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Combinatorial Algorithms 

Local search 
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Shortest superstring 

•  Given  a finite alphabet Σ, and a set of n strings     
S = {s1,…,sn} ⊆ Σ+. 

•  Find a shortest string s that contains each si as a 
substring. 

•  Without lost of generality, we may assume that no 
string si is a substring of another string sj, i ≠ j.  



Overlap, prefix 

•  We begin by developing a good lower bound on OPT. 
•  Let us assume that s1, s2,…, sn are numbered in order 

of leftmost occurrence in the shortest superstring, s. 
•  Let overlap(si, sj) denote the maximum overlap 

between si and sj  i.e., the longest suffix of si  that is a 
prefix of sj. 

•  Let prefix(si, sj) be the prefix of si obtained removing 
its overlap with sj. 
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•  Define the prefix graph of S as the directed graph 
Gpref  on vertex set V={1,…,n} that contains an edge  
i → j of weight prefix(si,sj) for each i, j.  

•  | prefix(s1,s2)| + | prefix(s2,s3)| + …+ | prefix(sn,s1)| 
represents the weight of the tour 1→2→…→n→1. 

•  Hence the minimum weight of a travelling salesman 
tour of the prefix graph gives a lower bound on OPT. 

•  Unfortunately, this lower bound is not very useful. 
TSP is NP-hard. 

( ) ( ) ( ) ( )113221 ,overlap,prefix ,prefix,prefixOPT ssssssss nn ++++= !
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Lower Bound 
•  We will use the minimum weight of a cycle cover of the prefix 

graph. 
•  A cycle cover is a collection of disjoint cycles covering all 

vertices.  
•  A Hamiltonian cycle is a cycle cover.  
•  We get that the minimum weight of a cycle cover lower-

bounds OPT. 
•  Unlike minimum TSP, a minimum weight cycle cover can be 

computed in polynomial time.  
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Cycle → prefix 
•  If c = (i1→ i2→ … →il → i1) is a cycle in the prefix graph, let 
α(с) = prefix(si1

,si2
) ○…○ prefix(sil-1

,sil
) ○ prefix(sil

,si1
).  

•  Let w(с) be the weight of с, w(с) = |α(с)|. 
•  Notice that each string si1

,si2
,…, sil 

 is a substring of (α(с))∞. 
•  Next, let σ(с) = α(с) ○ si1

. 
•  Then σ(с) is a superstring of si1

,si2
,…, sil 

. 
•  In the above construction, we “opened” cycle c at an arbitrary 

string si1 
. For the rest of the algorithm, we will call si1  

the 
representative string for с. 
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Example 
    
     abcdeabcdeabcde                               
       bcdeabcdeabcdea 
         cdeabcdeabcdeabc  
           deabcdeabcdeabcd 
               abcdeabcdeabcde 
 
α(с) = abcde , |α(с)|=5, (α(с))2 = abcdeabcde ,  
 bcdeabcdeabcdea is a substring of (α(с))4. 
   
σ(с) = α(с)○si1 

= abcdeabcdeabcdeabcde 
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Algorithm Superstring  

Input (S = {s1,…,sn }) 
1)   Construct the prefix graph Gpref corresponding to 

strings in S.  
2)   Find a minimum weight cycle cover of Gpref ,        

С = {c1,…,ck} 
Output (σ(c1)○…○ σ(ck)). 
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Remark 

•  Clearly, the output σ(c1)○…○ σ(ck) is a 
superstring of the strings in S. 

•  Notice that if in each of the cycles we can find 
a representative string of length at most the 
weight of the cycle, then the string output is 
within 2OPT. 

•  Thus, the hard case is when all strings of some 
cycle c are long. 
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Example 
    
     abcde|abcde|abcde                               
       bcde|abcde|abcde|a 
         cde|abcde|abcde|abc  
           de|abcde|abcde|abcd 
                abcde|abcde|abcde 
 
α(с) = abcde , |α(с)|=5, (α(с))2 = abcdeabcde ,  
 bcdeabcdeabcdea is a substring of (α(с))4. 
   
σ(с) = α(с)○si1 

= abcde|abcde|abcde|abcde 
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New lower bound 

•  Lemma 4.6 
    If each string in S′ ⊆ S is a substring of t∞ for a 

string t, then there is a cycle of weight at most |
t| in the prefix graph covering all the vertices 
corresponding to string in S′ . 
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Proof of Lemma 4.6 

•  For each string in S′, locate the starting point 
of its first occurrence in t∞ . 

