
Linear program

Separation Oracle

Rounding
•  We consider a single-machine scheduling problem, and see

another way of rounding fractional solutions to integer
solutions.

•  We will see that by solving a relaxation, we are able to get
information on how the jobs might be ordered.

•  We construct a solution in which we schedule jobs in the
same order as given by the relaxation, and we are able to
show that his leads to a good solution .

1|rj |ΣCj

•  Single machine
•  J = {1,..., n} – jobs
•  pj ≥ 0 – processing time of job j.
•  rj ≥ 0 – release time of job j.
•  Сj(σ) – completion time of job j in σ.
•  No preemption.
•  The machine cannot process two jobs at the

same time.

Example

J3 J2

 p1 = 1 r1 = 2
 p2 = 3 r2 = 1
 p3 = 10 r3 = 0

J1

0 20 5 10 15

J1

J2

J3

0 20 5 10 15

σ1 С1(σ1) + С2(σ1) + С3(σ1) = 35

σ2 С1(σ2) + С2(σ2) + С3(σ2) = 24

J2 J1 J3

1|pmtn, rj |ΣCj

•  We will show that we can convert any preemptive
schedule into a nonpreemptive schedule in such way
that the completion time of each job at most doubles.

•  In a preemptive schedule, we can still only one job at
a time on the machine, but we do not need to complete
each job’s required processing consecutively; we can
interrupt the processing of a job with the processing of
other job.

SRPT rule

•  Each time that a job is completed, or at the next
release date, the job to be processed next has the
smallest remaining processing time among the
available jobs.

•  Denote by σ the schedule obtained by SRPT rule and
show that σ is optimal.

•  Assume that an optimal schedule σ* coincides with a
schedule σ up to time t.

Exchange argument

j i i j i

i i i j j i

σ*

t

t

t

Cj Ci

Cj Ci

Preemptive solution

J3 J2

 p1 = 1 r1 = 2
 p2 = 3 r2 = 1
 p3 = 10 r3 = 0

0 20 5 10 15

J1

J2

J3

σpr

С1(σpr) + С2(σpr) + С3(σpr) = 22

J2 J1 J3

Lower bound

•  Let Cj(σpr) be the completion time of job j in an
optimal preemptive schedule.

•  Let OPT be the sum of completion times in an
optimal nonpreemptive schedule.

•  We have
() .OPT

1

pr ≤∑
=

n

j
jC σ

Algorithm
«Rounding preemptive schedule»

1.  Find an optimal preemptive schedule σpr using SRPT.
2.  Schedule the jobs in σ nonpreemptively in the same order

that they complete in σpr.

 To be more precise, suppose that the jobs are indexed such

that С1(σpr) ≤ С2(σpr) ≤ … ≤ Сn(σpr). Then we schedule job 1
from its release date r1 to time r1 + p1. We schedule job 2 to
start as soon as possible after job 1; that is, we schedule it
from max(r1 + p1, r2) to max(r1 + p1, r2) + p2. The remaining
jobs are scheduled analogously.

 We will show that scheduling nonpreemptively in this way

does not delay the jobs by too much.

Example

J3 J2

0 20 5 10 15

σpr

С1(σpr) + С2(σpr) + С3(σpr) = 22

J2 J1 J3

()3,2,1=π

С1(σ) + С2(σ) + С3(σ) = 25

J2 J1 J3

σ

0 2 3 6

3

16

Lemma 11.1
 For each job j = 1,…,n, Сj(σ) ≤ 2Сj(σpr).

Proof
•  Let us first derive some easy lower bounds on Сj(σpr).

Since we know that j is processed in σpr after
jobs 1,…, j−1, we have

•  By construction it is also the case that

() ,max
,...,1

pr
kjkj rС

=
≥σ () .

1

pr ∑
=

≥
j

k
kj pC σ

() .max
,...,1 kjkj rC

=
≥σ

Proof
•  Consider the nonpreemptive schedule constructed by

the algorithm, and focus on any period of time that
the machine is idle; idle time occurs only when the
next job to be processed has not yet been released.

•  Consequently, in the time interval there
cannot be any point in time at which the machine is
idle.

•  Therefore, this interval can be of length at most

() ,,max
,...,1 ⎥⎦

⎤
⎢⎣
⎡

=
σjkjk

Cr

.
1
∑
=

j

k
kp

() ().2max pr

1,...,1
σσ j

j

k
kkjkj CprС ≤+≤ ∑

=
=

2-approximation

 Theorem 11.2
 Scheduling in order of the completion times of an

optimal preemptive schedule is a 2-approximation
algorithm for scheduling jobs on a single machine with
release dates to minimize the sum of completion times.

