Combinatorial Algorithms

Set Cover Problem

Set Cover

- *Given* a universe *U* of *n* elements, a collection of subsets of *U*, $S = \{S_1, ..., S_k\}$, and a cost function $c: S \rightarrow \mathbf{Q}^+$.
- *Find* a minimum cost subcollection of *S* that covers all elements of *U*.

Greedy strategy

- Among the first strategies one tries when designing an algorithm for an optimization problem is some form of the greedy strategy.
- Greedy algorithms work by making a sequence of decisions; each decision is made to optimize that particular decision, even though this sequence of locally optimal decisions might not lead to a globally optimal solution.
- The advantage of greedy algorithms is that they are typically very easy to implement, and hence greedy algorithm are a commonly used heuristics, even when they have no performance guarantee.

The greedy algorithm

- Let *C* be the set of elements already covered at the beginning of an iteration. During this iteration, define the **cost-effectiveness** of a set S_i to be the average cost at which it covers new elements? i.e., $\alpha_i = c(S_i)/|S_i C|$.
- Define the **price** of an element to the average cost at which it is covered.
- Equivalently, when a set S_i is picked, we can think of its cost being distributed equally among the new elements covered, to set their prices.

Chvatal's Algorithm

0) Input $(U, S, c: S \rightarrow Q^+)$ $C \leftarrow \emptyset, Sol \leftarrow \emptyset$ 1) While $C \neq U$ do: 2) Find $S_i \in S - Sol$ such that $\alpha_i = c(S_i)/|S_i - C|$ is minimal. $Sol \leftarrow Sol \bigcup \{S_i\}$ $C \leftarrow C \bigcup S_i(S_i \text{ is most cost-effective})$ Set $price(e) = \alpha_i$ for all $e \in S_i - C$ **Output** (Sol) 3)

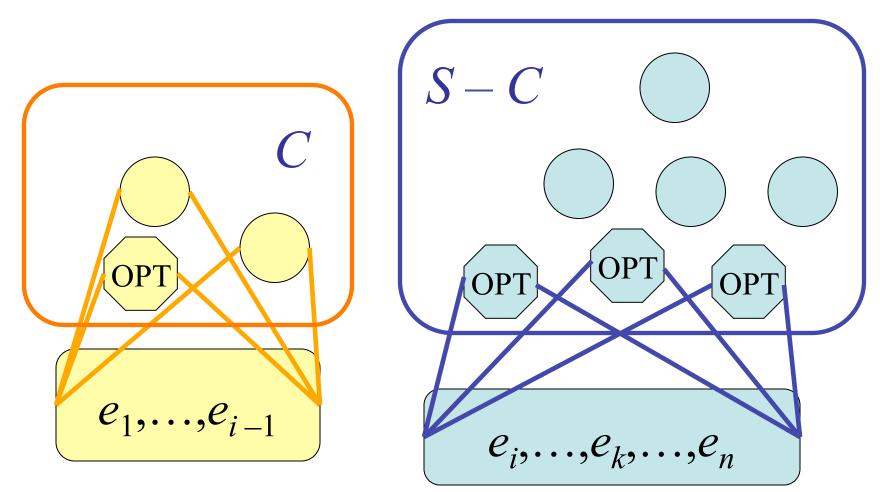
Analysis of Chvatal's Algorithm

- Number the elements of *U* in the order, in which were covered by the algorithm, resolving ties arbitrarily.
- Let e_1, \ldots, e_n be this numbering.

• Lemma 2.1

For each $k \in \{1, \dots, n\}$, $price(e_k) \leq OPT/(n-k+1)$.

