
Linear program 

  
Separation Oracle 



Rounding 
•  We consider a single-machine scheduling problem, and see 

another way of rounding fractional solutions to integer 
solutions.  

•  We will see that by solving a relaxation, we are able to get 
information on how the jobs might be ordered.  

•  We construct a solution  in which we schedule jobs in the 
same order  as given by the relaxation, and we are able to 
show that his leads to a good solution . 



1|rj |ΣCj 

•  Single machine 
•  J = {1,..., n} – jobs   
•   pj ≥ 0 – processing time of job j.  
•   rj ≥ 0 – release time of job j. 
•  Сj(σ) – completion time of job j in σ. 
•  No  preemption. 
•  The machine cannot process two jobs at the 

same time.  
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1|pmtn, rj |ΣCj 

•  We will show that we can convert any preemptive 
schedule into a nonpreemptive schedule in such way 
that the completion time of each job at most doubles. 

•  In a preemptive schedule, we can still only one job at 
a time on the machine, but we do not need to complete 
each job’s required processing consecutively; we can 
interrupt the processing of a job with the processing of 
other job.  



SRPT rule 

•  Each time that a job is completed, or at the next 
release date, the job to be processed next has the 
smallest remaining processing time among the 
available jobs. 

•  Denote by σ the schedule obtained by SRPT rule and 
show that σ is optimal. 

•  Assume that an optimal schedule σ* coincides with a 
schedule σ up to time t. 
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Preemptive solution 
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Lower bound 

•  Let Cj(σpr) be the completion time of job j in an 
optimal preemptive schedule. 

•  Let OPT be the sum of completion times in an 
optimal nonpreemptive schedule. 

•  We have   
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Algorithm                                         
«Rounding preemptive schedule» 

1.  Find an optimal preemptive schedule σpr using SRPT. 
2.  Schedule the jobs in σ nonpreemptively in the same order 

that they complete in σpr.  
         
        To be more precise, suppose that the jobs are indexed such 

that С1(σpr) ≤ С2(σpr) ≤ … ≤ Сn(σpr). Then we schedule job 1 
from its release date r1 to time r1 + p1. We schedule job 2 to 
start as soon as possible after job 1; that is, we schedule it 
from max(r1 + p1, r2) to max(r1 + p1, r2) + p2. The remaining 
jobs are scheduled analogously. 

 
        We will show that scheduling  nonpreemptively in this way 

does not delay the jobs by too much. 
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Lemma 11.1 
   For each job j = 1,…,n, Сj(σ) ≤ 2Сj(σpr). 



Proof 
•  Let us first derive some easy lower bounds on Сj(σpr). 

Since we know that j is processed in σpr  after         
jobs 1,…, j−1, we have 

•  By construction it is also the case that 
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Proof 
•  Consider the nonpreemptive schedule constructed by 

the algorithm, and focus on any period of time that 
the machine is idle; idle time occurs only when the 
next job to be processed has not yet been released. 

•  Consequently, in the time interval                     there 
cannot be any point in time at which the machine is 
idle. 

•  Therefore, this interval can be of length at most          
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2-approximation 

   Theorem 11.2 
    Scheduling in order of the completion times of an 

optimal preemptive schedule is a 2-approximation 
algorithm for scheduling jobs on a single machine with 
release dates to minimize the sum of completion times.  
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1|rj |ΣwjCj 
•  Single machine 
•  J = {1,..., n} – jobs   
•   pj ≥ 0 – processing time of job j.  
•   rj ≥ 0 – release time of job j. 
•   wj ≥ 0 – weight of job j. 
•  Сj(σ) – completion time of job j in σ. 
•  No  preemption. 
•  The machine cannot process two jobs at the 

same time.  
•  .  



1|pmtn, rj |ΣwjCj 

•  The algorithm “Rounding preemptive schedule” and 
analysis give us a way to round any preemptive 
schedule  to one whose sum of weighted completion 
times is at most twice more. 

•  Unfortunately, we cannot use the same technique of 
finding a lower bound on the cost of the optimal 
nonpreemptive schedule by finding an optimal 
preemptive schedule. 

•  Unlike the unweighted case, it is NP-hard to find an 
optimal schedule for the preemptive version of the 
weighted case.  