•  All these starting points will be distinct and 
will lie in the first copy of t. 

•  Consider the cycle in the prefix graph visiting 
the corresponding vertices in this order. 

•  Clearly, the weight of this cycle is at most |t|. 
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Lower bound on overlap 

•  Lemma 4.7 
   Let c and c′ be two cycles in C (cyclic cover of 

the minimal weight), and let r, r′ be 
representative strings from these cycles. Then  

          |overlap(r, r′)| < w(c) + w(c′). 
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|overlap(r, r′)| ≥ w(c) + w(c′) 

r 

r' 

overlap(r, r′) 

α α 

α' α' α' 

α○α' = α'○α 

α is a prefix of length w(c) of overlap (r, r′).  
α′ is a prefix of length w(c′) of overlap (r, r′). 

Since |overlap(r, r′)| ≥ w(c) + w(c′),  
it is follows that α and α′ commute.  
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|overlap(r, r′)| ≥ w(c) + w(c′). 

r 

r' 

overlap(r, r′) 

α α 

α' α' α' 

α○α' = α'○α 

α is a prefix of length w(c) of overlap (r, r′).  
α′ is a prefix of length w(c′) of overlap (r, r′). 

(α)∞ = (α')∞ For any N > 0, the prefix of length N 
 of (α)∞ is the same as that of (α')∞.  



Proof of Lemma 4.7 

•  Now, by Lemma 4.6, there is a cycle of weight 
at most w(c) in the prefix graph covering all 
strings in c and cʹ, contradicting the fact that   
C is a minimum weight cycle cover. 

•  So, we have |overlap(r, r′)| < w(c) + w(c′). 
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Approximation ratio of 
Algorithm Superstring  

Theorem 4.8  
   Algorithm Superstring achieves                                

an approximation factor of 4 for                                
the shortest superstring problem. 
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Algorithm Superstring  

Input (S = {s1,…,sn }) 
1)   Construct the prefix graph Gpref corresponding to 

strings in S.  
2)   Find a minimum weight cycle cover of Gpref ,        

С = {c1,…,ck} 
Output (σ(c1)○…○ σ(ck)). 
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Local Search 

•  A local search algorithm starts with an arbitrary 
feasible solution to the problem, and then check if 
some small, local change to the solution results in 
an improved objective function.  

•  If so, the change is made. 
•  When no further change can be made, we have a 

locally optimal solution,  and it is sometimes 
possible to prove that such locally optimal solutions 
have value close to that of optimal solution.  
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Uncapacitated Facility Location Problem 

•  Given a set of clients D and a set of facilities F, with a facility 
cost fi for each facility i ∈ F, and an assignment cost cij for 
each facility i ∈ F and each client j ∈ D.  

•  Find  a subset H ⊆ F and an assignment ϕ: D → H so as to 
minimize the total cost of the open facilities plus the 
assignment costs. 

min)( →+∑∑
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jj
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 Metric UFLP 

•  We assume that the set of clients and potential facility 
locations are in a metric space. 

•  That is, for each i, j ∈ F ⋃D, we have a value cij, and 
for each i, j, k ∈ F ⋃D, we have that ci,k ≤ ci,j + cj,k . 

•  Note that whenever we consider a distance  between 
i∈F and j∈D, we will maintain the convention that it 
is referred to as cij. 
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An assignment of clients 

•  Let the set of open facilities be given.  
•  Assign each client to its nearest open facility. 
•  We obtain an optimal assignment for the given set of 

open facilities. 
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Neighborhood N(H) 

H, ϕH: 
1.  Open one additional facility H := H⋃{i}, i ∈F \ H,  
2.  Close one facility that is currently open H := H \ {i}, i ∈ H. 
3.  Open a new facility and close an open facility                                                                                                                    

H := H ⋃{i}\{j}, i ∈ F \ H, j ∈ H. 
      Update the current assignment of clients to open facilities.  

The algorithm will always maintain that each client is 
assigned to its nearest open facility. 

25 



26 

Local Search Algorithm 

Input (G, f: F → Q+ , c: E → Q+) 
1)   Choose an arbitrary current solution H.  
2)   While there exists a solution H′∈N(H)                                    

such that XH + YH > XH′ + YH′  do  H:=H′.  
Output (H, ϕH) 



Locally optimal solution  

•  We want to analyze the quality of the solution 
found by the Local Search Algorithm. 

•  A solution obtained by this algorithm is said to 
be a locally optimal solution. 