Proof of Lemma 2.1

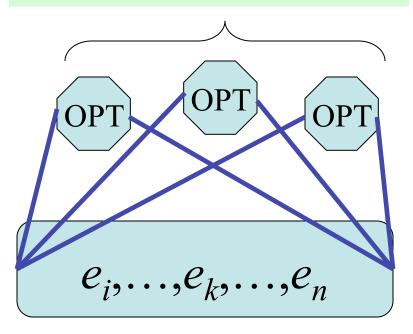


In any iteration, the leftover sets of the optimal solution can cover the remaining elements at a cost of at most OPT.

Proof of Lemma 2.1

$$\frac{a_1}{b_1} \ge \frac{a_2}{b_2} \ge \dots \ge \frac{a_n}{b_n} \Longrightarrow \frac{a_1 + \dots + a_n}{b_1 + \dots + b_n} \ge \frac{a_n}{b_n}$$

The total cost-effectiveness is at most OPT/(n - i + 1) $\leq OPT/(n - k + 1)$



There must be one subset $S_j \in S - C$ with $\alpha_j \leq OPT/(n - k + 1).$

 $price(e_k) \leq OPT/(n-k+1).$

Performance of the Chvatal Algorithm

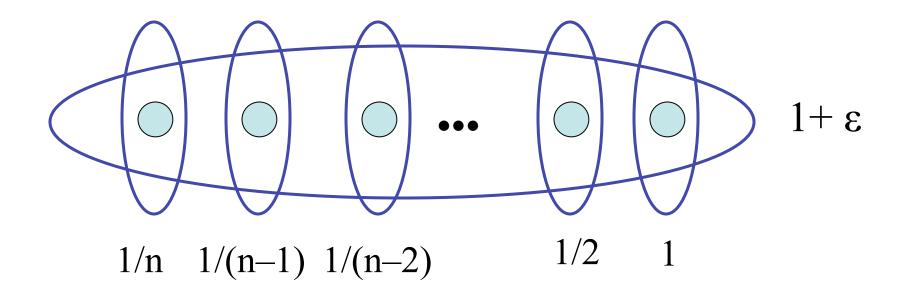
Theorem 2.2

Chvatal's Algorithm is an H_n factor approximation algorithm for the minimum set cover problem, where $H_n=1+1/2+1/3+...+1/n$.

Proof.

$$\sum_{S_i \in C} c(S_i) = \sum_{k=1}^n price(e_k) \le \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) OPT$$

Tight example



Vertex cover

- *Given* an undirected graph G = (V, E), and a cost function on vertices $c: V \rightarrow \mathbf{Q}^+$.
- *Find* a minimum cost vertex cover.

Layering

- We introduce a technique of layering.
- The idea in layering is to decompose the given weight function on vertices into convenient functions, called degree-weighted, on a nested sequence of subgraphs *G*. For degree-weighted functions, we will show that we will be within twice the optimal even if we pick all vertices in the cover.

Degree-weighted function

- Let $w: V \to \mathbf{Q}^+$ be the function assigning weights to the vertices of the given graph G = (V, E).
- We will say that a function assigning vertex weight is **degree-weighted**, if there is a constant c > 0, such that the weight of each vertex $v \in V$ is $c \cdot \deg(v)$.

Lower Bound

• Lemma 2.3

Let $w: V \rightarrow \mathbf{Q}^+$ be a degree-weighted function. Then $w(V) \le 2$ OPT.

Proof

 Let c be the constant such that w(c) = c ⋅ deg(v), and let U be an optimal vertex cover in G. Since U covers all the edges,

$$\sum_{v \in U} \deg(v) \ge |E|.$$

• Therefore, $w(U) \ge c|E|$. Now, since

$$\sum_{v \in V} \deg(v) = 2|E|, \quad w(V) = 2c|E|.$$

Largest degree-weighted function

- Let $w: V \to \mathbf{Q}^+$ be an arbitrary function.
- Let us define the **largest degree-weighted function in** *w* as follows:
 - Remove all degree zero vertices from the graph, and over the remaining vertices, compute $c = \min\{w(v)/\deg(v)\}$.

- Then $t(v) = c \cdot \deg(v)$ is the desired function.

