
Approximation schemes

Scheduling problems

Polynomial Time Approximation
Scheme (PTAS)

 Let Π be a minimization problem.
•  An approximation scheme for problem Π is a

family of (1+ε)-approximation algorithms Aε
for problem Π over all 0 < ε < 1.

•  A polynomial time approximation scheme
(PTAS) for problem Π is an approximation
scheme whose time complexity is polynomial
in the input size.

Fully Polynomial Time
Approximation Scheme (FPTAS)

•  A fully polynomial time approximation scheme

(FPTAS) for problem X is an approximation
scheme whose time complexity is polynomial
in the input size and also polynomial in 1/ε.

How design a PTAS or FPTAS

•  Let us start by considering an exact algorithm A that
solves problem X to optimality. Algorithm A takes an
instance I of X, processes it for some time, and finally
outputs the solution A(I) for instance I.

•  Since the optimization problem X is difficult to solve,
the exact algorithm A will have a bad (exponentional)
time complexity and will be far away from yielding a
PTAS or yielding an FPTAS.

•  How can we improve the behavior of such an
algorithm and bring it closer to PTAS?

Add structure …

•  The addition of structure to the input.
•  The addition of structure to the output.
•  The addition of structure to the execution of

the algorithm A.

Instance I Algorithm A Output A(I)

Structuring the input
 The main idea is to turn a difficult instance into a more primitive instance

that is easier to tackle. Then we use the optimal solution for the primitive
instance to get a grip on the original instance.

Simplification

Solve

OPT # Translate back
OPT

App

I I #

Three-step Procedure
A.  Simplify. Simplify instance I into a more primitive instance

I#. This simplification depends on the desired precision ε of
approximation; the closer ε is to zero, the closer instance I#
should resemble instance I. The time needed for the
simplification must be polynomial in the input size.

B.  Solve. Determine an optimal solution OPT# for the simplified
instance I# in polynomial time.

C.  Translate back. Translate the solution OPT# for I# back into
an approximate solution App will stay close to OPT# which
in turn is close to OPT. In this case we find an excellent
approximation.

Happy medium

•  Of course, finding the right simplification in step (A)
is not simple.

•  If instance I# is chosen too close to the original
instance I, then I# might still be NP-hard to solve to
optimality.

•  On the other hand, if instance I# is chosen to far away
from the original instance I, then solving I# will not
tell us anything about how to solve I.

Standard approaches (1, 2)

•  Rounding. The simplest way of adding structure to
the input is to round some of the numbers in the
input. For instance, we may round all job lengths to
perfect powers of two, or we may round non-integral
due dates up to the closest integers.

•  Cutting. Another way of adding structure is to cut
away irregular shaped pieces from the instance. For
instance, we may remove a small set of jobs with a
broad spectrum of processing times from the instance.

Standard approaches (3, 4)

•  Merging. Another way of adding structure is to
merge small pieces into larger pieces of primitive
shape. For instance, we may merge a huge number of
tiny jobs into a single job with processing time equal
to the processing time of the tiny jobs.

•  Aligning. Another way of adding structure to the
input is to align the shapes of several similar items.
For instance, we may replace ninety-nine different
jobs of roughly equal length by ninety-nine identical
copies of the job with median length.

P2||Cmax
•  J={1,..., n} is set of jobs.
•  M1 and M2 are two identical machines.
•  j : pj > 0 (i=1,…, n).
•  The goal is to schedule the jobs on two identical

parallel machines so as to minimize the maximum job
completion time, the so-called makespan Cmax.

•  All jobs are available at time zero.
•  Preemption is not allowed.

Lower bounds

∑
=

=
n

j
jsum pp

1
j

n
j pp 1max max ==

⎭
⎬
⎫

⎩
⎨
⎧=≥ max

*
max ,

2
max ppLC sum

(A) How to simplife an instance (I→ I#)

•  Big = { j ∈ J| pj ≥ εL}
– The instance I# contains all the big jobs from

instance I.
•  Small = { j ∈ J| pj < εL}

– Let X= Σj∈Small pj .
– The instance I# contains ⎣ X/εL ⎦ jobs of length εL.

•  The small jobs in I are first glued together to give a
long job of length X, and then this long job is cut into
lots of chunks of length εL.

•  Observation 6.1
 OPT(I#) ≤ (1+ ε)OPT(I).

Proof

•  Denote by Xi the total size of all small jobs on
machine Mi in an optimal schedule for I.

