
Randomized Algorithms 

  
MAX-SAT 



Maximum Satisfiability (MAX-SAT) 

•  Given  a conjunctive normal form formula f on 
Boolean variables x1,…, xn, and nonnegative 
weights wc, for each clause c of  f . 

•  Find a truth assignment to the Boolean variables 
that maximizes the total weight of satisfied 
clauses.  



Clauses 

•  Each clause is a disjunction of literals; each literal 
being either a Boolean variable or its negation. Let 
size(c) denote the size of clause c, i.e., the number of 
literals in it. We will assume that the sizes of clauses 
in f are arbitrary. 

•  A clause is said to be satisfied if one of the unnegated 
variables is set to true or one of the negated variables 
is set to false. 



Terminology 

•  Random variable W will denote the total weight 
of satisfied clauses. 

•  For each clause c∈f, random variable Wc denotes 
the weight contributed by clause c to W. 

[ ] [ ].1PrE

,

=⋅=

=∑
∈

cwW

WW

cc

fc
c



Johnson’s Algorithm 

 
0)    Input (x1,…, xn, f, w: f → Q+) 
1)   Set each Boolean variable to be True 

independently with probability 1/2.  
3)   Output the resulting truth assignment, say τ. 



A good algorithm for large clauses 

•  For k ≥ 1, define αk=1–2–k. 
•  Lemma 11.1  If size(c)=k, then E[Wc]=αkwc. 
    Proof. Clause c is not satisfied by τ iff all its literals 

are set to False. The probability of this event is 2–k.  
•  Corollary 11.2  E[W] ≥ ½ OPT. 
     Proof. For k ≥ 1, αk  ≥ ½. By linearity of expectation, 
      
 [ ] [ ] .OPT

2
1

2
1

≥≥= ∑∑
∈∈ fc

c
fc

c wWW EE



Conditional Expectation 

•  Let a1,…, ai be a truth assignment to x1,…, xi. 

•  Lemma 11.3 
      E[W| x1= a1,…, xi = ai] can be computed in 

polynomial time. 



Proof 

•  Let an assignment of variables x1,…, xi is fixed say 
x1= a1,…, xi = ai. 

•  Let φ be the Boolean formula, on variables xi+1,…, xn, 
obtained for this node via self-reducibility.  

•  The expected weight of satisfied clauses of φ under a 
random truth assignment to the variables xi+1,…, xn 
can be computed in polynomial time.  

•  Adding to this the total weight of clauses of f already 
satisfied by the partial assignment x1= a1,…, xi = ai 
gives the answer. 



Derandomazing 

•  Theorem 11.4 
   We can compute, in polynomial time,                     

an assignment  x1=a1,…, xn=an such that   
W(a1,…, an ) ≥ E[W]. 



Proof 

•  E[W| x1=a1,…, xi=ai] = E[W| x1=a1,…, xi=ai, xi+1= True]/2 +          
+ E[W| x1=a1,…, xi=ai, xi+1= False]/2  

•  It follows that                                                                            
either E[W| x1=a1,…, xi=ai, xi+1= True] ≥ E[W| x1=a1,…, xi=ai],  
or E[W| x1=a1,…, xi=ai, xi+1= False] ≥ E[W| x1=a1,…, xi=ai]. 

•  Take an assignment with larger expectation.  
•  The procedure requires n iterations. Lemma 11.3 implies that 

each iteration can be done in polynomial time. 



Remark 
•  Let us show that the technique outlined above can, in principle, be used to 

derandomize more complex randomized algorithms. Suppose the algorithm 
does not set the Boolean variables independently of each other. Now,  

•  E[W| x1=a1,…, xi=ai] =                                                                                         
E[W| x1=a1,…, xi=ai, xi+1= True] ·Pr[xi+1= True| x1=a1,…, xi=ai] +                                          
E[W| x1=a1,…, xi=ai, xi+1= False] ·Pr[xi+1= False| x1=a1,…, xi=ai]. 
•  The sum of the two conditional probabilities is again 1, since the two 

events are exhaustive. 
Pr[xi+1= True| x1=a1,…, xi=ai]+Pr[xi+1= False| x1=a1,…, xi=ai]=1. 



Conclusion 

•  So, the conditional expectation of the parent is still a convex combination 
of the conditional expectations of the two children. 

•  Thus,                                                                             
     either E[W| x1=a1,…, xi=ai, xi+1= True] ≥ E[W| x1=a1,…, xi=ai],   
          or E[W| x1=a1,…, xi=ai, xi+1= False] ≥ E[W| x1=a1,…, xi=ai]. 
•  If we can determine, in polynomial time, which of the two children has a 

larger value, we can again derandomize the algorithm. 



