Linear program

Separation Oracle

Rounding

 We consider a single-machine scheduling problem, and see
another way of rounding fractional solutions to integer
solutions.

 We will see that by solving a relaxation, we are able to get
information on how the jobs might be ordered.

* We construct a solution in which we schedule jobs 1n the
same order as given by the relaxation, and we are able to
show that his leads to a good solution .

I|r |2C;

Single machine

J={1,...,n} —jobs

p; = 0 — processing time of job ;.

r; = 0 —release time ot job ;.

C (o) — completion time of job j in ©.
No preemption.

The machine cannot process two jobs at the
same time.

Example
Ci(o) + Gy(oy) + C5(0y) =35

J, AN

O >
0 5 10 15 20
O, Ci(0y) + Cy(0,) + C5(0,) =24
AN J;
@) O >
0 5 10 15 20

J] plzl 7"1:2

. pr=3 Fy=

J, p;=101 ry=0

lpmin, r;|[2C;

 We will show that we can convert any preemptive
schedule into a nonpreemptive schedule in such way
that the completion time of each job at most doubles.

* In a preemptive schedule, we can still only one job at
a time on the machine, but we do not need to complete
each job’s required processing consecutively; we can
interrupt the processing of a job with the processing of

other job.

SRPT rule

« Each time that a job 1s completed, or at the next
release date, the job to be processed next has the
smallest remaining processing time among the
available jobs.

* Denote by o the schedule obtained by SRPT rule and
show that o 1s optimal.

« Assume that an optimal schedule 6* coincides with a
schedule o up to time .

Exchange argument

o OO OO OO T 0T OO 0O T 0O 0O 0O _ 0O 0O 0O O 0O 0
T OO OO OO T 0T OO T 0O T 0O 0o 0O 0O O O O 0O 0

Preemptive solution

C\(07) + Cy(a™) + Cy(0M) = 22

>

oP*
Sy bh il J;
J p; =1 ry=72
J5 pr=3 =
J, p;=10| =0

15

@)

20

L.ower bound

Let C(o™) be the completion time of job j in an
optimal preemptive schedule.

Let OPT be the sum of completion times 1n an
optimal nonpreemptive schedule.

We have

n

¥ C;(om)<OPT.
=1

Algorithm
«Rounding preemptive schedule»

Find an optimal preemptive schedule 6P using SRPT.
Schedule the jobs in 6 nonpreemptively in the same order
that they complete in oP".

To be more precise, suppose that the jobs are indexed such
that C,(o"") < C,(0oP) < ... < C (o). Then we schedule job 1
from its release date r, to time r, + p,. We schedule job 2 to
start as soon as possible after job 1; that is, we schedule 1t
from max(r, + p,, r,) to max(r, + p,, ,) + p,. The remaining
jobs are scheduled analogously.

We will show that scheduling nonpreemptively in this way
does not delay the jobs by too much.

Example

C\(07) + Cy(a™) + Cy(0M) = 22

>

oPf 7 =(12,3)
‘I3J2Jl J2 ‘I3
E))Uuéjuguuuu1uovuVU1U5UUU&)2L())>
O C,(0) + Cy(0) + C5(0) =25
S J3
o 23 & 1

Lemma 11.1
For each jobj=1,...,n, C(0) <2C(0™).

Proof

* Let us first derive some easy lower bounds on C (o).
Since we know that j 1s processed 1in oP" after
jobs 1,...,j—1, we have ;

C. (Upr)> max X Ti Cj(Opr)z Zpk.
=1

k=l,..

* By construction it 1s also the case that

C, ((7)> max 7;.

Proof

* Consider the nonpreemptive schedule constructed by
the algorithm, and focus on any period of time that
the machine is 1dle; 1dle time occurs only when the
next job to be processed has not yet been released.

» Consequently, in the time interval | max.C,(o)l there

cannot be any point 1n time at which the machine is
idle.

* Therefore, this interval can be of length at most Zpk-

CJ(0)< max rk ipk < 2Cj(0pr).
=1

k=l1,..

2-approximation

Theorem 11.2

Scheduling in order of the completion times of an

optimal preemptive schedule 1s a 2-approximation
algorithm for scheduling jobs on a single machine with
release dates to minimize the sum of completion times.

icj(a)szicj(aﬂ)szopv
=1 =1

L|r |Zw,C;
Single machine
J={1,...,n} —jobs
p; = 0 — processing time of job ;.
r; = 0 —release time ot job ;.
w; > 0 —weight of job ;.
C (o) — completion time of job j in o.
No preemption.

The machine cannot process two jobs at the
same time.

l|pmtn, r; |Zw,C;

e The algorithm “Rounding preemptive schedule” and
analysis give us a way to round any preemptive
schedule to one whose sum of weighted completion
times 1s at most twice more.