What we use to obtain the 2-approximation? 
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What we use to obtain the 2-approximation? 
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We can give a linear programming relaxation of the problem with 
variables Cj such that these inequalities hold within a constant 
factor, which in turn will lead to a constant factor approximation 
for the 1|rj |ΣwjCj problem. 
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Variables and constraints 

•  Denote by Cj  the completion time of job j. 
•  We want to minimize   

•  The first set of constraints is easy:                                       
for each job j = 1,…, n, job j cannot complete before it 
is released and processed, so that Cj  ≥ rj + pj.  
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Second set of constraints 
•  Consider some set S ⊆ J of jobs and the sum 
•  This sum is minimized when all the jobs in S have a release date 

of 0 and all the jobs in S finish first in the schedule. 
•  Assuming these two conditions hold, then any completion time 

Cj(σ) for j ∈ S is equal to pj + the sum of all processing times of 
the jobs in S that preceded j in the schedule. 

•  Then in the product pj Cj, pj multiplies itself and the processing 
of all jobs in S that preceded j in the schedule.   

•  The sum                 must contain pj pk  for all pairs  j,k ∈ S.     ∑
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Queyranne’s inequality 
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LP(1|rj |ΣwjCj) 
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Algorithm 1|rj |ΣwjCj 

1.  Find an optimal solution σ* = (С1(σ*), С2(σ*), …, 
Сn(σ*)) of the LP(1|rj |ΣwjCj). 

2.  Schedule the jobs in σ nonpreemptively in the same 
order that they complete in σ*.  

3.  Output (σ) 



3-approximation 

   Theorem 11.3 
    Scheduling in order of the completion times of σ* is 

a 3-approximation algorithm for scheduling jobs on a 
single machine with release dates to minimize the 
sum of weighted completion times. 



Proof 

•  Assume that the jobs are reindexed so that                
С1(σ*) ≤ С2(σ*) ≤ … ≤ Сn(σ*). 

•  As in the proof of Lemma 11.1, there cannot be any 
idle time in the time interval 

•  Therefore it must be the case that  
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•  Let  l∈{1,…, j} be the index of the job that maximizes maxk=1,…,jrk  
so that rl = maxk=1,…,jrk. 

•  We have Сj(σ*) ≥ Сl(σ*) and Сl(σ*) ≥ rl  by the LP constraints; 
thus Сj(σ*) ≥ maxk=1,…,jrk. 

•  Consider set S = {1,…, j}. 
•  From the fact that σ* is a feasible LP solution , we know that 

•  Since С1(σ*) ≤ С2(σ*) ≤ … ≤ Сj(σ*), we have 

•  By combining these two inequalities we see that 
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Proof 
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How to solve LP? 
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Ellipsoid method (draft) 
•  The input for the algorithm is a system of inequalities                     

P ={Cx ≤ d} with n variables in integral coefficients. 
•  We would like to determine whether P is empty or not, and if        

it is nonempty, we would like to find a point in P. 
1.  Let N=2n((2n+1)〈C〉 + n〈d〉 − n3) and k = 0 
2.  Find a “big”  ellipsoid E0(A0,a0), that contains our polytope P. 
3.  If k = N, then STOP! (Declare P empty.) 
4.  If ak ∈ P,  then STOP! (A feasible solution is found.) 
5.  If ak ∉ P, then choose an inequality that is violated by ak. 
6.    Create a new ellipsoid Ek+1(Ak+1,ak+1), go to 3. 



Löwner-John ellipsoid 
E=E(A,a) = {x ∈ Rn |(x−a) TA−1(x−a) ≤ 1} 

Eʹ(A,a,c) = E(A,a) ∩ {x ∈ Rn |cTx ≤ cTa}  
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Ellipsoid method (draft) 
•  The input for the algorithm is a system of inequalities                     

P ={Cx ≤ d} with n variables in integral coefficients. 
•  We would like to determine whether P is empty or not, and if it 

is nonempty, we would like to find a point in P. 
1.  Let N=2n((2n+1)〈C〉 + n〈d〉 − n3) and k = 0 
2.  Find a “big”  ellipsoid E0(A0,a0), that contains our polytope P. 
3.  If k = N, then STOP! (Declare P empty.) 
4.  If ak ∈ P,  then STOP! (A feasible solution is found.) 
5.  If ak ∉ P, then choose an inequality that is violated by ak. 
6.  Create a new ellipsoid Ek+1(Ak+1,ak+1), go to 3.  
We need a polynomial time procedure (separation oracle) for 

steps 4 and 5. 
 



