Combinatorial Algorithms

Set Cover Problem

Set Cover

* Given auniverse U of n elements, a
collection of subsets of U, § = {S,,..., S;},
and a cost function c: § — Q™.

 Find a minimum cost subcollection of S
that covers all elements of U.

Greedy strategy

« Among the first strategies one tries when designing an
algorithm for an optimization problem 1s some form of the
greedy strategy.

* Greedy algorithms work by making a sequence of decisions;
cach decision 1s made to optimize that particular decision,
even though this sequence of locally optimal decisions might
not lead to a globally optimal solution.

* The advantage of greedy algorithms 1s that they are typically
very easy to implement, and hence greedy algorithm are a
commonly used heuristics, even when they have no
performance guarantee.

The greedy algorithm

* Let C be the set of elements already covered at the
beginning of an iteration. During this iteration, define
the cost-effectiveness of a set S, to be the average
cost at which 1t covers new elements? 1.e.,

a;, = c(S)/|S; - C|.
« Define the price of an element to the average cost at
which 1t 1s covered.

* Equivalently, when a set S’ 1s picked, we can think of
its cost being distributed equally among the new
elements covered, to set their prices.

Chvatal’s Algorithm

0) Input(U,S,c:S— Q)
1) C<— 3,850l <O
2) While C = U do:
Find S, 5 — Sol such that
a~=c(S,)/|S; — C| 1s minimal.
Sol <— Sol U{S}
C<—CUS,
Set price(e) = o, for all e §;, — C
3) Output (Sol)

Analysis of Chvatal’s Algorithm

 Number the elements of U in the order, in
which were covered by the algorithm,
resolving ties arbitrarily.

* Lete,,...,e, be this numbering.

 Lemma 2.1
For each k €{1,...,n}, price(e,) = OPT/(n—k+1).

Proof of Lemma 2.1

In any iteration, the leftover sets of the optimal solution can cover the
remaining elements at a cost of at most OPT.

Proof of Lemma 2.1

ﬂ>@>m>&:>al+---+an _ 4,
bl_bz_ _bn b1+---+bn_bn
The total cost-effectiveness
is at most OPT/(n —i + 1) There must bp one subset
<OPT/(n—k + 1) §E€ S5~ C with

o< OPT/(n —k + 1).

Performance of the Chvatal Algorithm

Theorem 2.2

Chvatal’s Algorithm 1s an H, factor approximation
algorithm for the minimum set cover problem, where

H =1+1/2+1/3+...+1/n.

Proof.

$zc(Sl.)= iprice(ek)s (1+1+---+1)OPT
=8 =

2 n

Tight example

N A—A—A N

<CICICE

\/ N \/

I/n 1/(n—1) 1/(n-2) 12 1

Vertex cover

* (Given an undirected graph G = (V, E), and a cost
function on vertices c: V' — Q™.

e Find a minimum cost vertex cover.

11

Layering

* We introduce a technique of layering.

* The 1dea 1n layering is to decompose the given
weight function on vertices into convenient
functions, called degree-weighted, on a nested
sequence of subgraphs G. For degree-weighted
functions, we will show that we will be within
twice the optimal even 1f we pick all vertices in
the cover.

Degree-weighted function

 Letw: JV— Q" be the function assigning
weilghts to the vertices of the given graph
G=(V,E).

 We will say that a function assigning vertex
weight 1s degree-weighted, 1f there 1s a
constant ¢ > 0, such that the weight of each
vertex vEV 1s c- deg(v).

[Lower Bound

e Lemma 2.3

Let w: V— Q™ be a degree-weighted function.
Then w(V) = 2 OPT.

Proof

* Let ¢ be the constant such that w(c) = c- deg(v),
and let U be an optimal vertex cover in G. Since
U covers all the edges,

;Udeg(v)z ‘E‘

* Therefore, w(U) > c|E|. Now, since

;deg(v) = 2‘E : W(V) = 2C‘E‘.

Largest degree-weighted function

Let w: VV— Q™ be an arbitrary function.
Let us define the largest degree-weighted function
in w as follows:

— Remove all degree zero vertices from the graph, and over
the remaining vertices, compute c= min{w(v)/deg(v)}.

— Then #(v) = c- deg(v) 1s the desired function.

Define w'(v) = w(v) — #(v) to be the residual weight
function.

