
1

Combinatorial Algorithms

Local search

2

Shortest superstring

•  Given a finite alphabet Σ, and a set of n strings
S = {s1,…,sn} ⊆ Σ+.

•  Find a shortest string s that contains each si as a
substring.

•  Without lost of generality, we may assume that no
string si is a substring of another string sj, i ≠ j.

Overlap, prefix

•  We begin by developing a good lower bound on OPT.
•  Let us assume that s1, s2,…, sn are numbered in order

of leftmost occurrence in the shortest superstring, s.
•  Let overlap(si, sj) denote the maximum overlap

between si and sj i.e., the longest suffix of si that is a
prefix of sj.

•  Let prefix(si, sj) be the prefix of si obtained removing
its overlap with sj.

3

4

Prefix

s
s1

sn–1

s2

pref(s1, s2)

sn
s1

pref(sn–1, sn) pref(sn, s1) over(sn, s1)

() ()
() ().,overlap,prefix

,prefix,prefixOPT

11

3221

ssss
ssss

nn ++

+++= !

5

•  Define the prefix graph of S as the directed graph
Gpref on vertex set V={1,…,n} that contains an edge
i → j of weight prefix(si,sj) for each i, j.

•  | prefix(s1,s2)| + | prefix(s2,s3)| + …+ | prefix(sn,s1)|
represents the weight of the tour 1→2→…→n→1.

•  Hence the minimum weight of a travelling salesman
tour of the prefix graph gives a lower bound on OPT.

•  Unfortunately, this lower bound is not very useful.
TSP is NP-hard.

() () () ()113221 ,overlap,prefix ,prefix,prefixOPT ssssssss nn ++++= !

6

Lower Bound
•  We will use the minimum weight of a cycle cover of the prefix

graph.
•  A cycle cover is a collection of disjoint cycles covering all

vertices.
•  A Hamiltonian cycle is a cycle cover.
•  We get that the minimum weight of a cycle cover lower-

bounds OPT.
•  Unlike minimum TSP, a minimum weight cycle cover can be

computed in polynomial time.

7

Cycle → prefix
•  If c = (i1→ i2→ … →il → i1) is a cycle in the prefix graph, let
α(с) = prefix(si1

,si2
) ○…○ prefix(sil-1

,sil
) ○ prefix(sil

,si1
).

•  Let w(с) be the weight of с, w(с) = |α(с)|.
•  Notice that each string si1

,si2
,…, sil

 is a substring of (α(с))∞.
•  Next, let σ(с) = α(с) ○ si1

.
•  Then σ(с) is a superstring of si1

,si2
,…, sil

.
•  In the above construction, we “opened” cycle c at an arbitrary

string si1
. For the rest of the algorithm, we will call si1

the
representative string for с.

8

Example

 abcdeabcdeabcde
 bcdeabcdeabcdea
 cdeabcdeabcdeabc
 deabcdeabcdeabcd
 abcdeabcdeabcde

α(с) = abcde , |α(с)|=5, (α(с))2 = abcdeabcde ,
 bcdeabcdeabcdea is a substring of (α(с))4.

σ(с) = α(с)○si1

= abcdeabcdeabcdeabcde

9

Algorithm Superstring

Input (S = {s1,…,sn })
1)  Construct the prefix graph Gpref corresponding to

strings in S.
2)  Find a minimum weight cycle cover of Gpref ,

С = {c1,…,ck}
Output (σ(c1)○…○ σ(ck)).

10

Remark

•  Clearly, the output σ(c1)○…○ σ(ck) is a
superstring of the strings in S.

•  Notice that if in each of the cycles we can find
a representative string of length at most the
weight of the cycle, then the string output is
within 2OPT.

•  Thus, the hard case is when all strings of some
cycle c are long.

11

Example

 abcde|abcde|abcde
 bcde|abcde|abcde|a
 cde|abcde|abcde|abc
 de|abcde|abcde|abcd
 abcde|abcde|abcde

α(с) = abcde , |α(с)|=5, (α(с))2 = abcdeabcde ,
 bcdeabcdeabcdea is a substring of (α(с))4.

σ(с) = α(с)○si1

= abcde|abcde|abcde|abcde

12

New lower bound

•  Lemma 4.6
 If each string in S′ ⊆ S is a substring of t∞ for a

string t, then there is a cycle of weight at most |
t| in the prefix graph covering all the vertices
corresponding to string in S′ .