() () .OPT22
1

pr

1

≤≤ ∑∑
==

n

j
j

n

j
j CC σσ

1|rj |ΣwjCj
•  Single machine
•  J = {1,..., n} – jobs
•  pj ≥ 0 – processing time of job j.
•  rj ≥ 0 – release time of job j.
•  wj ≥ 0 – weight of job j.
•  Сj(σ) – completion time of job j in σ.
•  No preemption.
•  The machine cannot process two jobs at the

same time.
•  .

1|pmtn, rj |ΣwjCj

•  The algorithm “Rounding preemptive schedule” and
analysis give us a way to round any preemptive
schedule to one whose sum of weighted completion
times is at most twice more.

•  Unfortunately, we cannot use the same technique of
finding a lower bound on the cost of the optimal
nonpreemptive schedule by finding an optimal
preemptive schedule.

•  Unlike the unweighted case, it is NP-hard to find an
optimal schedule for the preemptive version of the
weighted case.

What we use to obtain the 2-approximation?

() OPT
1

pr ≤∑
=

n

j
jC σ

() kjkj rС
,...,1

pr max
=

≥σ

() ∑
=

≥
j

k
kj pC

1

prσ

What we use to obtain the 2-approximation?

() OPT
1

pr ≤∑
=

n

j
jC σ

() kjkj rС
,...,1

pr max
=

≥σ

() ∑
=

≥
j

k
kj pC

1

prσ

We can give a linear programming relaxation of the problem with
variables Cj such that these inequalities hold within a constant
factor, which in turn will lead to a constant factor approximation
for the 1|rj |ΣwjCj problem.

() OPT
1

* ≤∑
=

n

j
jC σ

() kjkj rС
,...,1

pr max
=

≥ασ

() ∑
=

≥
j

k
kj pC

1

pr βσ

Variables and constraints

•  Denote by Cj the completion time of job j.
•  We want to minimize

•  The first set of constraints is easy:
for each job j = 1,…, n, job j cannot complete before it
is released and processed, so that Cj ≥ rj + pj.

.∑
∈Sj

jjCw

Second set of constraints
•  Consider some set S ⊆ J of jobs and the sum
•  This sum is minimized when all the jobs in S have a release date

of 0 and all the jobs in S finish first in the schedule.
•  Assuming these two conditions hold, then any completion time

Cj(σ) for j ∈ S is equal to pj + the sum of all processing times of
the jobs in S that preceded j in the schedule.

•  Then in the product pj Cj, pj multiplies itself and the processing
of all jobs in S that preceded j in the schedule.

•  The sum must contain pj pk for all pairs j,k ∈ S. ∑
∈Sj

jjCp

.∑
∈Sj

jjCp

Queyranne’s inequality

2

2

2

:,

2
1

2
1

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

==

∑∑∑

∑∑

∈∈∈

≤∈∈

Sj
j

Sj
j

Sj
j

kjSkj
kj

Sj
jj

ppp

ppCp

LP(1|rj |ΣwjCj)

(2) . ,
2
1

(1) , , s.t.

 minimize

2

1

JSpCp

JjprC

Cw

Sj
j

Sj
jj

jjj

n

j
jj

⊆∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

∈∀+≥

∑∑

∑

∈∈

=

Algorithm 1|rj |ΣwjCj

1.  Find an optimal solution σ* = (С1(σ*), С2(σ*), …,
Сn(σ*)) of the LP(1|rj |ΣwjCj).

2.  Schedule the jobs in σ nonpreemptively in the same
order that they complete in σ*.

3.  Output (σ)

3-approximation

 Theorem 11.3
 Scheduling in order of the completion times of σ* is

a 3-approximation algorithm for scheduling jobs on a
single machine with release dates to minimize the
sum of weighted completion times.

Proof

•  Assume that the jobs are reindexed so that
С1(σ*) ≤ С2(σ*) ≤ … ≤ Сn(σ*).

•  As in the proof of Lemma 11.1, there cannot be any
idle time in the time interval

•  Therefore it must be the case that
() .,max

,...,1 ⎥⎦
⎤

⎢⎣
⎡

=
σjkjk

Cr

() .max
1,...,1 ∑
=

=
+≤

j

k
kkjkj prС σ

.OPT
1

* ≤∑
=

n

j
jjCw

•  Let l∈{1,…, j} be the index of the job that maximizes maxk=1,…,jrk
so that rl = maxk=1,…,jrk.