* Unfortunately, we cannot use the same technique of
finding a lower bound on the cost of the optimal
nonpreemptive schedule by finding an optimal
preemptive schedule.

« Unlike the unweighted case, it 1s NP-hard to find an
optimal schedule for the preemptive version of the
weighted case.

What we use to obtain the 2-approximation?

/ k=l,...j
J
C] (O-Pl’) = Z pk
=1

What we use to obtain the 2-approximation?

Cj(apr)zl?llax_;;(](0)>amax v,

=l,....J

Cj (apr)z ipk J(Opr /jz P
=1

¥ C,(07)<OPT .lcj(< OPT

Jj=1 J=

We can give a linear programming relaxation of the problem with
variables C; such that these inequalities hold within a constant
factor, which 1n turn will lead to a constant factor approximation
for the 1|r;|[2w,C; problem.

Variables and constraints

Denote by C; the completlon time of job .
We want to minimize E

The first set of constraints 1s easy:
for each jobj=1,..., n, job j cannot complete before it
is released and processed, so that C; > r;+ p..

Second set of constraints

Consider some set S € J of jobs and the sum Epj j°

This sum 1s minimized when all the jobs in § have a release date
of 0 and all the jobs in S finish first in the schedule.

Assuming these two conditions hold, then any completion time
C (o) torj € Sis equal to p; + the sum of all processing times of
the jobs 1n § that preceded j in the schedule.

Then in the product p; C;, p, multiplies itself and the processing
of all jobs 1n § that preceded j in the schedule.

The sum E p,C; must contain p; p, for all pairs j k€ S.
=

Queyranne’s imnequality

;pjcj = Epjpk =
J

J.kES: j<k

2 2
1 1 1
=5(;ij +5;Sp? 25(;&)

LP(1|r, [Zw,C)

n
minimize E ijj
=1

st. C,zri+p,, Vj&J, (1)

J
2

Y p, jzl(zpj) ,VSCJ. (2

Algorithm 1{r; [Xw,C;

1. Find an optimal solution o* = (C,(0c%*), C,(0*), ...,
C,(0%)) of the LP(1]r; [Zw,C)).
2. Schedule the jobs in o nonpreemptively in the same

order that they complete in o*.
3. Output (0)

3-approximation

Theorem 11.3

Scheduling in order of the completion times of 0* 1s
a 3-approximation algorithm for scheduling jobs on a
single machine with release dates to minimize the
sum of weighted completion times.

Proof

2 ij;f < OPT.
7ol

Assume that the jobs are reindexed so that

C,(0%) < Cy(0*) <... = C (0%).

As 1n the proof of Lemma 11.1, there cannot be any
1dle time 1n the time interval [,E}?_’jrk’q (a)].

Therefore it must be the case that

C.(O’)S maxr + » p.

J
.y =

CJ(< max rk Zpk

Let /E41,...,/} be the index of the job that maximizes max,_, 7y
so that ;= max,_, 7.

We have C(0*) = C(0™) and C(0™) = r, by the LP constraints;
thus C(0*) 2 max,_, 7

Consider set § = {1,..., j}.
From the fact that o* is a feasible LP solution , we know that

;pkck(a*)z l(;pk) :
Since C(0%) < C,(0%) < ... < C(0¥), we have

0*;& ;pk (%)= (;pk)-

By combining these two inequalities we see that C, ((7 *) > 5 /; D,

»ﬁ
+

S

b
IA

How to solve LP?

n
minimize Y w,C,
j=1

st. C,zr,+p,, Vj&J (1),

J

AL i e

Ellipsoid method (draft)

The input for the algorithm is a system of inequalities
P ={Cx <d} with n variables in integral coefficients.

We would like to determine whether P 1s empty or not, and if
it 1s nonempty, we would like to find a point in P.

Let N=2n((2n+1){C) + n{d) — n?) and k=0

Find a “big” ellipsoid E,(4,,a,), that contains our polytope P.
If k= N, then STOP! (Declare P empty.)

If a, € P, then STOP! (A feasible solution is found.)

. If a, & P, then choose an inequality that is violated by q,.

Create a new ellipsoid £, (4,.,8,.1), g0 to 3.

Lowner-John ellipsoid

E=E(4,a)={xER"|(x—a) A (x—a)< 1}
E'(A,a,c)=E(4,a) N {xER" |c'x <c'a}

(@) (b) n+1
Figure 3.3

Ellipsoid method (draft)

e The mput for the algorithm 1s a system of inequalities
P ={Cx <d} with n variables in integral coefficients.

 We would like to determine whether P 1s empty or not, and 1f it
1s nonempty, we would like to find a point in P.