Define w'(v) = w(v) - t(v) to be the residual weight function.

The Layer Algorithm

- **0)** Input $(G = (V, E), w: V \rightarrow \mathbf{Q}^+)$
- 1) $Sol \leftarrow \emptyset, i \leftarrow 0, w'(v) \leftarrow w(v),$
 - $V_0 \leftarrow V D_0 (D_0 = \{v \in V | \text{deg}(v) = 0\})$
- 2) While $V_i \neq \emptyset$ do:

$$w'(v) \leftarrow w'(v) - t_i(v)$$

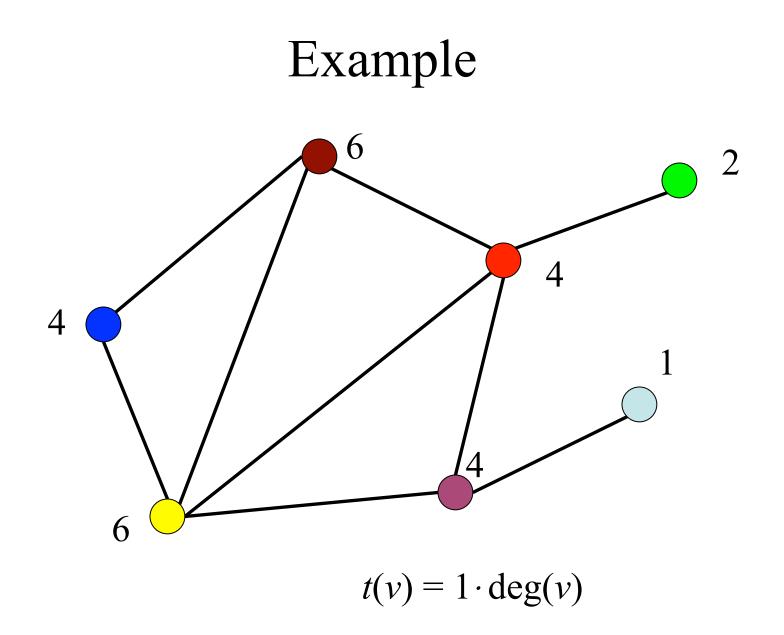
$$Sol \leftarrow Sol \bigcup W_i (W_i = \{v \in V_i | w'(v) = 0\})$$