•  We will focus not on an algorithmic statement 
but instead on proving that any locally optimal 
solution is near-optimal. 
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Total assignment cost  

Lemma 5.1  
   Let H and ϕH be a locally optimal solution. 

Then YH ≤ X* + Y* = OPT. 
. 
 
 



Proof of Lemma 5.1(1) 

•  Since H is a locally optimal solution, we know that 
adding any facility to H does not improve the solution 
(with respect to the best possible updated assignment). 

•  In this way we will focus on a few potential changes 
to the current solution, and analyze their change in 
cost. 

•  Note that we consider the changes only for the sake of 
analysis, and we do not actually change the solution. 
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Proof of Lemma 5.1(2)  
     Case 1. Consider some facility i* ∈ H*− H.  
     Suppose we open the additional facility i*, and reassign to that 

facility all of the clients that were assigned to i* in the optimal 
solution: that is we reassign all clients j such that ϕ*(j) = i*. 
Since our current solution H and ϕ(H) is locally optimal, we 
know that the additional facility cost of i* is at least as much as 
the improvement in cost that would result from reassigning each 
client optimally to its nearest open facility; hence, fi* must also  
be more than the improvement resulting from our specific 
reassignment; that is, 
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Proof of Lemma 5.1(3)  
    Case 2. Consider a facility i* ∈ H* ∩ H.  
    The local optimality of H and ϕ(H) implies that each client j is 

currently assigned to its closest open facility, and so each term 
in the summation below must be nonpositive,   

•  Summing over all facilities in the optimal solution, we obtain 
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Total facility cost 
•  The argument to show that a local optimum has a small total 

facility cost is somewhat more complicated. As in the proof of 
the previous lemma, we will consider a set of changes to the 
solution H, each of which will generate a corresponding 
inequality.  

•  For any move that deletes a facility i ∈ H, we must reassign 
each of the clients that are assigned to i. If we were simply 
deleting i, then each such client must be reassigned to a facility 
in H - {i}. 
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Reassignment of client j to facility i′ = γ(ϕ*(j)). 

H 

H* γ 
i*=φ*(j) 

j 

i=φ(j) i′=γ(φ*(j)) 

γ(φ*(j)) is the facility in H closest to φ*(j). 
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Cost of Reassigning 

 Lemma 5.2 
    Consider any client j for which φ(j) = i is not 

equal to i′ = γ(φ*(j)). Then the increase in cost 
of reassigning client j to i′ (instead of to i) is at 
most 2cj,φ*(j). 
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Proof of Lemma 5.2 

H 

H* γ 
i*=φ*(j) 

j 

i=φ(j) i′=γ(φ*(j)) 

Consider a client j currently being served by i,  
where its facility in H*, i*= φ*(j), is such that  
i*’s nearest facility in H, γ(i*), is not the facility i. 
Let i′=γ(φ*(j)). 
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Proof of Lemma 5.2 

H 

H* γ 
i*=φ*(j) 

j 

i=φ(j) i′=γ(φ*(j)) 
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Cost of Reassigning 

 Lemma 5.2 
    Consider any client j for which φ(j) = i is not 

equal to i′ = γ(φ*(j)). Then the increase in cost 
of reassigning client j to i′ (instead of to i) is at 
most 2cj,φ*(j). 

 
   We will apply this lemma both when i is 

deleted and i is swapped out of the solution. 
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An upper bound on XH 

Lemma 5.3  
   Let H and ϕH be a locally optimal solution. 

Then XH ≤ X* + 2Y*. 
. 
 
 



Proof of Lemma 5.3(2) 
•  In our proof, we will give a set of moves that either deletes or 

swaps out every facility in H (once each) and either adds or 
swaps in every facility in H* (again once each).  

•  Since the change in cost for each of these local moves in 
nonnegative, this will allow us to bound the facility cost H in 
terms of the facility H* and additional terms that we will 
bound by twice the optimal assignment cost.  
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Proof of Lemma 5.3(1)  
•  Suppose that we want to delete a facility i ∈ H.  
•  Each client j, that is currently served by i must be reassigned to 

one of the remaining open facilities in H−{i}. 
•  We shall call a facility i safe, if for every facility i* ∈ H*, the 

facility γ(i*) ∈ H closest to i* is different from i. 
•  For any safe facility i, we can consider the local move of 

closing facility i, since we can safely reassign each of its client  
j to γ(φ*(j)), and apply Lemma 5.2 to bound the resulting 
increase in the assignment cost for reassigned client j by 2cj,φ*(j). 
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Bound on “safe” facilities 

