
1

Combinatorial Algorithms

Metric problems

Minimum Spanning Tree

•  Given an undirected graph G=(V,E)
with nonnegative edge costs
c: E(G) → R .

•  Find a spanning tree in G of the
minimum weight.

Optimality Conditions

Theorem 3.1
 Let (G ,c) be an instance of the Minimum Spanning Tree

problem, and let T be a spanning tree in G. Then the
following statements are equivalent:

a)  T is optimum.
b)  For every e = {x, y}∈ E(G)\ E(T), no edge on the x-y-path

in T has higher cost than e.
c)  For every e ∈ E(T), e is a minimum cost edge of δ(V(C)),

where C is a connected component of T– e.

(c)⇒(a)
•  (с) Suppose T satisfies (c), for every e ∈ E(T), e is a minimum cost

edge of δ(V(C)), where C is a connected component of T– e.
•  Let T* be an optimum spanning tree with E(T) ∩ E(T*) as large as

possible. We show that T = T*.
•  Suppose there is an edge e = {x,y} ∈ E(T)\ E(T*).
•  Let C be a connected component of T– e.
•  T* + e contains a circuit D. Since e ∈ E(D) ∩ δ(C), at least one more

edge f ≠ e, f ∈ E(D) ∩ δ(C).
•  Observe that (T* + e) – f is a spanning tree.
•  Since T* is optimum ⇒ c(e) ≥ c(f) and (с) ⇒ c(f) ≥ c(e).
•  c(f) = c(e) and (T* + e) – f is another optimum spanning tree.
•  This is a contradiction, because (T* + e) – f has one edge more in

common with T .

Prim’s Algorithm (1957)

Input: A connected undirected graph G,
 weights c: E(G) → R .
Output: Spanning tree T of minimum weight.

1)  Choose v ∈ V(G). T := ({v}, ∅).
2)  While V(T) ≠V(G) do:
 Choose an edge e ∈ δG(V(T)) of minimum

cost. Set T := T +e.

6

Steiner Tree

•  Given an undirected graph G = (V, E) with
nonnegative edge costs and whose vertices are
partitioned into two sets, required and Steiner.

•  Find a minimum cost tree in G that contains all the
required vertices and any subset of the Steiner
vertices.

•  Let R denote the set of required vertices.
•  Set V/R is called the Steiner set.

7

Metric Steiner Tree

•  Given a complete undirected graph G = (V, E) with
nonnegative edge costs such that for any three
vertices u, v and w,
cost(u,v) ≤ cost(u,w) + cost(w,v) and whose
vertices are partitioned into two sets, required and
Steiner.

•  Find a minimum cost tree in G that contains all the
required vertices and any subset of the Steiner
vertices.

8

Factor Preserving Reduction

Theorem 3.2
 There is an approximation factor preserving reduction

from the Steiner tree problem to the metric Steiner
tree problem.

Proof (⇒)
•  We will transform, in polynomial time, an instance I of the

Steiner tree problem, consisting of graph G = (V,E), to an
instance Iʹ of the metric Steiner tree problem as follows.

•  Let Gʹ be the complete undirected graph on vertex set V.
Define the cost of edge (u, v) in Gʹ to be the cost of a shortest
u-v path in G. Gʹ is called the metric closure of G. The
partition of V into required and Steiner vertices in Iʹ is the
same as in I.

•  For any edge (u, v) ∈ E, its cost in Gʹ is no more than its cost
in G. Therefore, the cost of an optimal solution in Iʹ does not
exceed the cost of an optimal solution in I.

9

Proof (⇐)
•  Next, given a Steiner tree Tʹ in Iʹ , we will show how to

obtain, in polynomial time, a Steiner tree T in I of at most the
same cost.

•  The cost of an edge (u, v) in Gʹ corresponds to the cost of a
path in G. Replace each edge of Tʹ by the corresponding path
to obtain a subgraph of G.

•  In this subgraph, all the required vertices are connected.
However, this subgraph may contain cycles. If so, remove
edges to obtain tree T. This completes the approximation
factor preserving reduction.

•  As a consequence of Theorem 3.2, any approximation factor
established for the metric Steiner tree problem carries over to
the entire Steiner tree problem.

10

11

Steiner Tree and Minimum Spanning
Tree (MST)

5 5

5

3

3
3

R is the set of
required vertices.

12

Steiner Tree and Minimum Spanning
Tree (MST)

5 5

5

3

3
3

R is the set of
required vertices.

Spanning tree

Steiner tree

13

Steiner Tree and Minimum Spanning
Tree (MST)

5 5

5

3

3
3

R is the set of
required vertices.

Spanning tree

Steiner tree

14

Lower Bound

Theorem 3.3
 The cost of a minimum spanning tree on R

is within 2OPT.