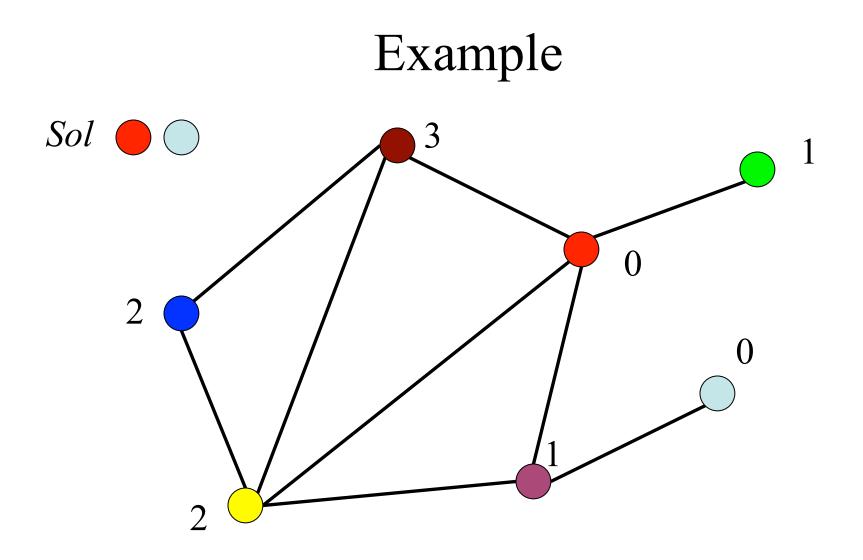
$$V_{i+1} \leftarrow V_i - W_i$$

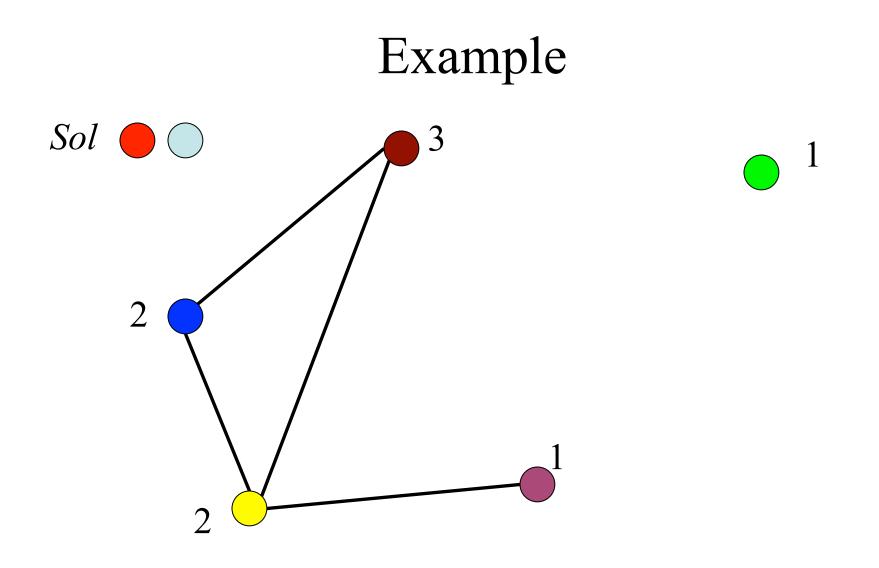
$$i \leftarrow i+1$$

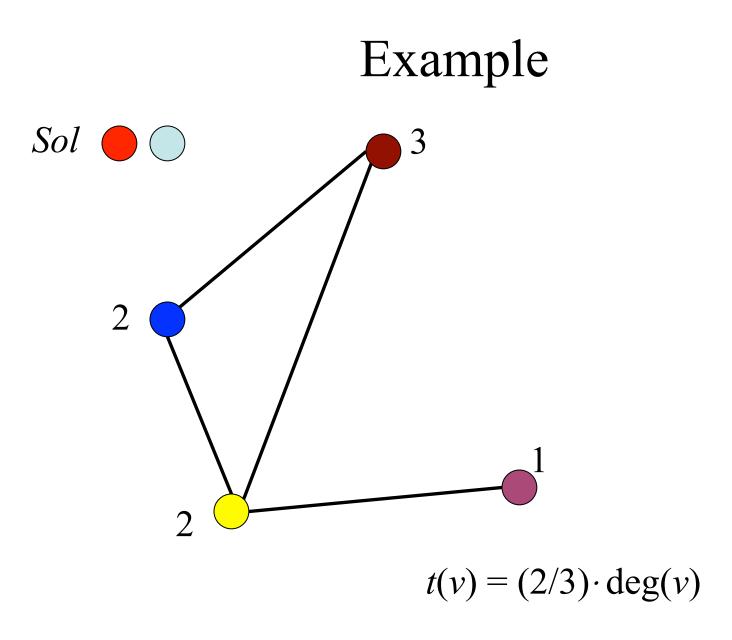
$$V_i \leftarrow V_i - D_i (D_i = \{v \in G_i | deg(v) = 0\})$$

