Combinatorial Algorithms

LLocal search

Shortest superstring

e Given a finite alphabet X, and a set of # strings
S=1{sp,....,8,} & X"

 Find a shortest string s that contains each s; as a
substring.

* Without lost of generality, we may assume that no
string s, 1s a substring of another string s, i = ;.

Overlap, prefix

We begin by developing a good lower bound on OPT.

Let us assume that s, s,,..., s, are numbered in order
of leftmost occurrence 1n the shortest superstring, s.

Let overlap(s,, s;) denote the maximum overlap
between s;and s; 1.¢., the longest suftix of s; that is a
prefix of 5.

Let prefix(s;, s;) be the prefix of s; obtained removing
its overlap with s.

Prefix

pref(s,, 5,) pref(s, 1, 5,) pref(s,, s;) over(s,, s,)
€ > € >€ > € >
S ¢ | | ¢
I I I I
I I I I
Sl 4 3 : : :
S2 I I I
. . o |
® I I I
S : : :
n-1 I I I
I I I
Sn * i *

I

Sl $

OPT = |prefix(s, s, | + [prefix(s,,s;) +--+

+ |prefix(s, , s,) +|overlap(s, ,s,).

OPT = ‘prefix(sl,szj + ‘preﬁx(sz,%] +ooe ‘prefix(sn,slj + ‘overlap(sn,sl}

Define the prefix graph of S as the directed graph
G, on vertex set ={1,...,n} that contains an edge
i — j of weight prefix(s;,s;) for each i, ;.

| prefix(sy,8y)| + | prefix(sy,ss)| + ...+ | prefix(s,,s,)
represents the weight of the tour 1 =2—...—n—1.
Hence the minimum weight of a travelling salesman

tour of the prefix graph gives a lower bound on OPT.

Unfortunately, this lower bound 1s not very useful.
TSP 1s NP-hard.

[Lower Bound

We will use the minimum weight of a cycle cover of the prefix
graph.

A cycle cover 1s a collection of disjoint cycles covering all
vertices.

A Hamiltonian cycle 1s a cycle cover.

We get that the minimum weight of a cycle cover lower-
bounds OPT.

Unlike minimum TSP, a minimum weight cycle cover can be
computed 1n polynomial time.

Cycle — prefix

If c=(i;—=i,— ... =i;,— 1) 1s a cycle in the prefix graph, let
a(c) = prefix(s;,s,) ©...0 prefix(s, ,s;) © prefix(s;,s;).

Let w(c) be the weight of ¢, w(c) = |a(c)|.

Notice that each string s, ,s; ,..., s, 1S a substring of (a(c))™.
Next, let o(c) = a(c) o s;.

Then o(c) 1s a superstring of s, .5, ,..., 5; .

In the above construction, we “opened” cycle c at an arbitrary

string s, . For the rest of the algorithm, we will call s; the
representative string for c.

Example

abcdeabcdeabcede
bcdeabcedeabedea
cdeabcdeabcdeabc
deabcdeabcdeabed
abcdeabcdeabcede

a(c) = abcde , |a(c)|=5, (a(c))* = abcdeabede
bedeabedeabedea is a substrmg of (a(c))*.

o(c) = a(c)os, = abcdeabedeabedeabede

Algorithm Superstring

Input (S = {s,...,5, })

1) Construct the prefix graph G, corresponding to
strings 1n S.

2) Find a minimum weight cycle cover ot G/,
C={cy....c;}

Output (6(c)o...0 6(c))).

Remark

 Clearly, the output 6(c)o...oc(c,) 1s a
superstring of the strings in S.

* Notice that if 1n each of the cycles we can find
a representative string of length at most the

weight of the cycle, then the string output 1s
within 20PT.

* Thus, the hard case 1s when all strings of some
cycle c are long.

10

Example

abcd
bed
cd

abcdelabcde
bcdelabcedela
bcdelabcedelabce
abcdelabcdelabed
abcdelabcdelabede

a(c) = abcde , |a(c)|=5, (a(c))* = abcdeabede
bedeabedeabedea is a substrmg of (a(c))*.

al
d

o o o0

o(c) = a(c)os; = abcdelabedelabede|abede

11

New lower bound

e Lemma 4.6

If each string in §' C § is a substring of #* for a
string ¢, then there 1s a cycle of weight at most |
t| 1n the prefix graph covering all the vertices
corresponding to string in S’ .

12

Proof of Lemma 4.6

For each string 1n §’, locate the starting point
of 1ts first occurrence 1n .

All these starting points will be distinct and
will lie 1n the first copy of .

Consider the cycle in the prefix graph visiting
the corresponding vertices in this order.

Clearly, the weight of this cycle 1s at most |¢|.