13

Proof of Lemma 4.6

•  For each string in S′, locate the starting point
of its first occurrence in t∞ .

•  All these starting points will be distinct and
will lie in the first copy of t.

•  Consider the cycle in the prefix graph visiting
the corresponding vertices in this order.

•  Clearly, the weight of this cycle is at most |t|.

14

Lower bound on overlap

•  Lemma 4.7
 Let c and c′ be two cycles in C (cyclic cover of

the minimal weight), and let r, r′ be
representative strings from these cycles. Then

 |overlap(r, r′)| < w(c) + w(c′).

15

|overlap(r, r′)| ≥ w(c) + w(c′)

r

r'

overlap(r, r′)

α α

α' α' α'

α○α' = α'○α

α is a prefix of length w(c) of overlap (r, r′).
α′ is a prefix of length w(c′) of overlap (r, r′).

Since |overlap(r, r′)| ≥ w(c) + w(c′),
it is follows that α and α′ commute.

16

|overlap(r, r′)| ≥ w(c) + w(c′).

r

r'

overlap(r, r′)

α α

α' α' α'

α○α' = α'○α

α is a prefix of length w(c) of overlap (r, r′).
α′ is a prefix of length w(c′) of overlap (r, r′).

(α)∞ = (α')∞ For any N > 0, the prefix of length N
 of (α)∞ is the same as that of (α')∞.

Proof of Lemma 4.7

•  Now, by Lemma 4.6, there is a cycle of weight
at most w(c) in the prefix graph covering all
strings in c and cʹ, contradicting the fact that
C is a minimum weight cycle cover.

•  So, we have |overlap(r, r′)| < w(c) + w(c′).

17

18

Approximation ratio of
Algorithm Superstring

Theorem 4.8
 Algorithm Superstring achieves

an approximation factor of 4 for
the shortest superstring problem.

19

Algorithm Superstring

Input (S = {s1,…,sn })
1)  Construct the prefix graph Gpref corresponding to

strings in S.
2)  Find a minimum weight cycle cover of Gpref ,

С = {c1,…,ck}
Output (σ(c1)○…○ σ(ck)).

20

Proof

() () OPT
1

≤=∑
=

k

i
icwCw () () ∑∑

==

+==
k

i
i

k

i
i rCwcA

11
σ

ri is a representative string for сi.

,...,...,,...,...:* 21 krrrstring

()

()∑∑

∑∑

==

−

=
+

=

−≥

≥−≥

k

i
i

k

i
i

L

k

i
ii

k

i
i

cwr

rrr

11

7.4

1

1
1

1

2

,overlapOPT OPT3
1

≤∑
=

k

i
ir

OPT4≤A

Local Search

•  A local search algorithm starts with an arbitrary
feasible solution to the problem, and then check if
some small, local change to the solution results in
an improved objective function.

•  If so, the change is made.
•  When no further change can be made, we have a

locally optimal solution, and it is sometimes
possible to prove that such locally optimal solutions
have value close to that of optimal solution.

21

22

Uncapacitated Facility Location Problem

•  Given a set of clients D and a set of facilities F, with a facility
cost fi for each facility i ∈ F, and an assignment cost cij for
each facility i ∈ F and each client j ∈ D.

•  Find a subset H ⊆ F and an assignment ϕ: D → H so as to
minimize the total cost of the open facilities plus the
assignment costs.

min)(→+∑∑
∈∈ Dj

jj
Hi

i cf ϕ

 Metric UFLP

•  We assume that the set of clients and potential facility
locations are in a metric space.

•  That is, for each i, j ∈ F ⋃D, we have a value cij, and
for each i, j, k ∈ F ⋃D, we have that ci,k ≤ ci,j + cj,k .

•  Note that whenever we consider a distance between
i∈F and j∈D, we will maintain the convention that it
is referred to as cij.

23

An assignment of clients

•  Let the set of open facilities be given.
•  Assign each client to its nearest open facility.
•  We obtain an optimal assignment for the given set of

open facilities.