•  On Mi, leave every big job where it is, and replace
the small jobs by ⎡Xi /εL⎤ chunks of length εL.

•  ⎡X1 /εL⎤ + ⎡X2 /εL⎤ ≥ ⎣ X1 /εL + X2 /εL ⎦ = ⎣ X/εL ⎦
•  ⎡Xi /εL⎤εL – Xi ≤ (Xi /εL + 1) εL – Xi ≤ εL
•  OPT(I#) ≤ OPT + εL ≤ (1+ ε)OPT(I)

(B) How to solve the simplified instance

•  How many jobs are there in instance I#?
•  Each job in I# has length at least εL.
•  The total processing time of all jobs in I# is at most psum ≤ 2L.
•  There are at most I# ≤ 2L/εL= 2/ε jobs in instance I#.
•  The number of jobs I# is bounded by a finite constant that only

depends on ε and thus is completely independent of the
number n of jobs in I.

•  We try all possible schedules.
•  There are at most 22/ε possible schedules.
•  The makespan of each of these schedules can be determined in

O(2/ε) times .

(C) How to translate the solution back?

•  Let σ# be an optimal schedule for the simplified
instance I#.

•  Let Li
#

 be the load of machine Mi in σ#,
•  Bi

#
 be the total size of the big jobs on Mi, and

•  Xi
be the size of the small jobs Mi in σ#.

•  Li
= Bi

+ Xi
#.

LX
L
XLXX ε
ε

ε −>⎥⎦
⎥

⎢⎣
⎢=+ #

2
#
1

Transformation (σ#(I#)→ σ(I))

•  Every big job is put onto the same machine as in
schedule σ#.

•  We reserve an interval of length X1
+ 2εL on machine

M1, and an interval of length X2
on machine M2.

•  We then greedily put the small jobs into these reserved
intervals: First, we start packing small jobs into the
reserved interval on M1, until we meet some small job
that does not fit any more.

•  All remaining unpacked small jobs together will fit
into the reserved interval on machine M2.

Let us compare the loads of the machines in σ to
the machine completion times in σ#.

⎭
⎬
⎫

⎩
⎨
⎧=≥ max,
2

max ppLOPT sum

()
() ()OPTOPTOPT

LLLXBL iiii

εεε

εε

3121
22 ###

+=++≤

≤+=++≤

()OPTOPTLi ε+≤≤ 1
5.1 L

##

We obtain the first PTAS, say PTAS-1.

Structuring the output
•  The main idea is to cut the output space (i.e., the set of feasible

solutions) into lots of smaller regions over which the optimization
problem is easy to approximate. Tackling the problem separately
for each smaller region and taking the best approximate solution
over all regions will then yield a globally good approximate
solution.

*
*

*

*

*

*
*

*
*

* *
○

Three-step Procedure
A.  Partition. Partition the feasible solution space Φ of instance I

into a number of districts Φ(1), Φ(2),…,Φ(d) such that
This partition depends on the desired precision ε of
approximation. The closer ε is to zero, the finer should this
partition be. The number d of districts must be polynomially
bounded in the size of the input.

B.  Find representatives. For each district Φ(l) determine a good
representative whose objective value App(ℓ) is a good
approximation of the optimal objective value Opt(ℓ) in Φ(l).
The time needed for finding the representative must be
polynomial in the input size.

C.  Take the best. Select the best of all representatives as
approximate solution with objective value App for instance I.

.
1

ΦΦd

l l ==∪

“Good” running time and
a “good” approximation

The overall time complexity of this approach is polynomial:
•  There is a polynomial number of districts.
•  Each district is handled in polynomial time in step (B).
•  Step (C) optimizes over a polynomial number of representatives.
•  The globally optimal solution with objective value Opt must be contained

in at least one of the districts, say in district F(ℓ). Then Opt = Opt(ℓ).

 Since the representative for F(ℓ) gives a good approximation
of Opt(ℓ), it also yields a good approximation of the global
optimum. Hence, also the final output of the algorithm will
be a good approximation of the global optimum.

P2||Cmax
•  J={1,..., n} is set of jobs.
•  M1 and M2 are two identical machines.
•  j : pj > 0 (i=1,…, n).
•  The goal is to schedule the jobs on two identical

parallel machines so as to minimize the maximum job
completion time, the so-called makespan Cmax.

•  All jobs are available at time zero.
•  Preemption is not allowed.