15

Proof

Steiner tree

16

Proof

Steiner tree Euler tour

17

Proof

Steiner tree Euler tour Spanning tree

18

Algorithm MST

Input (G, R, cost: E → Q+)
1)  Find a minimum spanning tree T on R.
Output (T)

19

Approximation ratio of
 Algorithm MST

Corollary 3.4

 Algorithm MST is a 2-approximation algorithm for
the Steiner problem.

20

Tight Example

2

2

2

1

1

2

() 212
∞→

→
−

=
n

MST

n
n

OPT
OPT

n required vertices

one Steiner vertex

21

Travelling Salesman Problem (TSP)

•  Given a complete undirected graph G = (V, E) with
nonnegative edge costs.

•  Find a minimum cost cycle (Hamiltonian cycle)
visiting every vertex exactly once.

22

Inapproximability

Theorem 3.5
 For any polynomial time computable function
α(n), TSP cannot be approximated within a
factor of α(n), unless P = NP.

23

Sketch of Proof

•  Assume, for a contradiction, that there is a factor α(n)
polynomial time approximation algorithm A for the
general TSP problem.

•  We will show that A can be used for deciding the
Hamiltonian cycle problem (which is NP-complete)
in polynomial time, this implying P = NP.

Central Idea

 Reduce the Hamiltonian cycle problem to TSP,
i.e. transform a graph G on n vertices to an edge-
weighted complete graph Gʹ on n vertices such that

•  If G has a Hamiltonian cycle, then the cost of an
optimal TSP tour in Gʹ is n, and

•  If G does not have a Hamiltonian cycle, then an
optimal TSP tour in Gʹ is of cost greater than nα(n).

24

Reduction

•  Assign a weight of 1 to edges of G, and a weight
of nα(n) to nonedges, to obtain Gʹ .

•  Now, if G has a Hamiltonian cycle, then the
corresponding tour in Gʹ has cost n.

•  If G has no Hamiltonian cycle, any tour in Gʹ must use
an edge of cost nα(n), and therefore has cost > nα(n).

•  When run on Gʹ , algorithm A must return a solution of
cost ≤ nα(n) in the first case, and a solution of
cost > nα(n) in the second case. Thus, it can be used for
deciding whether G contains a Hamiltonian cycle.

25

26

Metric TSP

•  Given a complete undirected graph G = (V, E)
with nonnegative edge costs, such that for any
three vertices u, v and w,
cost(u,v) ≤ cost(u,w) + cost(w,v) .

•  Find a minimum cost Hamiltonian cycle.

27

Algorithm MST-2

Input (G, cost: E → Q+)
1)  Find an MST, T, of G.
2)  Double every edge of the MST to obtain an

Eulerian graph.
3)  Find an Eulerian tour R, on this graph.
4)  Output the tour that visits vertices of G in the order

of their first appearance in R. Let C be this tour.
Output (С)

28

Example

Minimum spaning tree

29

Example

 Minimum spanning tree Eulerian tour

30

Example

Minimum spanтing tree Eulerian tour Hamiltonian cycle

31

Approximation ratio of
 Algorithm MST-2

Theorem 3.6
 Algorithm MST-2 is a factor 2 approximation

algorithm for metric TSP.

Proof

•  It is obvious that cost(T) ≤ OPT. Since R contains
each edge of T twice, cost(T) = 2cost(R). Because of
triangle inequality, after the “short-cutting” step,
cost(C) ≤ cost(R). Combining these inequalities we
get that cost(C) ≤ 2OPT.

32

33

Tight Example

2

2

1

1

1

1

34

Optimal Tour

nOPT =

35

Minimal Spanning Tour

36

Hamiltonian cycle

() 22cost −= nC

222
∞→

→
−

=
nn

n
ρ

37

Christofides-Serdyukov Algorithm

Input (G, cost: E → Q+)
1)  Find an MST of G, say T.
2)  Compute a minimum cost perfect matching, M, on the set of

odd degree vertices of T.
3)  Add M to T and obtain an Eulerian graph H.
4)  Find an Euler tour R of H.
5)  Output tour C that visits vertices of G in order of their first

appearance in R.
Output (С)

38

Example

Minimum spanning tree

39

Example

Minimum spanning tree Matching

40

Example

Minimum spanning tree Matching Hamiltonian cycle

41

Lower bound

Lemma 3.7
 Let V′ ⊆ V, such that |V′| is even, and let M be

a minimum cost perfect matching on V′ . Then
cost(M) ≤ OPT/2.

42

Approximation ratio of
Christofides-Serdyukov Algorithm

Theorem 3.8
 Christofides-Serdyukov Algorithm

achieves an approximation guarantee
of 3/2 for metric TSP.

