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Combinatorial Algorithms 

Metric problems 



Minimum Spanning Tree 

•  Given an undirected graph G=(V,E) 
with nonnegative edge costs                
c: E(G) → R . 

•  Find a spanning tree in G of the 
minimum weight. 



Optimality Conditions 

Theorem 3.1 
        Let (G ,c) be an instance of the Minimum Spanning Tree 

problem, and let T be a spanning tree in G. Then the 
following statements are equivalent: 

a)   T is optimum. 
b)  For every e = {x, y}∈ E(G)\ E(T), no edge on the x-y-path 

in T has higher cost than e. 
c)  For every e ∈ E(T), e  is a minimum cost edge of δ(V(C)), 

where C is a connected component of T– e. 



(c)⇒(a) 
•  (с) Suppose T satisfies (c),  for every e ∈ E(T), e  is a minimum cost 

edge of δ(V(C)), where C is a connected component of T– e. 
•  Let T* be an optimum spanning tree with E(T) ∩ E(T*) as large as 

possible. We show that T = T*. 
•  Suppose there is an edge e = {x,y} ∈ E(T)\ E(T*). 
•  Let C be a connected component of T– e. 
•  T* + e contains a circuit D. Since e ∈ E(D) ∩ δ(C), at least one more 

edge  f  ≠ e, f ∈ E(D) ∩ δ(C). 
•  Observe that (T* + e) – f is a spanning tree. 
•  Since T* is optimum ⇒ c(e) ≥ c(f) and  (с) ⇒ c(f) ≥ c(e). 
•  c(f) = c(e) and (T* + e) – f is another optimum spanning tree. 
•  This is a contradiction, because (T* + e) – f  has one edge more in 

common with T . 



Prim’s Algorithm (1957) 

Input: A connected undirected graph G, 
             weights c: E(G) → R . 
Output: Spanning tree T of minimum weight.

1)   Choose v ∈ V(G).  T := ({v}, ∅). 
2)   While V(T) ≠V(G) do: 
    Choose an edge e ∈ δG(V(T)) of minimum 

cost. Set T := T +e. 
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Steiner Tree 

•  Given an undirected graph G = (V, E) with 
nonnegative  edge costs and whose vertices are 
partitioned into two sets, required and Steiner. 

•  Find a minimum cost tree in G that contains all the 
required vertices and any subset of the Steiner 
vertices. 

•  Let R denote the set of required vertices. 
•  Set V/R is called the Steiner set. 
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Metric Steiner Tree 

•  Given a complete undirected graph G = (V, E) with 
nonnegative  edge costs such that for any three 
vertices u, v and w,                                            
cost(u,v) ≤ cost(u,w) + cost(w,v) and whose 
vertices are partitioned into two sets, required and 
Steiner. 

•  Find a minimum cost tree in G that contains all the 
required vertices and any subset of the Steiner 
vertices. 
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Factor Preserving Reduction 

 
Theorem 3.2 
   There is an approximation factor preserving reduction 

from the Steiner tree problem to the metric Steiner 
tree problem.  



Proof (⇒) 
•  We will transform, in polynomial time, an instance I of the 

Steiner tree problem, consisting of graph G = (V,E), to an 
instance Iʹ of the metric Steiner tree problem as follows. 

•  Let Gʹ  be the complete undirected graph on vertex set V. 
Define the cost of edge (u, v) in Gʹ  to be the cost of a shortest 
u-v path in G. Gʹ  is called the metric closure of G. The 
partition of V into required and Steiner vertices in Iʹ  is the 
same as in I. 

•  For any edge (u, v) ∈ E, its cost in Gʹ  is no more than its cost 
in G. Therefore, the cost of an optimal solution in Iʹ  does not 
exceed the cost of an optimal solution in I. 
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Proof (⇐) 
•  Next, given a Steiner tree Tʹ  in  Iʹ , we will show how to 

obtain, in polynomial time, a Steiner tree T in I of at most the 
same cost. 

•  The cost of an edge (u, v) in Gʹ  corresponds to the cost of a 
path in G. Replace each edge of Tʹ by the corresponding path 
to obtain a subgraph of G. 

•  In this subgraph, all the required vertices are connected. 
However, this subgraph may contain cycles. If so, remove 
edges to obtain tree T. This completes the approximation 
factor preserving reduction. 