24

*)(

*

*

*

H
Dj

jjH

H
Hi

iH

YYcY

XXfX

==

==

∑

∑

∈

∈

ϕ

Neighborhood N(H)

H, ϕH:
1.  Open one additional facility H := H⋃{i}, i ∈F \ H,
2.  Close one facility that is currently open H := H \ {i}, i ∈ H.
3.  Open a new facility and close an open facility

H := H ⋃{i}\{j}, i ∈ F \ H, j ∈ H.
 Update the current assignment of clients to open facilities.

The algorithm will always maintain that each client is
assigned to its nearest open facility.

25

26

Local Search Algorithm

Input (G, f: F → Q+ , c: E → Q+)
1)  Choose an arbitrary current solution H.
2)  While there exists a solution H′∈N(H)

such that XH + YH > XH′ + YH′ do H:=H′.
Output (H, ϕH)

Locally optimal solution

•  We want to analyze the quality of the solution
found by the Local Search Algorithm.

•  A solution obtained by this algorithm is said to
be a locally optimal solution.

•  We will focus not on an algorithmic statement
but instead on proving that any locally optimal
solution is near-optimal.

27

28

Total assignment cost

Lemma 5.1
 Let H and ϕH be a locally optimal solution.

Then YH ≤ X* + Y* = OPT.
.

Proof of Lemma 5.1(1)

•  Since H is a locally optimal solution, we know that
adding any facility to H does not improve the solution
(with respect to the best possible updated assignment).

•  In this way we will focus on a few potential changes
to the current solution, and analyze their change in
cost.

•  Note that we consider the changes only for the sake of
analysis, and we do not actually change the solution.

29

30

Proof of Lemma 5.1(2)
 Case 1. Consider some facility i* ∈ H*− H.
 Suppose we open the additional facility i*, and reassign to that

facility all of the clients that were assigned to i* in the optimal
solution: that is we reassign all clients j such that ϕ*(j) = i*.
Since our current solution H and ϕ(H) is locally optimal, we
know that the additional facility cost of i* is at least as much as
the improvement in cost that would result from reassigning each
client optimally to its nearest open facility; hence, fi* must also
be more than the improvement resulting from our specific
reassignment; that is,

 () ()()
()
∑

=

−≥
**:

**
ijj

jjjji ccf
ϕ

ϕϕ

Proof of Lemma 5.1(3)
 Case 2. Consider a facility i* ∈ H* ∩ H.
 The local optimality of H and ϕ(H) implies that each client j is

currently assigned to its closest open facility, and so each term
in the summation below must be nonpositive,

•  Summing over all facilities in the optimal solution, we obtain

31

() ()()
()

.0 *
**:

* i
ijj

jjjj fcc ≤≤−∑
=ϕ

ϕϕ

() ()()
()

() ()().*
** **:

*
**
* ∑∑ ∑∑

∈∈ =∈

−=−≥
Dj

jjjj
Hi ijj

jjjj
Hi

i ccccf ϕϕ
ϕ

ϕϕ

** YYX H −≥

Total facility cost
•  The argument to show that a local optimum has a small total

facility cost is somewhat more complicated. As in the proof of
the previous lemma, we will consider a set of changes to the
solution H, each of which will generate a corresponding
inequality.

•  For any move that deletes a facility i ∈ H, we must reassign
each of the clients that are assigned to i. If we were simply
deleting i, then each such client must be reassigned to a facility
in H - {i}.

32

33

Reassignment of client j to facility i′ = γ(ϕ*(j)).

H

H* γ
i*=φ*(j)

j

i=φ(j) i′=γ(φ*(j))

γ(φ*(j)) is the facility in H closest to φ*(j).

34

Cost of Reassigning

 Lemma 5.2
 Consider any client j for which φ(j) = i is not

equal to i′ = γ(φ*(j)). Then the increase in cost
of reassigning client j to i′ (instead of to i) is at
most 2cj,φ*(j).

35

Proof of Lemma 5.2

H

H* γ
i*=φ*(j)

j

i=φ(j) i′=γ(φ*(j))

Consider a client j currently being served by i,
where its facility in H*, i*= φ*(j), is such that
i*’s nearest facility in H, γ(i*), is not the facility i.
Let i′=γ(φ*(j)).