13

Lower bound on overlap

e Lemma 4.7

Let ¢ and ¢’ be two cycles 1n C (cyclic cover of
the minimal weight), and let 7, 7' be
representative strings from these cycles. Then

loverlap(r, 7')| < w(c) + w(c').

14

loverlap(r,)| = w(c) + w(c')

a 1s a prefix of length w(c) of overlap (7, 7).

a'1s a prefix of length w(c’) of overlap (r, 7).

overlap(r, ')

y 9 U
et T e e
£y o S o
e o * o
o, - . .

S o . R
LR . 3 .
- . .
) ’ — ’ g o
» \ .
. E— o
. £
< - :)
e Wt et
TS Y S
o S
** R
ot .
. o, S
. 3 .
. . .
** - o*
.,
. .
. . . ’
. .
. .
- A — o
. .
. .
. .
. .
’ ¢¢¢¢¢
r' Py oY

>
:
|
|
|
|

Since |overlap(r, r')| > w(c) + w(c'),
1t 1s follows that o and o' commute.

15

loverlap(r,)| = w(c) + w(c').

a 1s a prefix of length w(c) of overlap (7, 7).
a'1s a prefix of length w(c’) of overlap (r, 7).

overlap(r, ')

A \J U/
», . S
. . .
b . . .
. . . .
. o . o
.
o o . o
*e 4 *e **
» Py . o
—_— . o
&t = O
. .
< Yo, et >
TS Y S
X .
o o
ot .
. 3 .
. 0 .
. . .
o . o
»
. .
. r . ’
. .
. .
* a * a a
. .
. .
. .
’ o o 1
r' C = (= ‘ ‘

. . For any N > 0, the prefix of length N
(@) = () of () 1s the same as that of (o).
16

Proof of Lemma 4.7

 Now, by Lemma 4.6, there 1s a cycle of weight
at most w(c) 1n the prefix graph covering all
strings in ¢ and ¢’, contradicting the fact that
C 1s a mmimum weight cycle cover.

* So, we have |overlap(r,)| < w(c) + w(c').

17

Approximation ratio of
Algorithm Superstring

Theorem 4.8

Algorithm Superstring achieves
an approximation factor of 4 for
the shortest superstring problem.

18

Algorithm Superstring

Input (S = {s,...,5, })

1) Construct the prefix graph G, corresponding to
strings 1n S.

2) Find a minimum weight cycle cover ot G/,
C={cy....c;}

Output (6(c)o...0 6(c))).

19

k k k
W(C)=2w(ci)sOPT A=20(cl.)=w(C)+ v,
r;1s a representative string for c..
Y72 175 cal WO N SO
NI, (o7, 1 < 30PT
OPT =) ||- Y |overlaplr, 7,) = 2’3‘ =
S~ Sfovertalr.r.
7k k
L:E v; —22w(cl.)

[.ocal Search

» A local search algorithm starts with an arbitrary
feasible solution to the problem, and then check if
some small, local change to the solution results 1n
an 1improved objective function.

 If so, the change 1s made.

 When no further change can be made, we have a

locally optimal solution, and 1t 1s sometimes
possible to prove that such locally optimal solutions
have value close to that of optimal solution.

21

Uncapacitated Facility Location Problem

* (Given a set of clients D and a set of facilities F, with a facility
cost f; for each facility i € F,, and an assignment cost c;; for
cach facility i € F' and each client j € D.

* Find asubset HC F and an assignment ¢: D — H so as to
minimize the total cost of the open facilities plus the
assignment costs.

E Jit E Cjpejy — N
el €D

22

Metric UFLP

 We assume that the set of clients and potential facility
locations are 1n a metric space.

* That s, for each i, j € FUD, we have a value c;;, and

for each i, j, k€ FUD, we have that¢;, < ¢;; t ¢;; .

 Note that whenever we consider a distance between
i€l and j&D, we will maintain the convention that it
1s referred to as C;i

23

An assignment of clients

* Let the set of open facilities be given.
» Assign each client to 1ts nearest open facility.

 We obtain an optimal assignment for the given set of
open facilities.

XH=2fi X*=XH*

— * —
H = Ecjm) I =1y,

24

Neighborhood N(H)

H, @

1. Open one additional facility A .= HU{i}, i €F \ H,

2. Close one facility that is currently open H .= H\ {i}, i € H.

3. Open a new facility and close an open facility
H=HU{i}\{j},ie F\H, jEH.

Update the current assignment of clients to open facilities.
The algorithm will always maintain that each client 1s
assigned to its nearest open facility.

25

Local Search Algorithm

Input (G, f: F—> Q",c:. E— Q")

1) Choose an arbitrary current solution H.

2) While there exists a solution H'EN(H)
such that X, + Y, > X, + Y, do H=H'.

