced by the algorithm with the cost of an 
optimal solution? 
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How do we establish the 
approximation guarantee? 

•  Can we compare the cost of the solution 
produced by the algorithm with the cost of an 
optimal solution? 

•  However, for such problems, not only is it  
NP-hard to find an optimal solution, but it is 
also NP-hard to compute the cost of an optimal 
solution. 
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Lower bound 

•  We should find a “good” polynomial time 
computable lower bound on the cost of an 
optimal solution. 

•  Moreover, it is interesting that a “good” lower 
bound usually provides a key step in the design 
of approximation algorithms. 
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Cardinality vertex cover  

•  Given an undirected graph G = (V, E). 
•  Find a minimum cardinality vertex cover. 
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Maximum and maximal matching 

    Given a graph G = (V, E), a subset of the edges M ⊆ E is said 
to be a matching if no two edges of M share an endpoint. 

•  A matching of maximum cardinality in G is called a 
maximum matching.  

•  A matching that is maximal under inclusion is called a 
maximal matching. 

      
     The size of a maximal matching in G provides a lower bound 

on the size of any vertex cover. This is so because any vertex 
cover has to pick at least one endpoint of each matched edge. 
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 Simple Algorithm   

1.  Find a maximal matching in G. 
2.  Output the set of matched vertices. 
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Approximation ratio of  
the Simple Algorithm 

 
Theorem 1.1 

   The Simple Algorithm is a factor 2 approximation 
algorithm for the cardinality vertex cover problem. 



Proof: 

•  No edge can be left uncovered by the set of 
vertices picked ― otherwise such an edge 
could have been added to the matching, 
contradicting its maximality.  

•  Let M be the matching  picked. As argued 
above, |M| ≤ OPT. 

•  The approximation factor follows from the 
observation that the cover picked by the 
algorithm has cardinality 2 |M|. 
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Can we improve the approximation 
guarantee? 

– Can the approximation guarantee of the Simple 
Algorithm be improved by a better analysis? 

– Can an approximation algorithm with a better 
guarantee be designed using the lower bounding 
scheme of the Simple Algorithm, i.e. size of a 
maximal matching in G? 

–   Is there some other lower bounding method that 
can lead to an improved approximation guarantee 
for vertex cover? 



Tight example 

The analysis presented in Theorem 1.1 is tight.  



Can we improve the approximation 
guarantee? 

– Can the approximation guarantee of the Simple 
Algorithm be improved by a better analysis?  NO! 

– Can an approximation algorithm with a better 
guarantee be designed using the lower bounding 
scheme of the Simple Algorithm, i.e. size of a 
maximal matching in G? 

–   Is there some other lower bounding method that 
can lead to an improved approximation guarantee 
for vertex cover? 



Comparing the cost of the solution 
with the lower bound 



Comparing the cost of the solution 
with the lower bound 



Can we improve the approximation 
guarantee? 

– Can the approximation guarantee of the Simple 
Algorithm be improved by a better analysis?  NO! 

– Can an approximation algorithm with a better 
guarantee be designed using the lower bounding 
scheme of the Simple Algorithm, i.e. size of a 
maximal matching in G?  NO! 

–   Is there some other lower bounding method that 
can lead to an improved approximation guarantee 
for vertex cover? 
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Books 
•  Кононов А.В., Кононова П.А. Приближенные алгоритмы 
для NP-трудных задач, Учебное пособие, НГУ, 2014. 

•  Approximation Algorithms for NP-hard problems, edited by 
D. Hochbaum, PWS Publishing Company, 1997. 

•   V. Vazirani Approximation Algorithms, Springer-Verlag, 
Berlin, 2001. 

•  P. Schuurman, G. Woeginger  Approximation Schemes –     
A Tutorial, chapter of the book “Lecture on Scheduling”, to 
appear in 2008. 

•  D. P. Williamson, D. B. Shmoys  The Design of Approxi-
mation Algorithms, Cambridge University Press, 2011. 



Exercises 
1.  Consider the following problem.                                                  

Problem MST:                                                                           
Given an undirected graph G = (V, E), weights of edges                 
c: E → Q and positive rational number B.                                     
Is there a spanning tree of weight B or less in G.                    
Whether problem MST belongs to NP. Explain your answer. 

2.  Formulate the cardinality vertex cover problem as an integer 
problem. 

3.  Obtain the dual program for the LP-relaxation of the integer 
problem from exercise 2.  
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