
Combinatorial Algorithms

Set Cover Problem

Set Cover

•  Given a universe U of n elements, a
collection of subsets of U, S = {S1,…, Sk},
and a cost function c: S → Q+.

•  Find a minimum cost subcollection of S
that covers all elements of U.

Greedy strategy
•  Among the first strategies one tries when designing an

algorithm for an optimization problem is some form of the
greedy strategy.

•  Greedy algorithms work by making a sequence of decisions;
each decision is made to optimize that particular decision,
even though this sequence of locally optimal decisions might
not lead to a globally optimal solution.

•  The advantage of greedy algorithms is that they are typically
very easy to implement, and hence greedy algorithm are a
commonly used heuristics, even when they have no
performance guarantee.

The greedy algorithm
•  Let C be the set of elements already covered at the

beginning of an iteration. During this iteration, define
the cost-effectiveness of a set Si to be the average
cost at which it covers new elements? i.e.,
αi = c(Si)/|Si – C|.

•  Define the price of an element to the average cost at
which it is covered.

•  Equivalently, when a set Si is picked, we can think of
its cost being distributed equally among the new
elements covered, to set their prices.

 Chvatal’s Algorithm

0) Input (U, S, c: S → Q+)
1)  C ← ∅, Sol ← ∅	
2)  While C ≠ U do:
 Find Si∈ S – Sol such that
 αi=c(Si)/|Si – C| is minimal.
 Sol ← Sol ∪{Si}
 C ← С ∪ Si (Si is most cost-effective)
 Set price(e) = αi for all e∈ Si – C
3) Output (Sol)

Analysis of Chvatal’s Algorithm

•  Number the elements of U in the order, in
which were covered by the algorithm,
resolving ties arbitrarily.

•  Let e1,…,en be this numbering.

•  Lemma 2.1
 For each k ∈{1,…,n}, price(ek) ≤ OPT/(n–k+1).

Proof of Lemma 2.1

ei,…,ek,…,en
e1,…,ei –1

OPT OPT OPT OPT

C
S – C

In any iteration, the leftover sets of the optimal solution can cover the
remaining elements at a cost of at most OPT.

Proof of Lemma 2.1

ei,…,ek,…,en

OPT OPT OPT

The total cost-effectiveness
is at most OPT/(n – i + 1)
≤ OPT/(n – k + 1)

There must be one subset
Sj∈ S – C with
αj ≤ OPT/(n – k + 1).

price(ek) ≤ OPT/(n–k+1).

n

n

n

n

n

n

b
a

bb
aa

b
a

b
a

b
a

≥
++
++

⇒≥≥≥
!
!

!
1

1

2

2

1

1

Performance of the Chvatal Algorithm

Theorem 2.2
 Chvatal’s Algorithm is an Hn factor approximation

algorithm for the minimum set cover problem, where
Hn=1+1/2+1/3+…+1/n.

Proof.

() () OPT
n

epriceSc
n

k
k

CS
i

i

⎟
⎠
⎞

⎜
⎝
⎛ +++≤=∑∑

=∈

1
2
11

1
!

Tight example

●●● 1+ ε

1/n 1/(n–1) 1/(n–2) 1/2 1

11

Vertex cover

•  Given an undirected graph G = (V, E), and a cost
function on vertices c: V → Q+.

•  Find a minimum cost vertex cover.

Layering

•  We introduce a technique of layering.
•  The idea in layering is to decompose the given

weight function on vertices into convenient
functions, called degree-weighted, on a nested
sequence of subgraphs G. For degree-weighted
functions, we will show that we will be within
twice the optimal even if we pick all vertices in
the cover.

Degree-weighted function

•  Let w: V → Q+ be the function assigning
weights to the vertices of the given graph
G = (V,E).

•  We will say that a function assigning vertex
weight is degree-weighted, if there is a
constant с > 0, such that the weight of each
vertex v∈V is с⋅ deg(v).

Lower Bound

•  Lemma 2.3
 Let w: V → Q+ be a degree-weighted function.

Then w(V) ≤ 2 OPT.

Proof

•  Let c be the constant such that w(c) = с⋅ deg(v),
and let U be an optimal vertex cover in G. Since
U covers all the edges,

() .deg Ev
Uv

≥∑
∈

•  Therefore, w(U) ≥ c|E|. Now, since

() () .2 ,2deg EcVwEv
Vv

==∑
∈

Largest degree-weighted function

•  Let w: V → Q+ be an arbitrary function.
•  Let us define the largest degree-weighted function

in w as follows:
–  Remove all degree zero vertices from the graph, and over

the remaining vertices, compute c= min{w(v)/deg(v)}.

–  Then t(v) = c⋅ deg(v) is the desired function.

•  Define w′(v) = w(v) – t(v) to be the residual weight
function.

