
Combinatorial Algorithms 

Set Cover Problem  



Set Cover 

•  Given a universe U of n elements, a 
collection of subsets of U, S = {S1,…, Sk}, 
and a cost function c: S → Q+. 

•  Find a minimum cost subcollection of S 
that covers all elements of U.  



Greedy strategy 
•  Among the first strategies one tries when designing an 

algorithm for an optimization problem is some form of the 
greedy strategy. 

•  Greedy algorithms work by making a sequence of decisions; 
each decision is made to optimize that particular decision, 
even though this sequence of locally optimal decisions might 
not lead to a globally optimal solution. 

•  The advantage of greedy algorithms is that they are typically 
very easy to implement, and hence greedy algorithm are a 
commonly used heuristics, even when they have no 
performance guarantee. 



The greedy algorithm 
•  Let C be the set of elements already covered at the 

beginning of an iteration. During this iteration, define 
the cost-effectiveness of a set Si to be the average 
cost at which it covers new elements? i.e.,                      
αi = c(Si)/|Si – C|. 

•  Define the price of an element to the average cost at 
which it is covered. 

•  Equivalently, when a set Si is picked, we can think of 
its cost being distributed equally among the new 
elements covered, to set their prices. 



 Chvatal’s Algorithm 

0)    Input (U, S, c: S → Q+) 
1)   C ← ∅, Sol ← ∅	
2)   While C ≠ U do: 
             Find Si∈ S – Sol  such that 
             αi=c(Si)/|Si – C| is minimal. 
             Sol ← Sol ∪{Si} 
             C ← С ∪ Si (Si is most cost-effective) 
             Set price(e) = αi for all e∈ Si – C 
3)   Output (Sol) 



Analysis of  Chvatal’s Algorithm 

•  Number the elements of U in the order, in 
which were covered by the algorithm, 
resolving ties arbitrarily. 

•  Let e1,…,en be this numbering. 

•  Lemma 2.1 
 For each k ∈{1,…,n},  price(ek) ≤ OPT/(n–k+1). 



Proof of Lemma 2.1 

ei,…,ek,…,en 
e1,…,ei –1 

OPT OPT OPT OPT 

C 
S – C 

In any iteration, the leftover sets of the optimal solution can cover the 
remaining elements at a cost of at most OPT.  



Proof of Lemma 2.1 

ei,…,ek,…,en 

OPT OPT OPT 

The total cost-effectiveness 
is at most OPT/(n – i + 1) 
≤ OPT/(n – k + 1) 

There must be one subset 
Sj∈ S – C  with                           
αj ≤ OPT/(n – k + 1). 

price(ek) ≤ OPT/(n–k+1). 

n

n

n

n

n

n

b
a

bb
aa

b
a

b
a

b
a

≥
++
++

⇒≥≥≥
!
!

!
1

1

2

2

1

1



Performance of the Chvatal Algorithm 

Theorem 2.2 
    Chvatal’s Algorithm is an Hn factor approximation 

algorithm for the minimum set cover problem, where 
Hn=1+1/2+1/3+…+1/n. 

 
Proof. 
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Tight example 
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Vertex cover 

•  Given  an undirected graph G = (V, E), and a cost 
function on vertices c: V → Q+. 

•  Find a minimum cost vertex cover. 



Layering 

•  We introduce a technique of layering. 
•  The idea in layering is to decompose the given 

weight function on vertices into convenient 
functions, called degree-weighted, on a nested 
sequence of subgraphs G. For degree-weighted 
functions, we will show that we will be within 
twice the optimal even if we pick all vertices in 
the cover. 



Degree-weighted function 

•  Let w: V → Q+  be the function assigning 
weights to the vertices of the given graph                  
G = (V,E).  

•  We will say that a function assigning vertex 
weight is degree-weighted, if there is a 
constant с > 0, such that the weight of each 
vertex v∈V is с⋅ deg(v).  



Lower Bound 

•  Lemma 2.3 
    Let w: V → Q+ be a degree-weighted function. 

Then w(V) ≤ 2 OPT. 



Proof 

•  Let c be the constant such that w(c) = с⋅ deg(v), 
and let U be an optimal vertex cover in G. Since 
U covers all the edges, 
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•  Therefore, w(U) ≥ c|E|. Now, since 

( ) ( ) .2    ,2deg EcVwEv
Vv

==∑
∈



Largest degree-weighted function 

•  Let w: V → Q+ be an arbitrary function.  
•  Let us define the largest degree-weighted function 

in w as follows:  
–  Remove all degree zero vertices from the graph, and over 

the remaining vertices, compute c= min{w(v)/deg(v)}.  

–  Then t(v) = c⋅ deg(v) is the desired function. 

•  Define w′(v) = w(v) – t(v) to be the residual weight 
function.  