Flipping biased coins  

•  How might we improve the randomized algorithm for 
MAX SAT? We will show here that biasing the 
probability with which we set xi is actually helpful; 
that is, we will set xi true with some probability not 
equal to 1/2.  



No negated unit clauses 

•  To do this, it is easiest to start by considering only 
MAX SAT instances with no negated unit clauses. 
We will later show that we can remove this 
assumption. Suppose now we set each xi to be true 
independently with probability p > 1/2. As in the 
analysis of the previous randomized algorithm, we 
will need to analyze the probability that any given 
clause is satisfied.  



•  Lemma 11.5 
If each xi is set to true with probability p > 1/2 
independently, then the probability that any given 
clause is satisfied is at least min(p, 1−p2) for 
MAX SAT instances with no negated unit clauses.  



Proof 
•  If the clause is a unit clause, then the probability the clause is 

satisfied is p, since it must be of the form xi, and the probability 
xi is set true is p. 

•  If the clause has length at least two, then the probability that the 
clause is satisfied is 1 − pa(1 − p)b, where a is the number of 
negated variables in the clause and b is the number of 
unnegated variables in the clause and a + b ≥ 2.  

•  Since p > 1/2 > 1− p, this probability is at least 1− pa+b ≥ 1−p2, 
and the lemma is proved.  



Best performance guarantee 
•  We can obtain the best performance guarantee by setting           

p = 1 − p2. This yields p = 1/2 (√5 − 1) ≈ 0.618. Lemma 11.5 
immediately implies the following theorem.  

•  Theorem 11.6 
   Setting each xi to true with probability p independently gives a 

randomized min(p, 1 − p2)-approximation algorithm for MAX 
SAT instances with no negated unit clauses.  

  

E W[ ] = E Wc[ ]
c∈ f
∑ ≥min p,1− p2( ) wc

c∈ f
∑ ≥min p,1− p2( )OPT.



General case 
•  We would like to extend this result to all MAX SAT instances.  
•  To do this, we will use a better bound on OPT than        .  
•  Assume that for every i the weight of the unit clause xi 

appearing in the instance is at least the weight of the unit 
clause    . 

•  This is without loss of generality since we could negate all 
occurrences of xi if the assumption is not true. Let vi be the 
weight of the unit clause      if it exists in the instance, and let 
vi be zero otherwise.  

wc
c∈ f
∑

xi

xi



New upper bound 

•  Lemma 11.7 

Proof. For each i, the optimal solution can satisfy exactly one of 
xi and    . Thus the weight of the optimal solution cannot include 
both the weight of the clause xi and the clause    . Since vi is the 
smaller of these two weights, the lemma follows.  

 

OPT ≤ wc
c∈ f
∑ − vi

xi∈ f
∑ .

xi
xi



0.618-approximation algorithm 

•  Theorem 11.8 
We can obtain a randomized         -approximation 
algorithm for MAX SAT.  
  

5 −1
2



Proof 
•  Let φ be the Boolean formula obtained from f  by deleting all 

negated unit clauses.  
•  Thus, 
•  Set each xi to be true independently with probability p =  
  
 
 
 
 
•  This algorithm can be derandomized using the method of 

conditional expectations.  
 

 

wc
c∈ϕ
∑ = wc

c∈ f
∑ − vi

xi∈ f
∑ .

5 −1
2

.

E W[ ] = E Wc[ ]
c∈ f
∑ = wc Pr c =1[ ]

c∈ f
∑

≥ wc Pr c =1[ ]
c∈ϕ
∑ ≥ p wc

c∈ϕ
∑ = p wc

c∈ f
∑ − vi

xi∈ f
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≥ p ⋅OPT.



A good algorithm for small clauses 

•  We design an integer program for MAX-SAT. 
•  For each clause c∈f, let              denote the set of 

Boolean variables occurring nonnegated (negated) in c.  
•  The truth assignment is encoded by y. Picking yi = 1   

(yi = 0) denotes setting xi to True (False).  
•  The constraint for clause c ensures that zc can be set to 

1 only if at least one of the literals occurring in c is set 
to True, i.e., if clause c is satisfied by the picked truth 
assignment. 