•  As a consequence of Theorem 3.2, any approximation factor 
established for the metric Steiner tree problem carries over to 
the entire Steiner tree problem.  
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Steiner Tree and Minimum Spanning 
Tree (MST) 
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Lower Bound 

 
Theorem 3.3 
   The cost of a minimum spanning tree on R           

is within 2OPT.   
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Proof 

Steiner tree 
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Proof 

Steiner tree Euler tour 
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Proof 

Steiner tree   Euler tour  Spanning tree 
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Algorithm MST  

Input (G, R, cost: E → Q+) 
1)   Find a minimum spanning tree T on R.  
Output (T) 
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Approximation ratio of  
 Algorithm MST 

 
Corollary 3.4 

   Algorithm MST is a 2-approximation algorithm for 
the Steiner problem. 
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Tight Example 
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Travelling Salesman Problem (TSP) 

•  Given a complete undirected graph G = (V, E) with 
nonnegative  edge costs.  

•  Find a minimum cost cycle (Hamiltonian cycle) 
visiting every vertex exactly once.  
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Inapproximability 

Theorem 3.5  
   For any polynomial time computable function 
α(n),  TSP cannot be approximated within a 
factor of α(n), unless P = NP. 
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Sketch of Proof 

•  Assume, for a contradiction, that there is a factor α(n) 
polynomial time approximation algorithm A for the 
general TSP problem. 

•  We will show that A can be used for deciding the 
Hamiltonian cycle problem (which is NP-complete) 
in polynomial time, this implying P = NP.  



Central Idea 

    Reduce the Hamiltonian cycle problem to TSP,              
i.e. transform a graph G on n vertices to an edge-
weighted complete graph Gʹ on n vertices such that 

•  If G has a Hamiltonian cycle, then the cost of an 
optimal TSP tour in Gʹ  is n, and 

•  If G does not have a Hamiltonian cycle, then an 
optimal TSP tour in Gʹ  is of  cost greater than nα(n). 
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Reduction 

•  Assign a weight of 1 to edges of G, and a weight              
of nα(n) to nonedges, to obtain Gʹ . 

•  Now, if G has a Hamiltonian cycle, then the 
corresponding tour in Gʹ  has cost n. 

•  If G has no Hamiltonian cycle, any tour in Gʹ  must use 
an edge of cost nα(n), and therefore has cost > nα(n). 

•  When run on Gʹ , algorithm A must return a solution of 
cost ≤ nα(n) in the first case, and a solution of                   
cost > nα(n) in the second case. Thus, it can be used for 
deciding whether G contains a Hamiltonian cycle. 
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Metric TSP 

•  Given a complete undirected graph G = (V, E) 
with nonnegative  edge costs, such that for any 
three vertices u, v and w,                                            
cost(u,v) ≤ cost(u,w) + cost(w,v) .  

•  Find a minimum cost Hamiltonian cycle. 
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Algorithm MST-2  

Input (G, cost: E → Q+) 
1)   Find an MST, T, of G.  
2)   Double every edge of the MST to obtain an 

Eulerian graph. 
3)   Find an Eulerian tour R, on this graph. 
4)   Output the tour that visits vertices of G in the order 

of their first appearance in R. Let C be this tour. 
Output (С) 
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Example 

Minimum spaning tree 



29 

Example 

   Minimum spanning tree Eulerian tour 
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Example 

Minimum spanтing tree Eulerian tour Hamiltonian cycle 
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Approximation ratio of  
 Algorithm MST-2 

 
Theorem 3.6 
   Algorithm MST-2 is a factor 2 approximation 

algorithm for metric TSP. 



Proof 

•  It is obvious that cost(T) ≤ OPT. Since R contains 
each edge of T twice, cost(T) = 2cost(R). Because of 
triangle inequality, after the “short-cutting” step, 
cost(C) ≤ cost(R). Combining these inequalities we 
get that cost(C) ≤ 2OPT. 
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Tight Example 
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Optimal Tour 
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Minimal Spanning Tour 
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Christofides-Serdyukov Algorithm  

Input (G, cost: E → Q+) 
1)   Find an MST of G, say T.  
2)   Compute a minimum cost perfect matching, M, on the set of 

odd degree vertices of T. 
3)   Add M to T and obtain an Eulerian graph H. 
4)   Find an Euler tour R of H. 
5)   Output tour C that visits vertices of G in order of their first 

appearance in R.  
Output (С) 
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Example 

Minimum spanning tree 
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Example 

Minimum spanning tree Matching 
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Example 

Minimum spanning tree Matching Hamiltonian cycle 
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Lower bound 

 
Lemma 3.7  
   Let V′ ⊆ V, such that |V′| is even, and let M be 

a minimum cost perfect matching on V′ . Then 
cost(M) ≤ OPT/2. 
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Approximation ratio of  
Christofides-Serdyukov Algorithm  

Theorem 3.8  
   Christofides-Serdyukov Algorithm 

achieves an approximation guarantee            
of 3/2 for metric TSP. 
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Metric k-center 

•  Given a complete undirected graph G = (V, E) with 
nonnegative  edge costs satisfying the triangle inequality,        
and k is a positive integer. For any set S ⊆ V and vertex v 
define connect(v,S) = min{cost(u,v)|u∈S} (the cost of the 
cheapest edge from v to a vertex in S.)  