The Layer Algorithm

0) Input(G=(V,E),w:V—Q
1) Sol<@,i< 0,w'(v)< w(),
Vo= V=D, (D, ={v € V' |deg(v)=0})
2) While V. = & do:
w(v) <= wilv) —(v)
Sol <= SolUW.(W.={veE V, |w'(v)=0})
Vi< Vi=W,
[<—i+1
Vi<= V= D,;(D;={v € G, |deg(v)=0})
3) Output (Sol)

t(v) = 1-deg(v)

Sol @ (O

Example

Example
Sol @ O 3

t(v) = (2/3)-deg(v)

Example
Sol @ O O 5/3

2/3

1/3

Example
Sol @ O O 5/3

2/3

1/3

Example
Sol @ O O 5/3

2/3

t(v) = (2/3)-deg(v)

Approximation ratio of
the Layer Algorithm

Theorem 2.4

The Layer Algorithm achieves an
approximation guarantee of factor 2
for the vertex cover problem assuming
arbitrary vertex weights.

Scheme of the Algorithm

G, D,

L

Let #,,...,t, ; be the degree-weighted functions.

C*NG@G; 1s a vertex cover for G;

Proof of Theorem 2.4 (1)

* We need to show that set So/ 1s a vertex cover for G
and w(Sol) <2 OPT.

« Assume, for contradiction, that So/ 1s not a vertex
cover for G. Then there must be an edge (u,v) with
ueD; and vED,, for some i, j. Assume i <.
Therefore, (u,v) 1s present in G,, contradicting the
fact that u 1s a degree zero vertex.

Proof of Theorem 2.4 (2)

Let C* be an optimal vertex cover.
Consider a vertex v € Sol. If v € W, its weight can be
decomposed as

W)= T4 ()

i<j
Consider a vertex vE V - Sol. It v € D, 1ts weight
can be decomposed as

W(V) = E l (v)

i<j

Proof of Theorem 2.4 (3)

* C*NG; 15 a vertex cover for G,
* Lemma 2.3 = £(Sol/NG,) <2 t(C*NG)).
* By the decomposition of weights, we get

~1

w(Sol) = Et SolNG)=2 kz (C*NG,) = 2w(C*).

Tight example

w=1

w=1
w=1 w=1
w=1 w=1
w=1 w=1

Shortest Superstring

e Given a finite alphabet X, and a set of # strings
S=1{sp,....,8,} & X"

 Find a shortest string s that contains each s; as a
superstring.

* Without lost of generality, we may assume that no
string s, 1s a substring of another string s, i = ;.

Shortest Superstring as Set Cover

k>0
A
S 00000 0ee0e

O®®0O®O0 e
ONON NORORON N RON RO N7

M ={m, k|7r 18 a valid choice of i, j, k}

TEM ;. set(w)={s&S | s is a substring of 7}

U

cover

S .. S = {set(n'l]k) | 7T o 1s a valid choice of i, j, k}

string cover—

c(set(7)) = | 7 |

L.ower bound

e Lemma 2.5

OPT < OPT <=2 OPT

string cover string

OPT <2 OPT

cover string
S (shortest superstring)
S
b1 ,
' o *
| ¢ ¢
i Sel Sih
| | s
1 1 2
i : ‘ b3
I | . *
: ! I e *
| | | . .
| | : ‘ 93 I’
- : | i
T, ; |
T l
— .

Consider the leftmost occurrence of the strings s, . . .

, S, 1n string s.

We will partition the ordered list of strings s, . . . , s, in groups.

OPT <2 OPT

cover string
S (shortest superstring)
<
bl
" . Each group will consist of a contiguous
o e * . set of strings from this list.
i el SDIE
| | s
1 1 2
i : ‘ b3
I | . *
: ! I e *
| | | ¢ ’
| | | ‘ 93 I’
T ' | ;
— ¢ | |
) | |
T l
— ‘

Let b, and e, denote the index of the first and last string in the i-th group.
b,=1, and e, is the largest index of a string that overlaps with s.

OPT <2 OPT

cover string
S (shortest superstring)
¢
Shl
¢ 4 .
[. .] 7; does not overlap with 7.,
! ¢ ¢
S gL
(S § UD¥
i S€2 Q
| B3
I * *
: e *
I | . 4
i [: M ’]
LT : | ! o I
— ’ : |
4% i i
T :
— .

{set(x))|i=1,...,t} 1s a solution for S, with cost E”i-

L1’s Algorithm

1) Use the greedy set cover algorithm to find a cover for the
instance S.

2) Letset(x,),..., set(x;) be the sets picked by this cover.

3) Concatenate the strings =,...,7, in any order.

4) Output the resulting string, say s.

Approximation ratio of

Theorem 2.6

L1’s algorithm 1s a 2H, factor algorithm for
the shortest superstring problem, where 7 1s the
number of strings in the given instance.

Exercises

The bin packing problem with bounded number of
items per a bin.
Given n items and their sizes a,,...,a, € (0,1].

Find a packing in unit-sized bins that minimizes the number

of bin used under condition that each bin contains at most five
1tems.

. Reduce the above bin packing problem to the set cover
problem.

. Does your reduction polynomially depend on »n?