36

Proof of Lemma 5.2

H

H* γ
i*=φ*(j)

j

i=φ(j) i′=γ(φ*(j))

***** 2 jijijiiijiiiij ccccccc +≤+≤+≤ ʹʹ

** iiii cc ≤ʹ ** jijiii ccc +≤

*2 jijiij ccc ≤−ʹ

37

Cost of Reassigning

 Lemma 5.2
 Consider any client j for which φ(j) = i is not

equal to i′ = γ(φ*(j)). Then the increase in cost
of reassigning client j to i′ (instead of to i) is at
most 2cj,φ*(j).

 We will apply this lemma both when i is

deleted and i is swapped out of the solution.

38

An upper bound on XH

Lemma 5.3
 Let H and ϕH be a locally optimal solution.

Then XH ≤ X* + 2Y*.
.

Proof of Lemma 5.3(2)
•  In our proof, we will give a set of moves that either deletes or

swaps out every facility in H (once each) and either adds or
swaps in every facility in H* (again once each).

•  Since the change in cost for each of these local moves in
nonnegative, this will allow us to bound the facility cost H in
terms of the facility H* and additional terms that we will
bound by twice the optimal assignment cost.

39

40

Proof of Lemma 5.3(1)
•  Suppose that we want to delete a facility i ∈ H.
•  Each client j, that is currently served by i must be reassigned to

one of the remaining open facilities in H−{i}.
•  We shall call a facility i safe, if for every facility i* ∈ H*, the

facility γ(i*) ∈ H closest to i* is different from i.
•  For any safe facility i, we can consider the local move of

closing facility i, since we can safely reassign each of its client
j to γ(φ*(j)), and apply Lemma 5.2 to bound the resulting
increase in the assignment cost for reassigned client j by 2cj,φ*(j).

41

Bound on “safe” facilities

•  Since H is locally optimal, we know that this local
change cannot decrease the overall cost, and hence the
savings obtained by closing the safe facility i must be
no more than the increase in assignment costs incurred
by reassigning all of the clients assigned to i. That is,

()
()

,2
:

*∑
=

≤
ijj

jji cf
ϕ

ϕ

()
()

.02
:

* ≥+− ∑
=ijj

jji cf
ϕ

ϕ

42

Unsafe facilities

•  Consider a facility i that is not safe.
•  Let Ri ⊆ H* be the (nonempty) set of facilities i*∈ H*

such that γ(i*) = i, i.e. Ri = {i*∈ H*|γ(i*) = i}.
•  Among those facilities in Ri, let i′ be the one closest to i.
•  We will derive one inequality for each member of Ri,

based on
–  an add move for each member of Ri −{i′},
–  one swap move closing the facility at i, while opening a

facility at i′.

43

Unsafe facilities

i1

H

H*

i1′

i0 = i0′

− unsafe facilities
Each facility i*∈H* occurs in exactly one corresponding set R.

R

44

Add move for i*∈ Ri −{i′}

•  We open a facility at i*, and for each client j that is
assigned to i in the locally optimal solution (ϕ(j) = i) and
is assigned to i* in the optimal solution (ϕ*(j) = i*), we
reassign client j to i*.

•  The change in cost caused by this move must also be
nonnegative, and we derive the inequality

() ()()
() ()

.0
**&:

,*,* ≥−+ ∑
== ijijj

jjjji ccf
ϕϕ

ϕϕ

45

Swap move that closes the facility at i
but opens a facility i′ (i ≠ i′).

•  To make this swap move precise, we will also specify
a reassignment of the clients assigned to i by ϕ. Each
client j such that ϕ(j) = i
–  for which ϕ*(j) ∉ R is reassigned to γ(ϕ*(j)),
–  for which ϕ*(j) ∈ R is reassigned to i′.

46

Swap i to i′, i ≠ i′.

i
H

H*

i′
R

47

Swap i to i′, i ≠ i′.

H

H*

i′
R

48

Swap i to i′, i ≠ i′.

H

H*

i′
R

49

Inequalities based on the swap move

•  Close the facility at i and open a facility i′: fi′−fi .
•  Consider client j such that ϕ(j) = i.