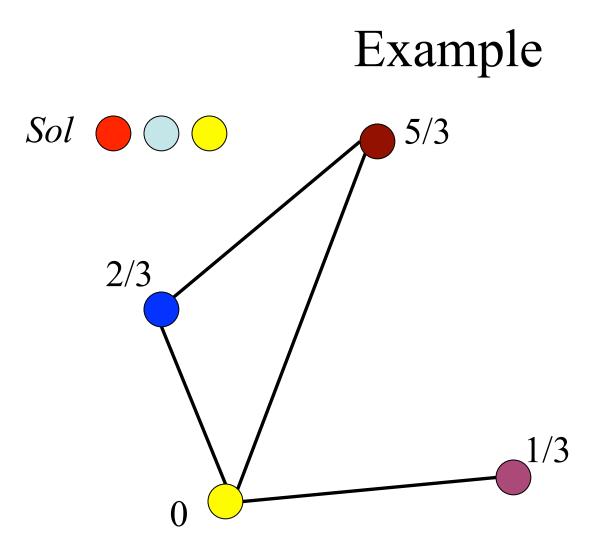
3) Output (Sol)

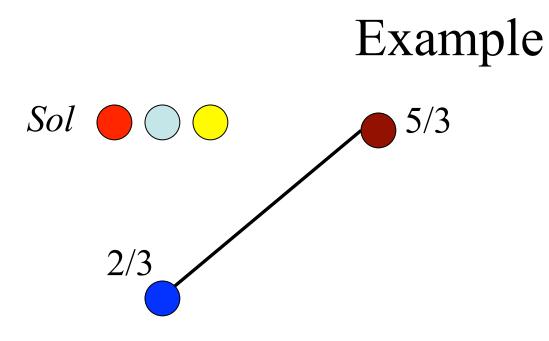


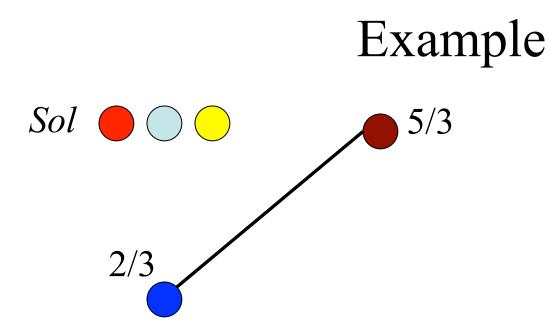




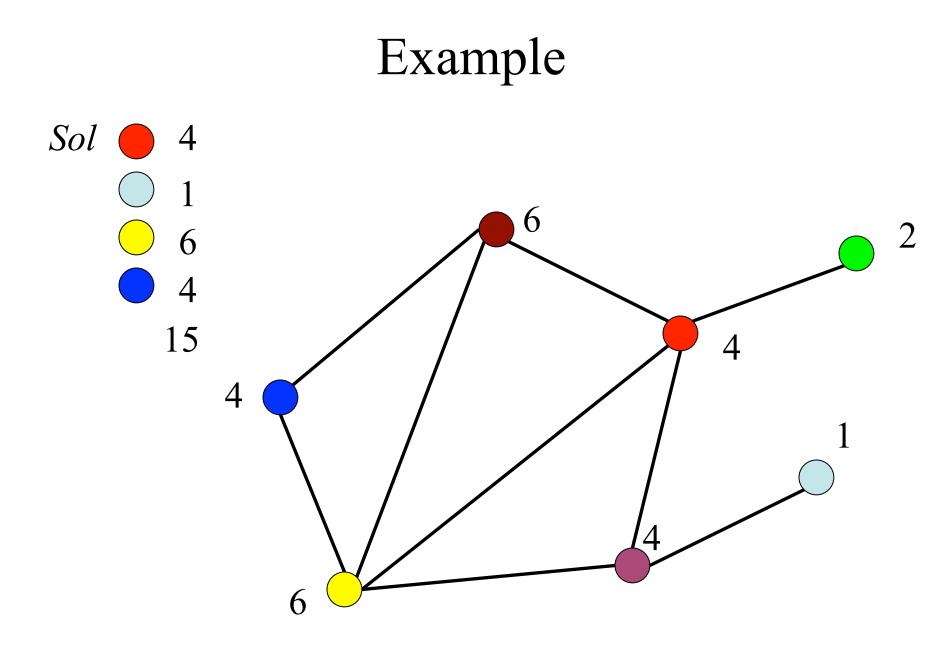








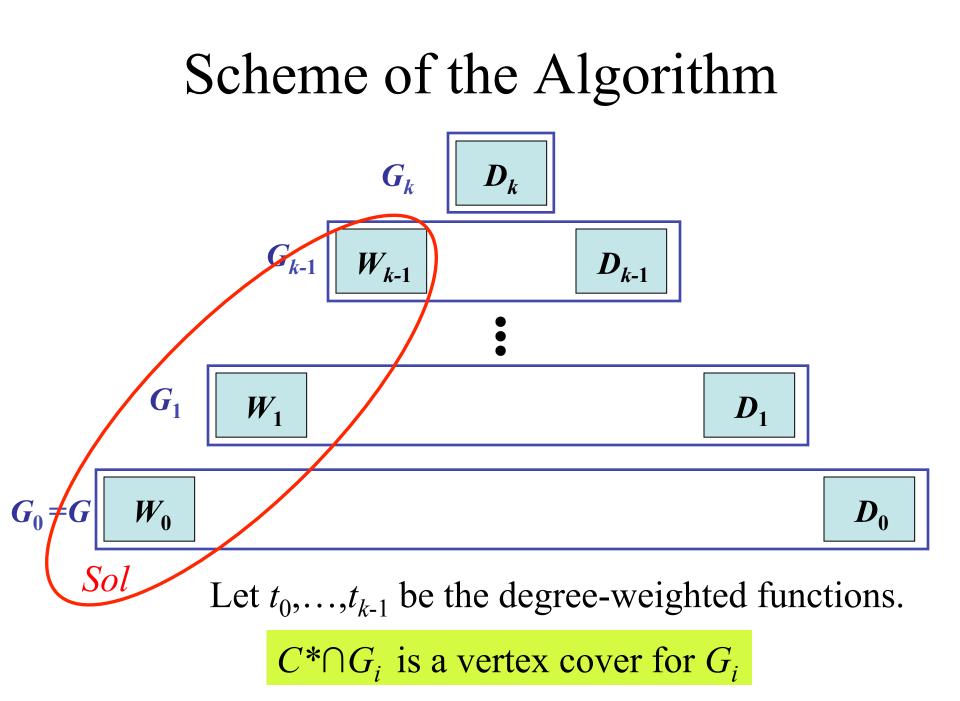
 $t(v) = (2/3) \cdot \deg(v)$



Approximation ratio of the Layer Algorithm

Theorem 2.4

The Layer Algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem assuming arbitrary vertex weights.



Proof of Theorem 2.4 (1)

- We need to show that set *Sol* is a vertex cover for *G* and $w(Sol) \le 2$ OPT.
- Assume, for contradiction, that *Sol* is not a vertex cover for *G*. Then there must be an edge (u,v) with $u \in D_i$ and $v \in D_j$, for some *i*, *j*. Assume $i \leq j$. Therefore, (u,v) is present in G_i , contradicting the fact that *u* is a degree zero vertex.

Proof of Theorem 2.4 (2)

- Let *C** be an optimal vertex cover.
- Consider a vertex $v \in Sol$. If $v \in W_j$, its weight can be decomposed as $w(v) = \sum_{i \leq j} t_i(v).$
- Consider a vertex $v \in V$ *Sol*. If $v \in D_j$, its weight can be decomposed as