1. Let N=2n((2n+1)XC) + n{d) — n’) and k=0

2. Find a “big” ellipsoid E£,(4,.a,), that contains our polytope P.
3. If k=N, then STOP! (Declare P empty.)

4. If a, € P, then STOP! (A feasible solution 1s found.)

5. Ifa, & P, then choose an inequality that is violated by a,.

6. Create a new ellipsoid £, (4,,,a,.), g0 to 3.

We need a polynomial time procedure (separation oracle) for
steps 4 and 5.

How to find the violated constraint?

2
1
pC.=—|Sp.|,VsCJ?

Given a solution o.

Reindex the variables so that C,(0) < C,(0) <... < C (0).
Let S, ={1}, S,={1,2},..., 5, ={1,..., n}.

We claim that 1t 1s sufficient to check whether the constraints
are violated for the n sets S, S,,..., S

S
If any of these n constraints are violated, then we return the set
as a violated constraint.

If not, we show below that all constraints are satisfied.

Separation oracle

Lemma 11.4

Given variables C,, 1f constraints (2) are satisfied for
the n sets Sy, S,,..., S, thet they are satistied for all
SCJ.

Proof (1)

 Let S CJ be aconstraint that 1s not satisfied; that is

* We will show that then there must be some set S, that 1s also
not satisfied. We do this by considering changes to S that

decrease the difference | 2
= ;pj J _5(;191']

* Any such change will result in another set S”that also does not
satisfy the constraint.

2
1
*= Eijj _E(Epj)
=y =
 Removing a job k£ from S decreases x 1f

- p.C. +p, pj+%p,f<0©Ck> pj+%pk.

jESWkY JES\{k}

* Adding a job £ to S decreases x 1f

pC—-p Y P =3pi<0=C <y p +ip,.
JES JES

Removing of jobs

1 .
. > 4L
We remove / from S if ¢ £ {f] T2 P
J

In this case the resulting set §'\ {/} also does not
satisfy the constraint (2).

Let / be the highest indexed jib in S.

We continue to remove the highest indexed job 1n the
resulting set until finally we have a set §” such that

its highest indexed job lha&, < Sy +1p
| = i T2

JES\U}

Adding of jobs

Now suppose S'# S,={1,..., [}.

Let k£ <[and k&S, .

We have C,=<C = pj+%Pz<EPj<Epj+%pk.
=y =y

JES\U}

It follows that, adding £ to S” can only decrease the
difference 1 (

Thus we can add all £ </ to §’, and the resulting
set S, will also not satisty the constraint (2).

Ellipsoid Method (1)

Suppose we are trying to solve LP(1|r; [2w,C).

Initially, the algorithm finds an ellipsoid in R" containing all
basic solutions for the linear program.

Let C be the center of the ellipsoid.

The algorithm calls the separation oracle with C.

If C is feasible, it creates a constraint 2w,C; < ZWJCV}, since a
basic optimal solution must have objective function value no

greater than the feasible solution C.
This constraint 1s sometimes called an objective function cut.

Ellipsoid Method (2)

If C is not feasible the separation oracle returns a constraint 2a;C;
> b, that 1s violated by C.

In either case, we have a hyperplane through C such that a basic
optimal solution to the linear program must lie on one side of the
hyperplane.

In the case of a feasible C the hyperplane is 2w,C; < EWJ-C}.
In the case of an infeasible the C the hyperplane is 2a;,C; = Eaijéj.

Ellipsoid Method (3)

« The hyperplane containing C splits the ellipsoid in
two.

* The algorithm then finds a new ellipsoid containing
the appropriate half of the original ellipsoid, and then
consider the center of new ellipsoid.

Lowner-John ellipsoid

E=E(4,a)={xER"|(x—a) A (x—a)< 1}
E'(A,a,c)=E(4,a) N {xER" |c'x <c'a}

(@) (b) n+1
Figure 3.3

Ellipsoid Method (3)

The hyperplane containing containing C splits the
ellipsoid 1n two.

The algorithm then finds a new ellipsoid containing
the appropriate half of the original ellipsoid, and then
consider the center of new ellipsoid.

This process repeats until the ellipsoid is sufficiently
small that it can contain at most one basic feasible
solution.

This solution must be a basic optimal solution.

Exercise

* Consider a single machine scheduling problem I|prec|2w,C; in
which we have precedence constraints but no release dates.
We say i precedes j if in any feasible schedule, job i must be
completely processed before job j begins processing.

* We are given n jobs with processing times p;> 0 and weights
w;> 0, and the goal to find a nonpreemptive schedule on a
single machine that 1s feasible respect to the precedence
constraints and that minimizes the weighted sum of
completion times of jobs.

* Design LP relaxation ot 1|prec[zw;C; and give a 2-approxi-
mation algorithm for this problem.

