
Approximation schemes 

Scheduling problems 



Polynomial Time Approximation 
Scheme (PTAS) 

 Let Π be a minimization  problem. 
•  An approximation scheme for problem Π is a 

family of (1+ε)-approximation algorithms Aε 
for problem Π over all 0 < ε < 1. 

•  A polynomial time approximation scheme 
(PTAS) for problem Π is an approximation 
scheme whose time complexity is polynomial 
in the input size. 



Fully Polynomial Time  
Approximation Scheme (FPTAS) 

    
•  A fully polynomial time approximation scheme 

(FPTAS) for problem X is an approximation 
scheme whose time complexity is polynomial 
in the input size and also polynomial in  1/ε.     



How design a PTAS or FPTAS 

•  Let us start by considering an exact algorithm A that 
solves problem X to optimality. Algorithm A takes an 
instance I of X, processes it for some time, and finally 
outputs the solution A(I) for instance I. 

•  Since the optimization problem X is difficult to solve, 
the exact algorithm A will have a bad (exponentional) 
time complexity and will be far away from yielding a 
PTAS or yielding an FPTAS. 

•  How can we improve the behavior of such an 
algorithm and bring it closer to PTAS?  



Add structure … 

 
 
 
•  The addition of structure to the input. 
•  The addition of structure to the output.  
•  The addition of structure to the execution of 

the algorithm  A. 

Instance I Algorithm A Output A(I) 



Structuring the input 
     The main idea is to turn a difficult instance into a more primitive instance 

that is easier to tackle. Then we use the optimal solution for the primitive 
instance to get a grip on the original instance.  

Simplification 

Solve 

OPT # Translate back 
OPT 

App 

I I # 



Three-step Procedure 
A.  Simplify. Simplify instance I into a more primitive instance 

I#. This simplification depends on the desired precision ε of 
approximation; the closer ε is to zero, the closer instance I# 
should resemble instance I. The time needed for the 
simplification must be polynomial in the input size. 

B.  Solve. Determine an optimal solution OPT# for the simplified 
instance I# in polynomial time. 

C.  Translate back. Translate the solution OPT# for I#  back into 
an approximate solution App will stay close to OPT# which 
in turn is close to OPT. In this case we find an excellent 
approximation. 



Happy medium 

•  Of course, finding the right simplification in step (A) 
is not simple.  

•  If instance I# is chosen too close to the original 
instance I, then I# might still be NP-hard to solve to 
optimality. 

•  On the other hand, if instance I# is chosen to far away 
from the original instance I, then solving I# will not 
tell us anything about how to solve I.   



Standard approaches (1, 2) 

•  Rounding. The simplest way of adding structure to 
the input is to round some of the numbers in the 
input. For instance, we may round all job lengths to 
perfect powers of two, or we may round non-integral 
due dates up to the closest integers. 

•  Cutting. Another way of adding structure is to cut 
away irregular shaped pieces from the instance. For 
instance, we may remove a small set of jobs with a 
broad spectrum of processing times from the instance. 



Standard approaches (3, 4) 

•  Merging. Another way of adding structure is to 
merge small pieces into larger pieces of primitive 
shape. For instance, we may merge a huge number of 
tiny jobs into a single job with processing time equal 
to the processing time of the tiny jobs. 

•  Aligning. Another way of adding structure to the 
input is to align the shapes of several similar items. 
For instance, we may replace ninety-nine different 
jobs of roughly equal length by ninety-nine identical 
copies of the job with median length. 



P2||Cmax 
•  J={1,..., n} is set of jobs.   
•  M1 and M2 are two identical machines. 
•  j : pj > 0 (i=1,…, n). 
•  The goal is to schedule the jobs on two identical 

parallel machines so as to minimize the maximum job 
completion time, the so-called makespan Cmax. 

•  All jobs are available at time zero. 
•  Preemption is not allowed. 