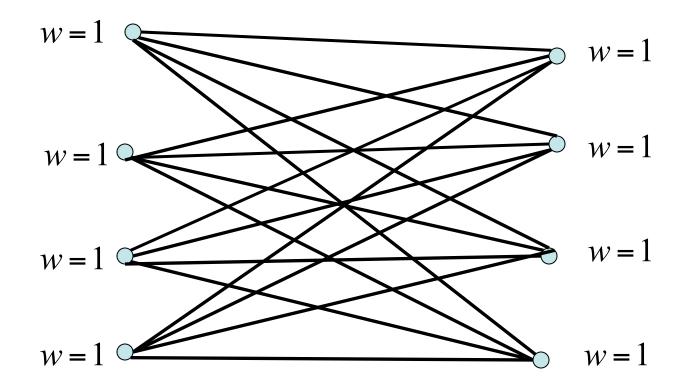
$$w(v) \ge \sum_{i < j} t_i(v).$$

Proof of Theorem 2.4 (3)

- $C^* \cap G_i$ is a vertex cover for G_i .
- Lemma 2.3 $\Rightarrow t_i(Sol \cap G_i) \leq 2 t_i(C^* \cap G_i).$
- By the decomposition of weights, we get

$$w(Sol) = \sum_{t=0}^{k-1} t_i (Sol \cap G_i) \le 2 \sum_{t=0}^{k-1} t_i (C^* \cap G_i) \le 2w(C^*).$$

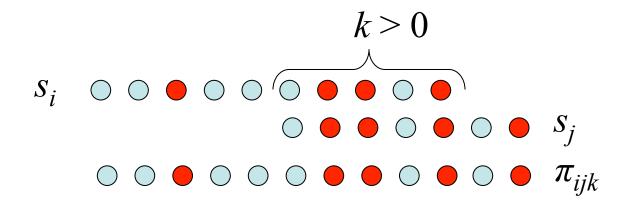
Tight example



Shortest Superstring

- *Given* a finite alphabet Σ , and a set of *n* strings $S = \{s_1, ..., s_n\} \subseteq \Sigma^+$.
- *Find* a shortest string *s* that contains each *s_i* as a superstring.
- Without lost of generality, we may assume that no string s_i is a substring of another string s_j , $i \neq j$.

Shortest Superstring as Set Cover



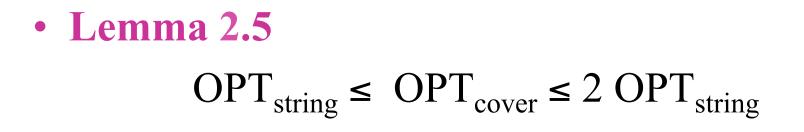
 $M = \{ \pi_{ijk} \mid \pi_{ijk} \text{ is a valid choice of } i, j, k \}$

 $\pi \in M$: set(π)={ $s \in S \mid s$ is a substring of π }

 $U_{\text{cover}} = S_{\text{string}}$ $S_{\text{cover}} = \{ \text{set}(\pi_{ijk}) \mid \pi_{ijk} \text{ is a valid choice of } i, j, k \}$