•  Find a set S ⊆ V, with |S|=k, so as to minimize  
maxv{connect(v,S)}. 

•  The metric k-center problem is NP-hard. 



Parametric pruning (1) 
•  If we know the cost of an optimal solution, we may be able to 

prune away irrelevant parts of the input and thereby simplify 
the search for a good solution. 

•  However computing the cost of an optimal solution is 
precisely the difficult core of NP-hard NP-optimization 
problems. 

•  The technique of parametric pruning gets around this difficulty 
as follows. A parameter t is chosen, which can be viewed as a 
“guess” on the cost of an optimal solution. For each value of t, 
the given instance I is pruned by removing parts that will not 
be used in any solution of cost > t. 
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Parametric pruning (2) 

The algorithm consists of two steps.  
•  In the first step, the family of instances I(t) is 

used for computing a lower bound on OPT, 
say t∗.  

•  In the second step, a solution is found in 
instance I(α t∗), for a suitable choice of α. 
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Instance 
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Idea of Algorithm (k=2, OPT ≤ 7) 
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Idea of Algorithm (k=2, OPT ≤ 7) 
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Idea of Algorithm (k=2, OPT ≤ 7) 
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Idea of Algorithm (k=2, OPT ≤ 3) 
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Idea of Algorithm (k=2, OPT ≤ 3) 
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Parametric pruning 

•  Sort the edges of G in nondecreasing order of cost, 
i.e. cost(e1) ≤ cost(e2) ≤ …≤ cost(em).  

•  Let Gi = (V, Ei), where Ei={e1, e2,…, ei}. 
•  For each Gi , we have to check whether there exists       

a subset S ⊆ V such that every vertex in V – S is 
adjacent to a vertex in S.  
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Dominating Set 

•   A dominating set in an undirected graph         
G = (V, E) is a subset S ⊆ V such that every 
vertex in V – S is adjacent to a vertex in S. 

•  Let dom(G) denote the size of minimum 
cardinality dominating set in G. 
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Dominating Set 

•   A dominating set in an undirected graph         
G = (V, E) is a subset S ⊆ V such that every 
vertex in V – S is adjacent to a vertex in S. 

•  Let dom(G) denote the size of minimum 
cardinality dominating set in G. 

•  Computing dom(G) is NP-hard. 
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k-Center 

•  The k-center problem is equivalent to finding  the 
smallest index i such that Gi has a dominating set of 
size at most k. 

•  Gi contains k stars (K1,p) spanning all vertices. 

K1,7 



56 

G2 

•  Independent set (stable set) in G = (V, E) is a 
subset I ⊆ V of pairwise non-adjacent vertices. 

•  Define the square of graph G = (V, E) to be the 
graph G2 = (V, E′), containing an edge (u,v)∈ E′ 
whenever G has a path of length at most 2 between.  

G=K1,4 G2=K5 
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Lower bound 

• Lemma 4.1 
   Given a graph H, let I be an independent 

set in H2. Then, | I | ≤ dom(H). 
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Hochbaum-Shmoys Algorithm (1986)  

Input (G, cost: E → Q+) 
1)   Construct G1

2, G2
2,…, Gm

2.  
2)   Compute a maximal independent set,  Ir in 

each graph Gr
2.  

3)  Find the smallest index r such that | Ir | ≤ k, 
say j. 

Output (Ij) 
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Approximation ratio of               
Hochbaum-Shmoys Algorithm-1  

Theorem 4.2  
   Hochbaum-Shmoys Algorithm achieves  an 

approximation factor of 2 for the metric k-
center problem. 
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Main Lemma 

•  Lemma 4.3 
   For j as defined in the algorithm, cost(ej) ≤ OPT. 
 
Proof.  
•  For evry r < j we have that | Ir | > k.  
•  Now by Lemma 4.1 dom(Gr) ≥ | Ir | > k.  
•  So r* > r, and r* ≥ j.  
•  cost(ej) ≤ OPT 
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Proof of Theorem 4.2 

•  A maximal independent set Ij in a graph Gj
2  is 

also a dominating set. 
•  Thus there exist stars in Gj

2 centered on the 
vertices of Ij , covering all vertices. 

•  By the triangle inequality, each edge used in 
constructing these stars has cost at most 
2cost(ej). 