•  We have Сj(σ*) ≥ Сl(σ*) and Сl(σ*) ≥ rl by the LP constraints;
thus Сj(σ*) ≥ maxk=1,…,jrk.

•  Consider set S = {1,…, j}.
•  From the fact that σ* is a feasible LP solution , we know that

•  Since С1(σ*) ≤ С2(σ*) ≤ … ≤ Сj(σ*), we have

•  By combining these two inequalities we see that

() ∑
=

=
+≤

j

k
kkjkj prС

1,...,1
maxσ

() .
2
1*

2

⎟
⎠

⎞
⎜
⎝

⎛
≥ ∑∑

∈∈ Sk
k

Sk
kk pCp σ

() () .
2
1**

2

⎟
⎠

⎞
⎜
⎝

⎛
≥≥ ∑∑∑

∈∈∈ Sk
k

Sk
kk

Sk
kj pCppС σσ

() .
2
1* ∑

∈

≥
Sk

kj pС σ

Proof

() () () ().*3*2*max
1,...,1

σσσσ jjj

j

k
kkjkj СССprС =+≤+≤ ∑

=
=

() kjkj rС
,...,1
max*
=

≥σ () .
2
1* ∑

∈

≥
Sk

kj pС σ

() () .OPT3*3
11

≤≤ ∑∑
==

n

j
jj

n

j
jj CwCw σσ

How to solve LP?

.(2) ,
2
1

,(1) , s.t.

 minimize

2

1

JSpCp

JjprC

Cw

Sj
j

Sj
jj

jjj

n

j
jj

⊆∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

∈∀+≥

∑∑

∑

∈∈

=

Ellipsoid method (draft)
•  The input for the algorithm is a system of inequalities

P ={Cx ≤ d} with n variables in integral coefficients.
•  We would like to determine whether P is empty or not, and if

it is nonempty, we would like to find a point in P.
1.  Let N=2n((2n+1)〈C〉 + n〈d〉 − n3) and k = 0
2.  Find a “big” ellipsoid E0(A0,a0), that contains our polytope P.
3.  If k = N, then STOP! (Declare P empty.)
4.  If ak ∈ P, then STOP! (A feasible solution is found.)
5.  If ak ∉ P, then choose an inequality that is violated by ak.
6. Create a new ellipsoid Ek+1(Ak+1,ak+1), go to 3.

Löwner-John ellipsoid
E=E(A,a) = {x ∈ Rn |(x−a) TA−1(x−a) ≤ 1}

Eʹ(A,a,c) = E(A,a) ∩ {x ∈ Rn |cTx ≤ cTa}

⎟
⎠

⎞
⎜
⎝

⎛
+

−
−

=ʹ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
−=ʹ

T

T

bb
n

A
n
nA

Ac
Acc

bb
n

aa

1
2

1

1 ,
1

1

2

2

Ellipsoid method (draft)
•  The input for the algorithm is a system of inequalities

P ={Cx ≤ d} with n variables in integral coefficients.
•  We would like to determine whether P is empty or not, and if it

is nonempty, we would like to find a point in P.
1.  Let N=2n((2n+1)〈C〉 + n〈d〉 − n3) and k = 0
2.  Find a “big” ellipsoid E0(A0,a0), that contains our polytope P.
3.  If k = N, then STOP! (Declare P empty.)
4.  If ak ∈ P, then STOP! (A feasible solution is found.)
5.  If ak ∉ P, then choose an inequality that is violated by ak.
6.  Create a new ellipsoid Ek+1(Ak+1,ak+1), go to 3.
We need a polynomial time procedure (separation oracle) for

steps 4 and 5.

How to find the violated constraint?

•  Given a solution σ.
•  Reindex the variables so that С1(σ) ≤ С2(σ) ≤ … ≤ Сn(σ).
•  Let S1 ={1}, S2 ={1, 2},…, Sn ={1,…, n}.
•  We claim that it is sufficient to check whether the constraints

are violated for the n sets S1, S2,…, Sn.
•  If any of these n constraints are violated, then we return the set

as a violated constraint.
•  If not, we show below that all constraints are satisfied.

? ,
2
1

2

JSpCp
Sj

j
Sj

jj ⊆∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥ ∑∑

∈∈

Separation oracle

 Lemma 11.4
 Given variables Cj, if constraints (2) are satisfied for

the n sets S1, S2,…, Sn, thet they are satisfied for all
S ⊆ J.