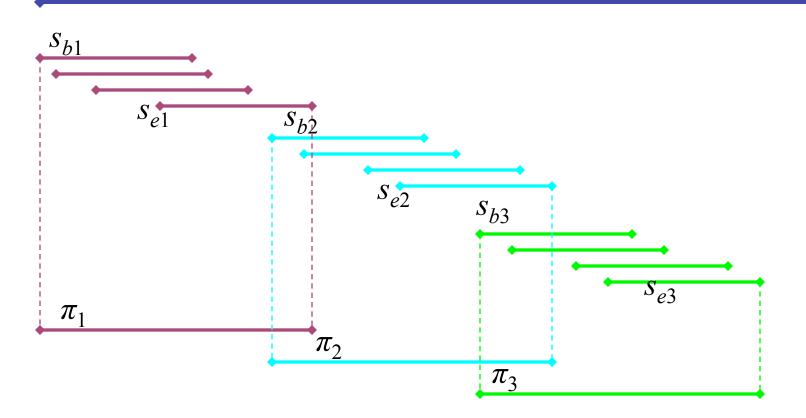
 $c(\operatorname{set}(\pi)) = |\pi|$

Lower bound



$OPT_{cover} \le 2 OPT_{string}$

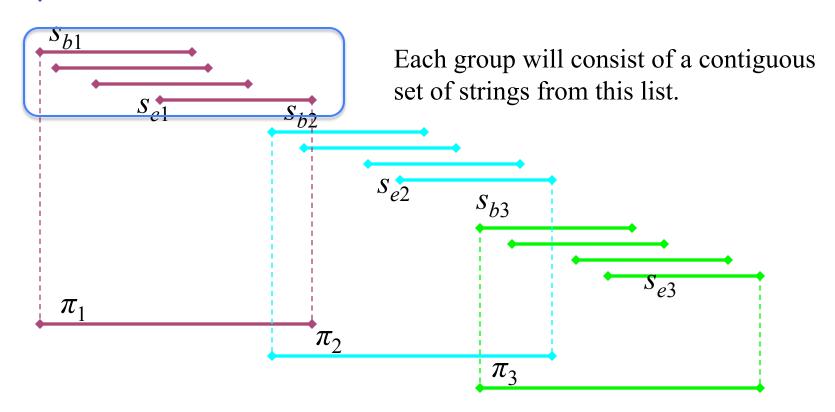
S (shortest superstring)



Consider the leftmost occurrence of the strings s_1, \ldots, s_n in string *s*. We will partition the ordered list of strings s_1, \ldots, s_n in groups.

$OPT_{cover} \le 2 OPT_{string}$

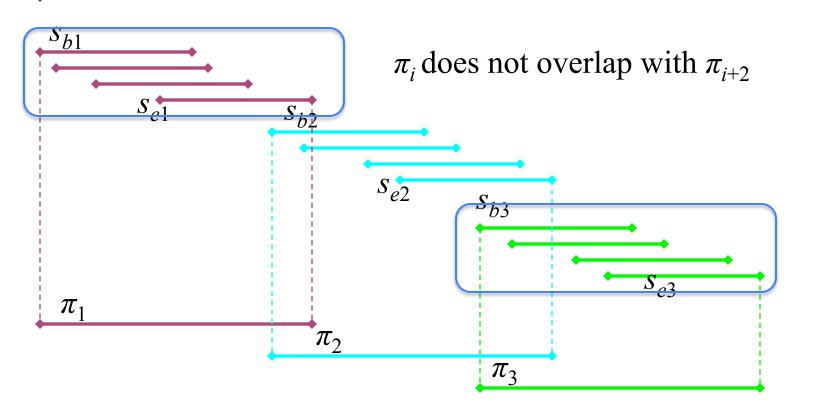
S (shortest superstring)



Let b_i and e_i denote the index of the first and last string in the *i*-th group. $b_1=1$, and e_1 is the largest index of a string that overlaps with s_1 .

$OPT_{cover} \le 2 OPT_{string}$

S (shortest superstring)



{set(π_i)|i=1,...,t} is a solution for *S*, with cost $\sum \pi_i$.

Li's Algorithm

- 1) Use the greedy set cover algorithm to find a cover for the instance *S*.
- 2) Let set(π_1),..., set(π_k) be the sets picked by this cover.
- 3) Concatenate the strings π_1, \ldots, π_k in any order.
- 4) **Output** the resulting string, say *s*.

Approximation ratio of

Theorem 2.6

Li's algorithm is a $2H_n$ factor algorithm for the shortest superstring problem, where *n* is the number of strings in the given instance.

Exercises

The bin packing problem with bounded number of items per a bin.

- *Given n* items and their sizes $a_1, \ldots, a_n \in (0,1]$.
- *Find* a packing in unit-sized bins that minimizes the number of bin used under condition that each bin contains at most five items.
- 1. Reduce the above bin packing problem to the set cover problem.
- 2. Does your reduction polynomially depend on *n*?