Proof:

() () () () OPTOPTOPTMTHC
2
3

2
costcostcostcost =+≤+=≤

43

Metric k-center

•  Given a complete undirected graph G = (V, E) with
nonnegative edge costs satisfying the triangle inequality,
and k is a positive integer. For any set S ⊆ V and vertex v
define connect(v,S) = min{cost(u,v)|u∈S} (the cost of the
cheapest edge from v to a vertex in S.)

•  Find a set S ⊆ V, with |S|=k, so as to minimize
maxv{connect(v,S)}.

•  The metric k-center problem is NP-hard.

Parametric pruning (1)
•  If we know the cost of an optimal solution, we may be able to

prune away irrelevant parts of the input and thereby simplify
the search for a good solution.

•  However computing the cost of an optimal solution is
precisely the difficult core of NP-hard NP-optimization
problems.

•  The technique of parametric pruning gets around this difficulty
as follows. A parameter t is chosen, which can be viewed as a
“guess” on the cost of an optimal solution. For each value of t,
the given instance I is pruned by removing parts that will not
be used in any solution of cost > t.

44

Parametric pruning (2)

The algorithm consists of two steps.
•  In the first step, the family of instances I(t) is

used for computing a lower bound on OPT,
say t∗.

•  In the second step, a solution is found in
instance I(α t∗), for a suitable choice of α.

45

46

Instance

10 7 5 3

47

Idea of Algorithm (k=2, OPT ≤ 7)

10 7 5 3

48

Idea of Algorithm (k=2, OPT ≤ 7)

10 7 5 3

49

Idea of Algorithm (k=2, OPT ≤ 7)

10 7 5 3

50

Idea of Algorithm (k=2, OPT ≤ 3)

10 7 5 3

51

Idea of Algorithm (k=2, OPT ≤ 3)

10 7 5 3

52

Parametric pruning

•  Sort the edges of G in nondecreasing order of cost,
i.e. cost(e1) ≤ cost(e2) ≤ …≤ cost(em).

•  Let Gi = (V, Ei), where Ei={e1, e2,…, ei}.
•  For each Gi , we have to check whether there exists

a subset S ⊆ V such that every vertex in V – S is
adjacent to a vertex in S.

53

Dominating Set

•  A dominating set in an undirected graph
G = (V, E) is a subset S ⊆ V such that every
vertex in V – S is adjacent to a vertex in S.

•  Let dom(G) denote the size of minimum
cardinality dominating set in G.

54

Dominating Set

•  A dominating set in an undirected graph
G = (V, E) is a subset S ⊆ V such that every
vertex in V – S is adjacent to a vertex in S.

•  Let dom(G) denote the size of minimum
cardinality dominating set in G.

•  Computing dom(G) is NP-hard.

55

k-Center

•  The k-center problem is equivalent to finding the
smallest index i such that Gi has a dominating set of
size at most k.

•  Gi contains k stars (K1,p) spanning all vertices.

K1,7

56

G2

•  Independent set (stable set) in G = (V, E) is a
subset I ⊆ V of pairwise non-adjacent vertices.

•  Define the square of graph G = (V, E) to be the
graph G2 = (V, E′), containing an edge (u,v)∈ E′
whenever G has a path of length at most 2 between.

G=K1,4 G2=K5

57

Lower bound

• Lemma 4.1
 Given a graph H, let I be an independent

set in H2. Then, | I | ≤ dom(H).

58

Hochbaum-Shmoys Algorithm (1986)

Input (G, cost: E → Q+)
1)  Construct G1

2, G2
2,…, Gm

2.
2)  Compute a maximal independent set, Ir in

each graph Gr
2.

3)  Find the smallest index r such that | Ir | ≤ k,
say j.

Output (Ij)

59

Approximation ratio of
Hochbaum-Shmoys Algorithm-1

Theorem 4.2
 Hochbaum-Shmoys Algorithm achieves an

approximation factor of 2 for the metric k-
center problem.

60

Main Lemma

•  Lemma 4.3
 For j as defined in the algorithm, cost(ej) ≤ OPT.

Proof.
•  For evry r < j we have that | Ir | > k.
•  Now by Lemma 4.1 dom(Gr) ≥ | Ir | > k.
•  So r* > r, and r* ≥ j.
•  cost(ej) ≤ OPT

61

Proof of Theorem 4.2

•  A maximal independent set Ij in a graph Gj
2 is

also a dominating set.
•  Thus there exist stars in Gj

2 centered on the
vertices of Ij , covering all vertices.

•  By the triangle inequality, each edge used in
constructing these stars has cost at most
2cost(ej).

•  Lemma 6.3 implies 2 cost(ej) ≤ 2 OPT.