The Layer Algorithm

0) Input (G = (V, E), w: V → Q+)
1)   Sol ← ∅, i ← 0, w′(v) ← w(v),
 V0 ← V – D0 (D0 ={v ∈ V |deg(v)=0})
2) While Vi ≠ ∅ do:
 w′(v) ← w′(v) – ti(v)
 Sol ← Sol ∪ Wi (Wi ={v ∈ Vi |w′(v)=0})
 Vi+1 ← Vi – Wi
 i ←i+1
 Vi ← Vi – Di (Di ={v ∈ Gi |deg(v)=0})
3)   Output (Sol)

Example
6 2

4

1

6

4

4

t(v) = 1⋅ deg(v)

Example
3 1

0

0

2

1

2

Sol

Example
3 1

2

1

2

Sol

Example
3

2

1

2

Sol

t(v) = (2/3)⋅ deg(v)

Example
5/3

0

1/3

2/3

Sol

Example
5/3

1/3

2/3

Sol

Example
5/3

2/3

Sol

t(v) = (2/3)⋅ deg(v)

Example
Sol 4

1
6
4

15

6 2

4

1

6

4

4

Approximation ratio of
the Layer Algorithm

Theorem 2.4
 The Layer Algorithm achieves an

approximation guarantee of factor 2
for the vertex cover problem assuming
arbitrary vertex weights.

Scheme of the Algorithm
Dk

Wk-1 Dk-1

W1 D1

W0 D0

●●●

Gk

Gk-1

G1

G0 =G

Sol

C*∩Gi is a vertex cover for Gi

Let t0,…,tk-1 be the degree-weighted functions.

Proof of Theorem 2.4 (1)

•  We need to show that set Sol is a vertex cover for G
and w(Sol) ≤ 2 OPT.

•  Assume, for contradiction, that Sol is not a vertex
cover for G. Then there must be an edge (u,v) with
u∈Di and v∈Dj, for some i, j. Assume i ≤ j.
Therefore, (u,v) is present in Gi, contradicting the
fact that u is a degree zero vertex.

Proof of Theorem 2.4 (2)

•  Let C* be an optimal vertex cover.
•  Consider a vertex v ∈ Sol. If v ∈ Wj, its weight can be

decomposed as

•  Consider a vertex v ∈ V - Sol. If v ∈ Dj, its weight
can be decomposed as

() ().∑
≤

=
ji
i vtvw

() ().∑
<

≥
ji
i vtvw

Proof of Theorem 2.4 (3)

•  C*∩Gi is a vertex cover for Gi.
•  Lemma 2.3 ⇒ ti(Sol∩Gi) ≤ 2 ti(C*∩Gi).
•  By the decomposition of weights, we get

() () *).(2*2)(
1

0

1

0

CwGCtGSoltSolw
k

t
ii

k

t
ii ≤≤= ∑∑

−

=

−

=

∩∩

Tight example

1=w

1=w

1=w

1=w

1=w

1=w

1=w

1=w

Shortest Superstring

•  Given a finite alphabet Σ, and a set of n strings
S = {s1,…,sn} ⊆ Σ+.

•  Find a shortest string s that contains each si as a
superstring.

•  Without lost of generality, we may assume that no
string si is a substring of another string sj, i ≠ j.

Shortest Superstring as Set Cover

si
sj

k > 0

πijk

M ={πijk | πijk is a valid choice of i, j, k}

π∈M : set(π)={s∈S | s is a substring of π}

Ucover≡ Sstring Scover≡ {set(πijk) | πijk is a valid choice of i, j, k}

c(set(π)) = | π |

Lower bound

•  Lemma 2.5
 OPTstring ≤ OPTcover ≤ 2 OPTstring

OPTcover ≤ 2 OPTstring
s (shortest superstring)

sb1

se1 sb2

se2 sb3

se3 π1
π2

π3

Consider the leftmost occurrence of the strings s1, . . . , sn in string s.
We will partition the ordered list of strings s1, . . . , sn in groups.

OPTcover ≤ 2 OPTstring
s (shortest superstring)

sb1

se1 sb2

se2 sb3

se3 π1
π2

π3

Each group will consist of a contiguous
set of strings from this list.

Let bi and ei denote the index of the first and last string in the i-th group.
b1=1, and e1 is the largest index of a string that overlaps with s1.

OPTcover ≤ 2 OPTstring
s (shortest superstring)

sb1

se1 sb2

se2 sb3

se3 π1
π2

π3

πi does not overlap with πi+2

{set(πi)|i=1,…,t} is a solution for S, with cost

π i
i
∑ .

 Li’s Algorithm

1)  Use the greedy set cover algorithm to find a cover for the

instance S.
2)  Let set(π1),…, set(πk) be the sets picked by this cover.
3)  Concatenate the strings π1,…,πk in any order.
4)  Output the resulting string, say s.

Approximation ratio of

Theorem 2.6
 Li’s algorithm is a 2Hn factor algorithm for

the shortest superstring problem, where n is the
number of strings in the given instance.

Exercises
 The bin packing problem with bounded number of

items per a bin.
•  Given n items and their sizes a1,…,an ∈ (0,1].
•  Find a packing in unit-sized bins that minimizes the number

of bin used under condition that each bin contains at most five
items.

1. Reduce the above bin packing problem to the set cover
problem.

2. Does your reduction polynomially depend on n?