–  If ϕ*(j) ∉ R then j is reassigned to γ(ϕ*(j)):
 Lemma 5.2 ⇒ the increase in the cost ≤ 2cj,φ*(j).
–  If ϕ*(j) ∈ R then j is reassigned to i′. It follows that the

change in the assignment cost is exactly cji′− cji.
 Combining all of these pieces, we obtain an upper bound on

the total change in cost of this swap move. Again, we know
that the true change in cost is nonnegative, and hence

()
() ()

()
() ()

02
&:&:

≥−++− ∑∑
∈=
ʹ

∉=
ʹ

Rjijj
jiij

Rjijj
jjii cccff

ϕϕϕϕ
ϕ

How about if i = i′

50

()
() ()

()
() ()

02
&:&:

≥−++− ∑∑
∈=
ʹ

∉=
ʹ

Rjijj
jiij

Rjijj
jjii cccff

ϕϕϕϕ
ϕ

Suppose that i = i′; the above inequality reduces to
the essentially trivial inequality that

()
() ()

02
*&:

≥∑
∉= Rjijj

jjc
ϕϕ

ϕ

51

Net effect

()
() ()

()
() ()

() ()()
() () { }

0

2

*&:
*

*&:

*&:
*

*
*

≥−+−

+++−

∑∑

∑∑

ʹ−∈=∈=
ʹ

∉=∈

iRjijj
jjjj

Rjijj
jiij

Rjijj
jj

Ri
ii

cccc

cff

ϕϕ
ϕϕ

ϕϕ

ϕϕ
ϕ

() ()()
() ()

{ }iRiccf
ijijj

jjjji ʹ−∈≥−+ ∑
==

* 0
**&:

,*,*
ϕϕ

ϕϕ

()
() ()

()
() ()

02
&:&:

≥−++− ∑∑
∈=
ʹ

∉=
ʹ

Rjijj
jiij

Rjijj
jjii cccff

ϕϕϕϕ
ϕ

For unsafe facility i, let us consider the net effect of combining
 all of these inequalities. Adding these, we get that

52

Simplification

 We will simplify the above expression by combining the final
two summations, and by showing that for each client j that
appears in either summation, we can upper bound its total
contribution by 2cjφ*(j).

•  φ(j)=i & φ*(j)=i′: cji′− cji ≤ 2cji′ = 2cjφ*(j).
•  φ(j)=i & φ*(j) ∈ R − {i′}: cji′ + cjφ*(j) − 2cji ≤

cii′ + cjφ*(j) − cji ≤ ciφ*(j)+ cjφ*(j) − cji ≤ 2cjφ*(j).

()
() ()

()
() ()

() ()()
() () { }

0

2

*&:
*

*&:

*&:
*

*
*

≥−+−

+++−

∑∑

∑∑

ʹ−∈=∈=
ʹ

∉=∈

iRjijj
jjjj

Rjijj
jiij

Rjijj
jj

Ri
ii

cccc

cff

ϕϕ
ϕϕ

ϕϕ

ϕϕ
ϕ

()
()

02
:

*
*

* ≥++− ∑∑
=∈ ijj

jj
Ri

ii cff
ϕ

ϕ

53

Proof of Lemma 5.3(2)

•  Safe facility i:

•  Unsafe facility i: ()
()

02
:

*
*

* ≥++− ∑∑
=∈ ijj

jj
Ri

ii cff
ϕ

ϕ

()
()

02
:

* ≥+− ∑
=ijj

jji cf
ϕ

ϕ

() 02 *
**
* ≥+− ∑∑∑

∈∈∈ Dj
jj

Hi
i

Hi
i cff ϕ

0*2* ≥+− YXX H

Total cost of a locally optimal solution

•  Theorem 5.4
 Let H and ϕH be a locally optimal solution for the

uncapacitated facility location problem. Then this
solution has a total cost that is at most 3OPT.

•  Proof.
•  YH ≤ X* + Y* (Lemma 5.1)
•  XH ≤ X* + 2Y* (Lemma 5.3)
•  XH + YH ≤ 2X* + 3Y* ≤ 3OPT.

54

Exercise
•  Consider the following algorithm:
Input (G, f: F → Q+ , c: E → Q+)
1) Increase the cost of each facility by a factor 2.
1)  Choose an arbitrary current solution H.
2)  While there exists a solution H′∈N(H)

such that XH + YH > XH′ + YH′ do H:=H′.
Output (H, ϕH)
•  Find an upper bound on the cost a solution obtained by the

above algorithm.

55