62

Tight Example (k = 1)

2

2

2

1

1

2

63

Metric weighted k-center

•  Given a complete undirected graph G = (V, E) with
nonnegative edge costs satisfying the triangle
inequality, a weight function on vertices, w: V → R+
and a bound W∈ R+. For any set S ⊆ V and vertex v
define connect(v,S) = min{cost(u,v)|u∈S}.

•  Find a set S ⊆ V of total weight at most W, so as to
minimize maxv{connect(v,S)}.

64

Weight dominating set

•  Let wdom(G) denote the weight of minimum
weight dominating set in G.

•  Calculating wdom(G) is NP-hard.

65

Parametric pruning

•  Sort the edges of G in nondecreasing order of cost,
i.e. cost(e1) ≤ cost(e2) ≤ …≤ cost(em).

•  Let Gi = (V, Ei), where Ei={e1, e2,…, ei}.
•  We need to find the smallest index индекс i such

that wdom(Gi) ≤ W. If i* is this index, then the cost
of the optimal solution is OPT = cost(ei*).

66

Lightest neighbors

•  Given a vertex weighted graph G = (V, E) let I be an
independent set in G2.

•  For each u∈I, let s(u) denote a lightest neighbor of u
in G, where u is also considered a neighbor of itself.

•  Let S = {s(u) | u∈I }.

67

Lower Bound
•  Lemma 4.4
 Given graph H. Let I be an independent set in H2.

Then w(S) ≤ wdom(H).
Proof.
•  Let D be a minimum weight dominating set of H.
•  Then the exists a set of disjoint stars in H, centered on the

vertices of D and covering all the vertices.
•  Since each of these stars becomes a clique in H 2, the set I

can pick at most one vertex from each of them.
•  Thus each vertex in I has a center of the corresponding star

available as a neighbor in H. Hence, w(S) ≤ wdom(H).

68

Hochbaum-Shmoys Algorithm-2

Input (G, cost: E → Q+, w: V → R+ ,W)
1)  Construct G1

2, G2
2,…, Gm

2.
2)  Compute a maximal independent set Ir , in each

graph Gr
2.

3)  Compute Sr = {sr(u) | u∈Ir }
4)  Find the minimum index r such that w(Sr) ≤ W,

say j.
Output (Sj)

69

Approximation ratio of
Hochbaum-Shmoys Algorithm-2

Theorem 4.5
 Hochbaum-Shmoys Algorithm-2 achieves

an approximation factor of 3 for the metric
weighted k-center problem.

Proof

•  By Lemma 4.4, cost(ej) is a lower bound on OPT; the
argument is identical to that in Lemma 4.3. Since Ij is
a dominating set in Gj

2, we can cover V with stars of
Gj

2 centered in vertices of Ij. By the triangle inequality
these stars use edges of cost at most 2 cost(ej).

•  Each star center is adjacent to a vertex in Sj, using an
edge of cost at most cost(ej). Move each of the centers
to the adjacent vertex in Sj and redefine the stars.
Again, by the triangle inequality, the largest edge cost
used in constructing the final stars is at most cost(ej).

70

71

Tight Example (W = 3)

∞

2 2

1+ε

1

2

∞

∞

1+ε

1+ε

1 1
1

G

b a c d

72

Tight Example

∞

2 2

1+ε

1

2

∞

∞

1+ε

1+ε

1 1
1

G 2

b a c d

73

Tight Example

∞

2 2

1+ε

1

2

∞

∞

1+ε

1+ε

1 1
1

G 2

In+3={b}

b a c d

74

Tight Example

∞

2 2

1+ε

1

2

∞

∞

1+ε

1+ε

1 1
1

G 2

In+3={b}

b a c d

Sn+3={a}

75

Tight Example

∞

2 2

1+ε

1

2

∞

∞

1+ε

1+ε

1 1
1

G 2

In+3={b}

b a c d

Sn+3={a} OPT={a, c}

3
1
3

0→
→

+
=

εε
ρ

Exercise 3.1
•  Consider the following greedy algorithm for metric TSP.
•  Find the two closest cities, say vi and vj, and start by building a

tour on that pair of cities; the tour consists of going from vi to
vj and then back to vi again. This is the first iteration. In each
subsequent iteration, we extend the tour on the current subset S
by including one additional city, until we include the full set of
cities. In each iteration, we find a pair of cities vi ∈ S and vj∉ S
for which the cost cij is minimum; let vk be the city that follows
vi in the current tour on S. We add vj to S, and insert vj into the
current tour between vi and vk.

•  Prove that this greedy algorithm for metric TSP is a 2-
approximation algorithm.

76

Exercise 3.2

•  Let G=(V,E) be a complete graph with edge costs
satisfying the triangle inequality, and Vʹ⊆ V be a set
of even cardinality. Prove or disprove: The cost of a
minimum cost perfect matching on Vʹ is bounded
above by the cost of a minimum cost perfect
matching on V.

77