The Layer Algorithm 

0)    Input (G = (V, E), w: V → Q+) 
1)    Sol ← ∅, i ← 0, w′(v) ← w(v), 
       V0 ← V – D0 (D0 ={v ∈ V |deg(v)=0})  
2)    While Vi ≠ ∅ do: 
                   w′(v) ← w′(v) – ti(v) 
                   Sol ← Sol ∪ Wi (Wi ={v ∈ Vi |w′(v)=0}) 
                   Vi+1 ← Vi – Wi 
                   i ←i+1 
                   Vi ← Vi – Di (Di ={v ∈ Gi |deg(v)=0}) 
3)   Output (Sol) 
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t(v) = (2/3)⋅ deg(v) 
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Approximation ratio of                              
the Layer Algorithm 

Theorem 2.4 
    The Layer Algorithm achieves an 

approximation guarantee of factor 2             
for the vertex cover problem assuming 
arbitrary vertex weights. 

 
 



Scheme of the Algorithm 
Dk 

Wk-1 Dk-1 

W1 D1 

W0 D0 

●●● 

Gk 

Gk-1 

G1 

G0 =G 

Sol 

C*∩Gi  is a vertex cover for Gi 

Let t0,…,tk-1 be the degree-weighted functions. 



Proof of Theorem 2.4 (1) 

•  We need to show that set Sol is a vertex cover for G 
and w(Sol) ≤ 2 OPT. 

•  Assume, for contradiction, that Sol is not a vertex 
cover for G. Then there must be an edge (u,v) with 
u∈Di and v∈Dj, for some i, j. Assume i ≤ j. 
Therefore, (u,v) is present in Gi, contradicting the  
fact that u is a degree zero vertex. 



Proof of Theorem 2.4 (2) 

•  Let C* be an optimal vertex cover.  
•  Consider a vertex v ∈ Sol. If v ∈ Wj, its weight can be 

decomposed as 

•  Consider a vertex v ∈ V - Sol. If v ∈ Dj, its weight 
can be decomposed as 
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Proof of Theorem 2.4 (3) 

•  C*∩Gi  is a vertex cover for Gi. 
•  Lemma 2.3 ⇒ ti(Sol∩Gi) ≤ 2 ti(C*∩Gi). 
•  By the decomposition of weights, we get  
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Tight example 
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Shortest Superstring 

•  Given  a finite alphabet Σ, and a set of n strings     
S = {s1,…,sn} ⊆ Σ+. 

•  Find a shortest string s that contains each si as a 
superstring. 

•  Without lost of generality, we may assume that no 
string si is a substring of another string sj, i ≠ j.  



Shortest Superstring as Set Cover 

si 
sj 

k > 0 

πijk 

M ={πijk | πijk is a valid choice of i, j, k} 

π∈M :   set(π)={s∈S | s is a substring of π} 

Ucover≡ Sstring Scover≡ {set(πijk) | πijk is a valid choice of i, j, k} 

c(set(π)) = | π | 



Lower bound 

•  Lemma 2.5 
               OPTstring ≤  OPTcover ≤ 2 OPTstring 



OPTcover ≤ 2 OPTstring 
s (shortest superstring) 

sb1 

se1 sb2 

se2 sb3 

se3 π1 
π2 

π3 

Consider the leftmost occurrence of the strings s1, . . . , sn in string s.  
We will partition the ordered list of strings s1, . . . , sn in groups. 



OPTcover ≤ 2 OPTstring 
s (shortest superstring) 

sb1 

se1 sb2 

se2 sb3 

se3 π1 
π2 

π3 

Each group will consist of a contiguous  
set of strings from this list. 

Let bi and ei denote the index of the first and last string in the i-th group. 
b1=1, and e1 is the largest index of a string that overlaps with s1. 
 
 



OPTcover ≤ 2 OPTstring 
s (shortest superstring) 

sb1 

se1 sb2 

se2 sb3 

se3 π1 
π2 

π3 

πi does not overlap with πi+2 

{set(πi)|i=1,…,t} is a solution for S, with cost 
 

π i
i
∑ .



 Li’s Algorithm   

 
1)  Use the greedy set cover algorithm to find a cover for the 

instance S.  
2)  Let set(π1),…, set(πk) be the sets picked by this cover.  
3)  Concatenate the strings π1,…,πk in any order.  
4)   Output the resulting string, say s. 



Approximation ratio of  
 

Theorem 2.6 
   Li’s algorithm is a 2Hn  factor  algorithm for 

the shortest superstring problem, where n is the 
number of strings in the given instance. 

 
 



Exercises 
   The bin packing problem with bounded number of 

items per a bin. 
•  Given  n items and their sizes a1,…,an ∈ (0,1].  
•  Find  a packing in unit-sized bins that minimizes the number 

of bin used under condition that each bin contains at most five 
items. 

1. Reduce the above bin packing problem to the set cover 
problem. 

2. Does your reduction polynomially depend on n? 