•  Lemma 6.3 implies 2 cost(ej) ≤ 2 OPT. 
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Tight Example (k = 1) 
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Metric weighted k-center 

•  Given a complete undirected graph G = (V, E) with 
nonnegative  edge costs satisfying the triangle 
inequality, a weight function on vertices, w: V → R+       
and a bound W∈ R+. For any set S ⊆ V and vertex v 
define connect(v,S) = min{cost(u,v)|u∈S}. 

•  Find a set S ⊆ V of total weight at most W, so as to 
minimize  maxv{connect(v,S)}. 
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Weight dominating set 

•  Let wdom(G) denote the weight of minimum 
weight dominating set in G. 

•  Calculating  wdom(G) is NP-hard. 
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Parametric pruning 

•  Sort the edges of G in nondecreasing order of cost, 
i.e. cost(e1) ≤ cost(e2) ≤ …≤ cost(em).  

•  Let Gi = (V, Ei), where Ei={e1, e2,…, ei}. 
•  We need to find the smallest index индекс i such 

that wdom(Gi) ≤ W. If i* is this index, then the cost 
of the optimal solution is OPT = cost(ei*). 
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Lightest neighbors 

•  Given a vertex weighted graph G = (V, E) let I be an 
independent set in G2. 

•  For each u∈I, let s(u) denote a lightest neighbor of u 
in G, where u is also considered a neighbor of itself. 

•  Let S = {s(u) | u∈I }. 
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Lower Bound 
•  Lemma 4.4 
    Given graph H. Let I be an independent set in H2. 

Then w(S) ≤ wdom(H). 
Proof.  
•  Let D be a minimum weight dominating set of H.  
•  Then the exists a set of disjoint stars in H, centered on the 

vertices of D and covering all the vertices.  
•  Since each of these stars becomes a clique in H 2, the set I 

can pick at most one vertex from each of them. 
•  Thus each vertex in I has a center of the corresponding star 

available as a neighbor in H. Hence, w(S) ≤ wdom(H). 
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Hochbaum-Shmoys Algorithm-2 

Input (G, cost: E → Q+, w: V → R+ ,W) 
1)   Construct G1

2, G2
2,…, Gm

2.  
2)   Compute a maximal independent set Ir , in each 

graph Gr
2.  

3)   Compute Sr = {sr(u) | u∈Ir } 
4)   Find the minimum index r such that w(Sr) ≤ W,         

say j. 
Output (Sj) 
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Approximation ratio of               
Hochbaum-Shmoys Algorithm-2 

Theorem 4.5  
   Hochbaum-Shmoys Algorithm-2 achieves          

an approximation factor of 3 for the metric 
weighted  k-center problem. 

 



Proof 

•  By Lemma 4.4, cost(ej) is a lower bound on OPT; the 
argument is identical to that in Lemma 4.3.  Since Ij is 
a dominating set in Gj

2, we can cover V with stars of 
Gj

2 centered in vertices of Ij. By the triangle inequality 
these stars use edges of cost at most 2 cost(ej). 

•  Each star center is adjacent to a vertex in Sj, using an 
edge of cost at most cost(ej). Move each of the centers 
to the adjacent vertex in Sj  and redefine the stars. 
Again, by the triangle inequality, the largest edge cost 
used in constructing the final stars is at most cost(ej). 
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Tight Example (W = 3) 

∞ 

2 2 

1+ε 

1 

2 

∞ 

∞ 

1+ε 

1+ε 

1 1 
1 

G 

b a c d 



72 

Tight Example 

∞ 

2 2 

1+ε 

1 

2 

∞ 

∞ 

1+ε 

1+ε 

1 1 
1 

G 2 

b a c d 



73 

Tight Example 
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Tight Example 
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Tight Example 
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Exercise 3.1 
•  Consider the following greedy algorithm for metric TSP.  
•  Find the two closest cities, say vi and vj, and start by building a 

tour on that pair of cities; the tour consists of going from vi  to 
vj  and then back to vi  again. This is the first iteration. In each 
subsequent iteration, we extend the tour on the current subset S 
by including one additional city, until we include the full set of 
cities. In each iteration, we find a pair of cities vi ∈ S and vj∉ S 
for which the cost cij  is minimum; let vk be the city that follows 
vi in the current tour on S. We add vj to S, and insert vj into the 
current tour between vi and vk. 

•  Prove that this greedy algorithm for metric TSP is a 2-
approximation algorithm. 
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Exercise 3.2 

•  Let G=(V,E) be a complete graph with edge costs 
satisfying the triangle inequality, and Vʹ⊆ V be a set 
of even cardinality. Prove or disprove: The cost of a 
minimum cost perfect matching on Vʹ is bounded 
above by the cost of a minimum cost perfect 
matching on V. 
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