)( −+
cc SS



ILP of MAX-SAT  

( )

{ }
{ } ,n,iy

fcz

fczyy

zw

i

c

c
Si

i
Si

i

c
fc

c

cc

…1       ,1 ,0       
       ,1 ,0       

    ,1   s.t.

     maximize

=∈

∈∈

∈≥−+∑∑

∑

−+ ∈∈

∈



LP-relaxation of MAX-SAT  

( )

,n,iy
fcz

fczyy

zw

i

c

c
Si

i
Si

i

c
fc

c

cc

…1       0,1       
       0,1       

    ,1   s.t.

     maximize

=≥≥

∈≥≥

∈≥−+∑∑

∑

−+ ∈∈

∈



Algorithm LP-MAX-SAT 

 
0)   Input (x1,…, xn, f, w: f → Q+) 
1)  Solve LP-relaxation of MAX-SAT.                       

Let (y*, z*) denote the optimal solution. 
2)  Independently set xi to True with probability yi*.  
3)    Output the resulting truth assignment, say τ. 
 



Expected weight of disjunction 

•  For k ≥ 1, define βk=1– (1 –1/k)k. 
•  Lemma 11.9 
   If size(c)=k, then E[Wc] ≥ βkwcz*(c). 
 



Proof 

( )

[ ] ( )
( )

.)(*1111

1
111Pr

:

1

1

1

1

kLP

kk

i
i

kk

i
ik

i
i

k

k
cz

k

y

k

y
yTruec

xxc

⎟
⎠

⎞
⎜
⎝

⎛ −−≥

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−=

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

−≥−−==

∨∨=

∑

∑
∏

=

=

=

…

We may assume w.l.o.g. that all literals in c appear nonnegated. 
Further, by renaming variables, we may assume 



Proof 

0 1 z 

g(z) 

g(z)=1– (1 – z/k)k 

βk=1– (1 – 1/k)k 

g(z)=βk·z 

[ ] ).(*)(*11Pr cz
k
czTruec k

k

β≥⎟
⎠
⎞

⎜
⎝
⎛ −−≥=



1–1/e 

•  Corollary 11.10  
     E[W] ≥ βkOPT (if all clauses are of size at most k). 
•  Proof. Notice that βk is a decreasing function of k. 

Thus, if all clauses are of size at most k, 
 
 
 

[ ] [ ] .OPTEE *
k

fc
cck

fc
c zwWW ββ =≥= ∑∑

∈∈



(1–1/e)-factor approximation 

•  Since                                  we obtain the following 
result . 

 
    Theorem 11.11  
    Algorithm LP-MAX-SAT is a (1–1/e)-factor 

algorithm for MAX-SAT.  

,111:
ek

k
k

>⎟
⎠

⎞
⎜
⎝

⎛ −Ζ∈∀ +



A (¾)-factor algorithm 

•  We will combine the two algorithms as 
follows. Let b be the flip of a fair coin. 

•  If b = 0, run the Johnson algorithm, and                
if b = 1, run Algorithm LP-MAX-SAT.  

•  Let z* be the optimal solution of LP on the 
given instance. 

•  Lemma 11.12 
    E[Wc] ≥ (3/4)wcz*(c). 



E[Wc] ≥ (3/4)wcz*(c) 

•  Let size(c)=k.  
•  Л 8.5 ⇒ E[Wc|b=0] = αkwc ≥ αkwc z*(c) 
•  Л 8.9 ⇒ E[Wc|b=1]  ≥ βkwc z*(c) 
•  E[Wc] = (1/2)(E[Wc|b=0]+ E[Wc|b=1]) ≥                      
≥ (1/2)wc z*(c)(αk+βk) 

•  α1+ β1 = α2+ β2 = 3/2 
•  k ≥ 3, αk+ βk ≥ 7/8 + (1– 1/e) > 3/2 
•  E[Wc] ≥ (3/4)wcz*(c) 



E[W]  

[ ] [ ] ( ) OPT,
4
3OPT

4
3*

4
3EE ≥=≥= ∑∑

∈∈
LP

fc
c

fc
c czwWW

By linearity of expectation, 

Finally, consider the following deterministic algorithm. 



Goemans-Williamson Algorithm 

 
0.   Input (x1,…, xn, f, w: f → Q+) 
1.  Use the Johnson algorithm to get a truth 

assignment, τ1.  
2.  Use Algorithm LP-MAX-SAT to get a truth 

assignment, τ2.  
3.  Output the better of the two assignments. 



(3/4)-approximation 

•  Theorem 11.13  
     Goemans-Williamson Algorithm is a 

deterministic factor 3/4 approximation 
algorithm for MAX-SAT.  



Exercise  
•  Consider the following instance I of MAX-SAT problem.  

–  Each clause has two or more literals. 
–  If clause has exactly two literals it has at least one nonnegated variable. 

•  Consider Algorithm Random(p): set each Boolean variable to 
be True independently with probability p.  

•  Determine the value of p for which Algorithm Random(p) 
finds the best solution for the instance I in the worst case. 