Output (H, ¢,)

26

Locally optimal solution

 We want to analyze the quality of the solution
found by the Local Search Algorithm.

A solution obtained by this algorithm is said to
be a locally optimal solution.

 We will focus not on an algorithmic statement
but instead on proving that any locally optimal
solution 1s near-optimal.

27

Total assignment cost

Lemma 5.1

Let H and ¢, be a locally optimal solution.
Then Y, < X* + ¥* = OPT.

28

Proof of Lemma 5.1(1)

* Since H 1s a locally optimal solution, we know that
adding any facility to H does not improve the solution
(with respect to the best possible updated assignment).

 In this way we will focus on a few potential changes
to the current solution, and analyze their change in
cost.

* Note that we consider the changes only for the sake of
analysis, and we do not actually change the solution.

29

Proof of Lemma 5.1(2)

Case 1. Consider some facility i* € H*— H.

Suppose we open the additional facility i*, and reassign to that
facility all of the clients that were assigned to i* in the optimal
solution: that is we reassign all clients j such that ¢*(j) = i*.
Since our current solution A and @(H) 1s locally optimal, we
know that the additional facility cost of i* 1s at least as much as
the improvement in cost that would result from reassigning each
client optimally to its nearest open facility; hence, 7.« must also
be more than the improvement resulting from our specific
reassignment; that is,

Juz ;(%(j) -)
J@

7)=i*

30

Proof of Lemma 3.1(3)

Case 2. Consider a facility i* € H* N H.

The local optimality of H and ¢(H) implies that each client j 1s
currently assigned to its closest open facility, and so each term
in the summation below must be nonpositive,

| ;(Cj(p(j) B Cjtp*(j))s 0= f.
Jg

7)=i*

« Summing over all facilities in the optimal solution, we obtain

; Ji 2 ; | ;(_Cﬂp(j) - Cjca*(j)): E(Cjca(j) - Cjco*(j))°
iEH* eH* j.pj)=i* JED
X*=

>Y, —Y*

31

Total facility cost

* The argument to show that a local optimum has a small total
facility cost 1s somewhat more complicated. As in the proof of
the previous lemma, we will consider a set of changes to the
solution H, each of which will generate a corresponding
inequality.

« For any move that deletes a facility i € H, we must reassign
cach of the clients that are assigned to i. If we were simply

deleting 7, then each such client must be reassigned to a facility
in H - {i}.

32

Reassignment of client j to facility i’ = y(@™(7)).

B i=y(p*()

H*

i*=p*()

(@ *(j)) 1s the facility in H closest to ¢ *(j).

33

Cost of Reassigning

Lemma 5.2

Consider any client j for which ¢(j) =i 1s not
equal to i" =y(¢™(j)). Then the increase 1n cost
of reassigning client j to i’ (instead of to i) 1s at
most 2¢; .

34

Proof of Lemma 5.2

B i=y(p*()

H*

=9 ()

Consider a client j currently being served by i,
where its facility in H*, i*= ¢ *(j), 1s such that

i*’s nearest facility in H, y(i*), 1s not the facility i.

Let i"=y(¢ *())).

35

Proof of Lemma 5.2

B i=y(p*()

\..

Cot SCopn+Cin SCu+C i SC; ZC].Z.*

Cost of Reassigning

Lemma 5.2

Consider any client j for which ¢(j) =i 1s not
equal to i" =y(¢™(j)). Then the increase 1n cost
of reassigning client j to i’ (instead of to i) 1s at
most 2¢; .

We will apply this lemma both when i 1s
deleted and i 1s swapped out of the solution.

37

An upper bound on X,

Lemma 5.3

Let H and ¢, be a locally optimal solution.
Then X, < X* + 2Y*.

38

Proof of Lemma 5.3(2)

* In our proof, we will give a set of moves that either deletes or
swaps out every facility in A (once each) and either adds or
swaps 1n every facility in A* (again once each).

« Since the change in cost for each of these local moves 1n
nonnegative, this will allow us to bound the facility cost A in
terms of the facility A* and additional terms that we will
bound by twice the optimal assignment cost.

39

Proof of Lemma 5.3(1)

Suppose that we want to delete a facility i € H.

Each client j, that is currently served by i must be reassigned to
one of the remaining open facilities in H—{i}.

We shall call a facility i safe, if for every facility i* € H*, the
facility y(i*) € H closest to i* 1s different from i.

For any safe facility i, we can consider the local move of
closing facility 7, since we can safely reassign each of its client
j to y(p*(j)), and apply Lemma 5.2 to bound the resulting
increase 1n the assignment cost for reassigned client j by 2¢; ,«.