•  Since H is locally optimal, we know that this local 
change cannot decrease the overall cost, and hence the 
savings obtained by closing the safe facility i must be 
no more than the increase in assignment costs incurred 
by reassigning all of the clients assigned to i. That is,   
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Unsafe facilities 

•  Consider a facility i that is not safe. 
•  Let Ri ⊆ H* be the (nonempty) set of facilities i*∈ H* 

such that γ(i*) = i, i.e. Ri = {i*∈ H*|γ(i*) = i}. 
•  Among those facilities in Ri, let i′ be the one closest to i. 
•  We will derive one inequality for each member of Ri, 

based on  
–  an add move for each member of Ri −{i′}, 
–  one swap move closing the facility at i, while opening a 

facility at i′. 
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Unsafe facilities 

i1 

H 

H* 

i1′ 

i0 =  i0′ 

− unsafe facilities 
Each facility i*∈H* occurs in exactly one corresponding set R. 
  

R 
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Add move for i*∈ Ri −{i′} 

•  We open a facility at i*, and for each client j that is 
assigned to i in the locally optimal solution (ϕ(j) = i ) and 
is assigned to i* in the optimal solution (ϕ*(j) = i*), we 
reassign client j to i*. 

•  The change in cost caused by this move must also be 
nonnegative, and we derive the inequality
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Swap move that closes the facility at i   
but opens a facility i′ (i ≠ i′). 

•  To make this swap move precise, we will also specify 
a reassignment of the clients assigned to i by ϕ. Each 
client j such that ϕ(j) = i   
–  for which ϕ*(j) ∉ R is reassigned to γ(ϕ*(j)), 
–  for which ϕ*(j) ∈ R is reassigned to i′. 



46 

Swap i to i′, i ≠ i′. 

i 
H 

H* 

i′ 
R 
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Swap i to i′, i ≠ i′. 

H 

H* 

i′ 
R 
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Swap i to i′, i ≠ i′. 

H 

H* 

i′ 
R 
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Inequalities based on the swap move 

•  Close the facility at i and open a facility i′:  fi′−fi . 
•  Consider client j such that ϕ(j) = i. 

–  If ϕ*(j) ∉ R then j is reassigned to γ(ϕ*(j)): 
         Lemma 5.2 ⇒ the increase in the cost ≤ 2cj,φ*(j). 
–  If ϕ*(j) ∈ R then j is reassigned to i′. It follows that the 

change in the assignment cost is exactly cji′− cji. 
   Combining all of these pieces, we obtain an upper bound on 

the total change in cost of this swap move. Again, we know 
that the true change in cost is nonnegative, and hence  
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How about if i = i′ 
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Suppose that i = i′; the above inequality reduces to  
the essentially trivial inequality that 
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Net effect 
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For unsafe facility i, let us consider the net effect of combining 
 all of these inequalities. Adding these, we get that 
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Simplification 

    We will simplify the above expression by combining the final 
two summations, and by showing that for each client j that 
appears in either summation, we can upper bound its total 
contribution by 2cjφ*(j). 

•  φ(j)=i & φ*(j)=i′: cji′− cji ≤ 2cji′ = 2cjφ*(j). 
•  φ(j)=i & φ*(j) ∈ R − {i′}:   cji′ + cjφ*(j) − 2cji ≤                                 

cii′ + cjφ*(j) − cji ≤ ciφ*(j)+ cjφ*(j) − cji ≤ 2cjφ*(j). 
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Proof of Lemma 5.3(2)  

•  Safe facility i: 

•  Unsafe facility i: ( )
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Total cost of a locally optimal solution 

•  Theorem 5.4 
   Let H and ϕH be a locally optimal solution for the 

uncapacitated facility location problem. Then this 
solution has a total cost that is at most 3OPT. 

•  Proof. 
•  YH ≤ X* + Y*  (Lemma 5.1) 
•  XH  ≤  X* + 2Y* (Lemma 5.3) 
•  XH  + YH  ≤ 2X* + 3Y* ≤ 3OPT. 
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Exercise 
•  Consider the following algorithm: 
Input (G, f: F → Q+ , c: E → Q+) 
1)      Increase the cost of each facility by a factor 2.  
1)   Choose an arbitrary current solution H.  
2)   While there exists a solution H′∈N(H)                                    

such that XH + YH > XH′ + YH′  do  H:=H′.  
Output (H, ϕH) 
•  Find an upper bound on the cost a solution obtained by the 

above algorithm. 
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