How to define the districts
•  Big = { j ∈ J| pj ≥ εL}
•  Small = { j ∈ J| pj < εL}
•  Let Φ be a set of feasible solutions.
•  Every feasible solution σ∈Φ specifies an assignment of the n

jobs to the two machines.
•  We define the districts Φ(1), Φ(2),… . according to the

assignment of the big jobs to the two machines: Two feasible
solutions σ1 and σ2 lie in the same district if and only if σ1
assigns every big jobs to the same machine as σ2 does.

•  Note that the assignment of the small jobs remains absolutely
free.

How many districts we obtain?

•  There are at most 2L/εL= 2/ε big jobs.
•  There are at most 22/ε different ways for

assigning these jobs to two machines.
•  The number of districts in our partition is

bounded by 22/ε !
•  This value is independent of the input size.

How to find good representatives
•  Consider a fixed district Φ(l), and denote by OPT(l) the

makespan of the best schedule in this district. In Φ(l) the
assignments of the big jobs to their machines are fixed, and
we denote by Bi

(l) (i = 1, 2) the total processing time of big
jobs assigned to machine Mi.

•  T := max{Bi
(1), Bi

(2)} ≤ OPT(l).

•  We assign the small jobs one by one to the machines; every
time a job is assigned, it is put on the machine with the
currently smaller workload.

•  The resulting schedule σ(l) with makespan A(l) is our
representative for the district Φ(l). Clearly, σ(l) is computable
in polynomial time.

How close is A(l) to OPT(l) ?

1.  In case A(l) =T holds, we have A(l) = OPT(l).
2.  In case A(l) >T holds, we consider the machine Mi

with higher workload in the schedule σ(l).
•  Then the last job that was assigned to Mi is a small job

and thus has processing time at most εL.
•  At the moment when this small job was assigned to Mi

the workload of Mi was at most psum / 2.
•  A(l) ≤ (psum / 2) + εL ≤ (1 + ε)OPT ≤ (1 + ε)OPT(l)

We obtain the second PTAS, say PTAS-2.

Structuring the execution of an algorithm

•  The main idea is to take an exact but slow algorithm A, and to
interact with it while it is working.

•  The algorithm accumulates a lot of auxiliary data during its
execution, then we may remove part of this data and clean up
the algorithm’s memory. As a result the algorithm becomes
faster (since there is less data to process) and generates an
incorrect output (since the removal of data introduces errors).

•  In the ideal case, the time complexity of the algorithm
becomes polynomial and the incorrect output constitutes a
good approximation of the true optimum.

Some ideas

•  This approach can only work out if the
algorithm itself is highly structured.

•  Let us consider rather primitive algorithms that
do not even try to optimize something. They
simply generate all feasible solutions and only
suppress obvious duplicates. They are of a
severely restricted form and work in a severely
restricted environment.

P2||Cmax
•  J={1,..., n} is set of jobs.
•  M1 and M2 are two identical machines.
•  j : pj > 0 (i=1,…, n).
•  The goal is to schedule the jobs on two identical

parallel machines so as to minimize the maximum job
completion time, the so-called makespan Cmax.

•  All jobs are available at time zero.
•  Preemption is not allowed.

Encoding of solutions

•  Let σk be a feasible schedule for k jobs {1,..., k}.
•  We encode a feasible schedule σk with machine loads

L1 and L2 by the two-dimensional vector [L1, L2].
•  Let Vk be the set of all vectors, that corresponded to

feasible schedules of k jobs {1,..., k}.

Dynamic programming

Input (J={1,..., n}, p: J → Z+)
1)  Set V0={[0,0]}, i=0.
2)  While i ≠ n do:

 for every vector [x,y] in Vi put [x + pi ,y]
and [x,y + pi] in Vi+1;

 i:= i +1;
3) Let [x*,y*]∈ Vn be the vector that minimizes the

value max[x,y]∈Vn{x,y}.
Output ([x*,y*])

Running time
•  The coordinates of all vectors in all sets Vi are integers in the

range from 0 to psum.
•  The cardinality of every vector set Vi is bounded from above by

(psum)2.
•  The time complexity of DP is proportional to O(n(psum)2).
•  Size of the input |I| is bounded by O(log(psum))=O(ln(psum))

or O(n log pmax).
•  The overall time complexity of DP will be exponential in the size

of the input, and hence algorithm A will not have polynomial time
complexity.