How to find the violated constraint? 

•  Given a solution σ. 
•  Reindex the variables so that С1(σ) ≤ С2(σ) ≤ … ≤ Сn(σ). 
•  Let S1 ={1}, S2 ={1, 2},…, Sn ={1,…, n}. 
•  We claim that it is sufficient to check whether the constraints 

are violated for the n sets S1, S2,…, Sn. 
•  If any of these n constraints are violated, then we return the set 

as a violated constraint. 
•  If not, we show below that all constraints are satisfied. 
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Separation oracle 

   Lemma 11.4 
   Given variables Cj, if constraints (2) are satisfied for 

the n sets S1, S2,…, Sn, thet they are satisfied for all    
S ⊆ J. 



Proof (1) 
•  Let S ⊆ J  be a constraint that is not satisfied; that is 

•  We will show that then there must be some set Si that is also 
not satisfied. We do this by considering changes to S that 
decrease the difference 

•  Any such change will result in another set Sʹ that also does not 
satisfy the constraint. 
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•  Removing a job k from S decreases x if 

•  Adding a job k to S decreases x if 
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Removing of jobs 

•  Let l be the highest indexed job in S.  
•  We remove l from S if  
•  In this case the resulting set S \ {l} also does not 

satisfy the constraint (2). 
•  We continue to remove the highest indexed job in the 

resulting set until finally we have a set Sʹ  such that 
its highest indexed job l has 
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Adding of jobs 

•  Now suppose Sʹ ≠ Sl ={1,…, l}. 
•  Let k < l and k∉Sl . 
•  We have 

•  It follows that, adding k to Sʹ  can only decrease the 
difference 

 
•  Thus we can add all k < l  to Sʹ , and the resulting    

set Sl will also not satisfy the constraint (2). 
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Ellipsoid Method (1) 
•  Suppose we are trying to solve LP(1|rj |ΣwjCj).  
•  Initially, the algorithm finds an ellipsoid in Rn containing all 

basic solutions for the linear program. 

•  Let Č be the center of the ellipsoid. 
•  The algorithm calls the separation oracle with Č. 
•  If Č is feasible, it creates a constraint ΣwjCj ≤ ΣwjČj, since a 

basic optimal solution must have objective function value no 
greater than the feasible solution Č. 

•  This constraint is sometimes called an objective function cut. 



Ellipsoid Method (2) 
•  If Č is not feasible the separation oracle returns a constraint ΣaijCj 
≥ bi that is violated by Č.  

•  In either case, we have a hyperplane through Č such that a basic 
optimal solution to the linear program must lie on one side of the 
hyperplane. 

•  In the case of a feasible Č the hyperplane is ΣwjCj ≤ ΣwjČj. 
•  In the case of an infeasible the Č the hyperplane is ΣaijCj ≥ ΣaijČj. 



Ellipsoid Method (3) 

•  The hyperplane containing Č splits the ellipsoid in 
two.  

•  The algorithm then finds a new ellipsoid containing 
the appropriate half of the original ellipsoid, and then 
consider the center of new ellipsoid.  



Löwner-John ellipsoid 
E=E(A,a) = {x ∈ Rn |(x−a) TA−1(x−a) ≤ 1} 

Eʹ(A,a,c) = E(A,a) ∩ {x ∈ Rn |cTx ≤ cTa}  
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Ellipsoid Method (3) 

•  The hyperplane containing containing Č splits the 
ellipsoid in two.  

•  The algorithm then finds a new ellipsoid containing 
the appropriate half of the original ellipsoid, and then 
consider the center of new ellipsoid.  

•  This process repeats until the ellipsoid is sufficiently 
small that it can contain at most one basic feasible 
solution. 

•  This solution must be a basic optimal solution. 



Exercise  
•  Consider a single machine scheduling problem 1|prec|ΣwjCj in 

which we have precedence constraints but no release dates. 
We say i precedes j if in any feasible schedule, job i must be 
completely  processed before job j begins processing.  

•  We are given n jobs with processing times pj > 0 and weights 
wj > 0, and the goal to find a nonpreemptive schedule on a 
single machine that is feasible respect to the precedence 
constraints and that minimizes the weighted sum of 
completion times of jobs. 

•  Design LP relaxation of 1|prec|ΣwjCj and give a 2-approxi-
mation algorithm for this problem.  