Proof (1)
•  Let S ⊆ J be a constraint that is not satisfied; that is

•  We will show that then there must be some set Si that is also
not satisfied. We do this by considering changes to S that
decrease the difference

•  Any such change will result in another set Sʹ that also does not
satisfy the constraint.

.
2
1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
< ∑∑

∈∈ Sj
j

Sj
jj pCp

2

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

∈∈ Sj
j

Sj
jj pCpx

•  Removing a job k from S decreases x if

•  Adding a job k to S decreases x if

2

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

∈∈ Sj
j

Sj
jj pCpx

.0 2
1

}{\

2
2
1

}{\
k

kSj
jkk

kSj
jkkk ppCpppCp +>⇔<++− ∑∑

∈∈

.0 2
12

2
1

k
Sj

jkk
Sj

jkkk ppCpppCp +<⇔<−− ∑∑
∈∈

Removing of jobs

•  Let l be the highest indexed job in S.
•  We remove l from S if
•  In this case the resulting set S \ {l} also does not

satisfy the constraint (2).
•  We continue to remove the highest indexed job in the

resulting set until finally we have a set Sʹ such that
its highest indexed job l has

;2
1

}{\
l

lSj
jl ppC +> ∑

∈

.2
1

}{\
l

lSj
jl ppC +≤ ∑

∈

Adding of jobs

•  Now suppose Sʹ ≠ Sl ={1,…, l}.
•  Let k < l and k∉Sl .
•  We have

•  It follows that, adding k to Sʹ can only decrease the
difference

•  Thus we can add all k < l to Sʹ , and the resulting

set Sl will also not satisfy the constraint (2).

.2
1

2
1

}{\
k

Sj
j

Sj
jl

lSj
jlk pppppCС +<<+≤≤ ∑∑∑

∈∈∈

.
2
1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

∈∈ Sj
j

Sj
jj pCpx

Ellipsoid Method (1)
•  Suppose we are trying to solve LP(1|rj |ΣwjCj).
•  Initially, the algorithm finds an ellipsoid in Rn containing all

basic solutions for the linear program.

•  Let Č be the center of the ellipsoid.
•  The algorithm calls the separation oracle with Č.
•  If Č is feasible, it creates a constraint ΣwjCj ≤ ΣwjČj, since a

basic optimal solution must have objective function value no
greater than the feasible solution Č.

•  This constraint is sometimes called an objective function cut.

Ellipsoid Method (2)
•  If Č is not feasible the separation oracle returns a constraint ΣaijCj
≥ bi that is violated by Č.

•  In either case, we have a hyperplane through Č such that a basic
optimal solution to the linear program must lie on one side of the
hyperplane.

•  In the case of a feasible Č the hyperplane is ΣwjCj ≤ ΣwjČj.
•  In the case of an infeasible the Č the hyperplane is ΣaijCj ≥ ΣaijČj.

Ellipsoid Method (3)

•  The hyperplane containing Č splits the ellipsoid in
two.

•  The algorithm then finds a new ellipsoid containing
the appropriate half of the original ellipsoid, and then
consider the center of new ellipsoid.

Löwner-John ellipsoid
E=E(A,a) = {x ∈ Rn |(x−a) TA−1(x−a) ≤ 1}

Eʹ(A,a,c) = E(A,a) ∩ {x ∈ Rn |cTx ≤ cTa}

⎟
⎠

⎞
⎜
⎝

⎛
+

−
−

=ʹ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
−=ʹ

T

T

bb
n

A
n
nA

Ac
Acc

bb
n

aa

1
2

1

1 ,
1

1

2

2

Ellipsoid Method (3)

•  The hyperplane containing containing Č splits the
ellipsoid in two.

•  The algorithm then finds a new ellipsoid containing
the appropriate half of the original ellipsoid, and then
consider the center of new ellipsoid.

•  This process repeats until the ellipsoid is sufficiently
small that it can contain at most one basic feasible
solution.

•  This solution must be a basic optimal solution.

Exercise
•  Consider a single machine scheduling problem 1|prec|ΣwjCj in

which we have precedence constraints but no release dates.
We say i precedes j if in any feasible schedule, job i must be
completely processed before job j begins processing.

•  We are given n jobs with processing times pj > 0 and weights
wj > 0, and the goal to find a nonpreemptive schedule on a
single machine that is feasible respect to the precedence
constraints and that minimizes the weighted sum of
completion times of jobs.

•  Design LP relaxation of 1|prec|ΣwjCj and give a 2-approxi-
mation algorithm for this problem.