40

Bound on “safe” facilities

* Since H 1s locally optimal, we know that this local
change cannot decrease the overall cost, and hence the
savings obtained by closing the safe facility i must be
no more than the increase 1n assignment costs incurred
by reassigning all of the clients assigned to i. That is,

Ji = 2 2Cj¢*(j)’
j@(j)=i

- fi+ 2 2Cj¢*(j) = 0.
J@(j)=i

41

Unsafe facilities

Consider a facility i that 1s not safe.

Let R, € H* be the (nonempty) set of facilities i*€ H*
such that y(i*) =1, 1.e. R, = {i*c H*|y(i*) =1}.

Among those facilities in R, let i’ be the one closest to i.

We will derive one inequality for each member of R,

based on
— an add move for each member of R, —{i'},

— one swap move closing the facility at i, while opening a
facility at i'.

42

Unsatfe facilities

—unsafe facilities

Each facility i*€H™* occurs 1n exactly one corresponding set R.
43

Add move for i*&€ R, —{i'}

We open a facility at i*, and for each client j that is
assigned to i in the locally optimal solution (¢(j) =i) and
is assigned to i* in the optimal solution (¢*(j) = i*), we
reassign client j to i*.

The change in cost caused by this move must also be
nonnegative, and we derive the inequality

fut > (€)= €002 0.

Jio(j)=i&e*(j)=i*

44

Swap move that closes the facility at i
but opens a facility i’ (i #i).

* To make this swap move precise, we will also specity
a reassignment of the clients assigned to i by ¢. Each
client j such that ¢(j) =i

— for which ¢*(j) €& R is reassigned to y(¢*(})),
— for which ¢*(j) € R 1s reassigned to i'.

45

*/

Swapitoi',i#1i

~
. ~
~

~
S~

H*

46

*/

Swapitoi',i#1i

H*

47

*/

Swapitoi',i#1i

~
. ~
~

~
S~

H*

@ .

Inequalities based on the swap move

* Close the facility at i and open a facility i f.—f,.
» Consider client j such that ¢(;) = i.
— If @*(j) & R then is reassigned to y(¢™*())):
Lemma 5.2 = the increase in the cost < 2¢; ;.

— If ¢*(j) € R then j 1s reassigned to i". It follows that the
change in the assignment cost is exactly ¢;— ¢;;

Combining all of these pieces, we obtain an upper bound on
the total change 1n cost of this swap move. Again, we know
that the true change in cost 1s nonnegative, and hence

f"' _fi + 2Cj¢(j)+ Z(Cji’ _Cji)zo
Jo(j)=i&g*(j R jolj)=i&e*(j ER

49

How about 1t i =i’

Ezcw E(cﬁf —cﬁ)zo

)<i&g*(j KER jiolj)=i&g*(j ER

Suppose that i = i’; the above inequality reduces to
the essentially trivial inequality that

226”0

)=i&g*(j R

50

Net effect

Jo=Ji+ 20 o) Z(Cﬁ,—cﬁ)zO
o R)R

Jor ¥

il j)=i

For unsafe facility i, let us consider the net effect of combining
all of these inequalities. Adding these, we get that

_f+%f+ 22]*
J()Z(J)ER Jig z&; =0

51

Simplification

_f+%f+ 2CER()

: —¢.)20
W()Z(J)ER Cﬂ)-l—m() 21()CER {l} C]¢(J))>

We will simplify the above expression by combining the final
two summations, and by showing that for each client j that
appears 1n either summation, we can upper bound its total
contribution by 2¢; .

P()=i & @*()=i" ;i ;< 2¢;=2C; 0.
o1 & 0*G) E R ~ {7} Cﬂ“’ o) 2GS

C” + C](”*(/) C]l_ CI(D*(])—I_ CJCD*(/)]l— 26’ *(/)

—f+;f + =0
Jo\J)=t 52

Proof of Lemma 5.3(2)

 Safe facilityi: —/f,+ » 2¢,; =0

Jo\J)=t

* Unsafe facility i: —f; + % Jot Y 2¢,4y=0

Jo\Jj)=t

;fz - _Efi T 226140*(1) =0
X*=X,+2Y*=0

53

Total cost of a locally optimal solution

e Theorem 5.4

Let A and ¢, be a locally optimal solution for the
uncapacitated facility location problem. Then this
solution has a total cost that 1s at most 30PT.

* Proof.

¢ Y, <X*+Y* (Lemma5.1)
X, < X*+27* (Lemma 5.3)

e X, + Y, <2X*+3Y* <30PT.

54

Exercise

* Consider the following algorithm:
Input (G, /. F—>Q",c: E— Q")
1) Increase the cost of each facility by a factor 2.
1) Choose an arbitrary current solution H.
2) While there exists a solution H'EN(H)

such that X, + Y, > X, + Y, do H=H'.
Output (H, ¢,)

* Find an upper bound on the cost a solution obtained by the
above algorithm.

95