•  The algorithm DP has a pseudo-polynomial time complexity.

How to simplify the vector sets?

•  All considered vectors correspond to geometric points
in the rectangle [0, psum]×[0, psum].

•  We subdivide this rectangle with horizontal and
vertical cuts into lots of boxes.

•  In both directions these cuts are made at the
coordinates Δi, where Δ = 1+ (ε/2n), i = 1, 2, …, K.

•  K = ⎡logΔ(psum)⎤= ⎡ln(psum)/ln Δ⎤= ⎡((1+2n)/ε) ln(psum)⎤.

Selection of vectors
•  Let two vectors [x1,y1] and [x2,y2] are in the same box.
•  x1/Δ ≤ x2 ≤ x1Δ and y1/Δ ≤ y2 ≤ y1Δ .
•  Out of every box that has non-empty intersection

with Vi we select a single vector and put it into the
so-called trimmed vector set Vi

#.
•  All remaining vectors from the vector set Vi that have

not been selected are lost for the further computations.
•  And in phase i + 1, the so-called trimmed algorithm

generates its new vector set from the smaller set Vi

and not from the set Vi.

FPTAS

Input (J={1,..., n}, p: J → Z+)
1)  Set V0

#={[0,0]}, i=0.
2)  While i ≠ n do:

for every vector [x,y]∈ Vi
#
 put [x + pi ,y]

and [x,y + pi] в Vi+1;
 i:= i +1;
Transform vector set Vi into trimmed vector set Vi

#.
3) Let [x*,y*]∈Vn

#
 , be the vector that minimizes the

value max [x,y]∈Vn#{x,y}
Output ([x*,y*])

Running time of FPTAS

•  The trimmed vector set Vi
contains at most

one vector from each box in the subdivision.
•  Altogether there are K2 boxes.
•  The running time of FPTAS O(nK2).
•  nK2 = n⎡((1+2n)/ε) ln(psum)⎤2

•  FPTAS has a time complexity that is
polynomial in the input size and in 1/ε.

How to analyze the worst case
behavior?

•  Lemma 6.2
•  For every vector [x,y]∈ Vi there exists a vector

[x#,y#]∈ Vi
#

 , such that x# ≤ Δix and y# ≤ Δiy.

Proof (by induction)
•  i =1: (x1/Δ ≤ x2 ≤ x1Δ и y1/Δ ≤ y2 ≤ y1Δ)
•  i ‒1 → i: consider an arbitrary vector [x,y]∈ Vi .
•  The untrimmed algorithm puts this vector into Vi when it adds

job Ji to some feasible schedule for the first i − 1 jobs.
•  It follows that ∃ [a,b]∈ Vi-1 , either [x,y]= [a+pk,b],

or [x,y]= [a,b+pk].
•  Hence, ∃ [a#,b#]∈ : a# ≤ Δi ‒ 1a, b# ≤ Δi ‒ 1b .
•  Algorithm FPTAS generates vector [a#+pk ,b#] and select [α,β]

such that α ≤ Δ(a#+pk) и β ≤ Δb# .
•  We get α ≤ Δ(a#+pk) ≤ Δi a+Δpk ≤ Δi(a+pk) =Δix and β ≤ Δiy.

#
1−iV

We obtain FPTAS.

{ } { } { } OPTyxyxyx nnnn
L

Δ=Δ=ΔΔ≤ ,max,max,max
4.5

##

()10 211 ≤≤⇐+≤⎟
⎠
⎞

⎜
⎝
⎛ + zz

n
z n

()OPTOPT
n

OPT
n

n ε
ε

+≤⎟
⎠
⎞

⎜
⎝
⎛ +=Δ 1

2
1

Exercise
•  In the PTAS-1 for P2||Cmax, we replaced the small jobs in instance I by lots of

chunks of length εL in instance I#. Consider the following alternative way of
handling the small jobs in I: Put all the small jobs into a canvas bag. While
there are at least two jobs with lengths smaller than εL in the bag, merge two
such jobs. That is, repeatedly replace two jobs with processing times
p′, p′′ ≤ εL by a single new job of length p′ + p′′. The simplified instance I#
consists of the final contents of the bag. Will this lead to another PTAS for
P2||Cmax?

•  Does the Observation 6.1 still hold true?
•  How can you bound the number of jobs in the simplified instance I#?
•  How would you translate an optimal schedule for I# into an approximate

schedule for I?

41