Lower bounds 
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(A) How to simplife an instance ( I→ I# ) 

•  Big = { j ∈ J| pj  ≥ εL} 
– The instance I# contains all the big jobs from 

instance I. 
•  Small = { j ∈ J| pj  < εL} 

– Let X= Σj∈Small pj . 
– The instance I# contains ⎣ X/εL ⎦ jobs of length εL. 

•  The small jobs in I are first glued together to give a 
long job of length X, and then this long job is cut into 
lots of chunks of length εL. 



•  Observation 6.1 
                     OPT(I#) ≤ (1+ ε)OPT(I). 



Proof 

•  Denote by Xi  the total size of all small jobs on 
machine Mi in an optimal schedule for I.  

•  On Mi, leave every big  job where it is, and replace 
the small jobs by ⎡Xi /εL⎤ chunks of length εL. 

•  ⎡X1 /εL⎤ + ⎡X2 /εL⎤ ≥ ⎣ X1 /εL + X2 /εL ⎦ = ⎣ X/εL ⎦ 
•  ⎡Xi /εL⎤εL – Xi ≤ (Xi /εL + 1) εL – Xi ≤ εL 
•  OPT(I#) ≤ OPT + εL ≤ (1+ ε)OPT(I) 



(B) How to solve the simplified instance 

•  How many jobs are there in instance I#? 
•  Each job in I#  has length at least εL. 
•  The total processing time of all jobs in I# is at most  psum ≤ 2L. 
•  There are at most I# ≤ 2L/εL= 2/ε jobs in instance I#. 
•  The number of jobs I# is bounded by a finite constant that only 

depends on ε and thus is completely independent of the 
number n of jobs in I. 

•  We try all possible schedules. 
•  There are at most  22/ε  possible schedules. 
•  The makespan of each of these schedules can be determined in 

O(2/ε) times . 



(C) How to translate the solution back? 

•  Let σ# be an optimal schedule for the simplified 
instance I#. 

•  Let Li
#

 be the load of machine Mi in σ#,  
•  Bi

#
 be the total size of the big jobs on Mi, and  

•  Xi
# be the size of the small jobs Mi in σ#.  

•  Li
# = Bi

# + Xi
#. 
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Transformation (σ#(I#)→ σ(I)) 

•  Every big job is put onto the same machine as in 
schedule σ#. 

•  We reserve an interval of length X1
# + 2εL on machine 

M1, and an interval of length X2
# on machine M2. 

•  We then greedily put the small jobs into these reserved 
intervals:  First, we start packing small jobs into the 
reserved interval on M1, until we meet some small job 
that does not fit any more. 

•  All remaining unpacked small jobs together will fit 
into the reserved interval on machine M2. 



Let us compare the loads of the machines in σ to 
the machine completion times in σ#.  
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We obtain the first PTAS, say PTAS-1. 



Structuring the output 
•  The main idea is to cut the output space (i.e., the set of feasible 

solutions) into lots of smaller regions over which the optimization 
problem is easy to approximate. Tackling the problem separately 
for each smaller region and taking the best approximate solution 
over all regions will then yield a globally good approximate 
solution. 
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Three-step Procedure 
A.  Partition. Partition the feasible solution space Φ of instance I 

into a number of districts Φ(1), Φ(2),…,Φ(d) such that                        
This partition depends on the desired precision ε of 
approximation. The closer ε is to zero, the finer should this 
partition be. The number d of districts must be polynomially 
bounded in the size of the input.  

B.  Find representatives. For each district Φ(l) determine a good 
representative whose objective value App(ℓ) is a good 
approximation of the optimal objective value Opt(ℓ) in Φ(l). 
The time needed for finding the representative must be 
polynomial in the input size. 

C.  Take the best. Select the best of all representatives as 
approximate solution with objective value App for instance I. 
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“Good” running time and  
a “good” approximation 

The overall time complexity of this approach is polynomial: 
•  There is a polynomial number of districts.  
•  Each district is handled in polynomial time in step (B).  
•  Step (C) optimizes over a polynomial number of representatives.  
•  The globally optimal solution with objective value Opt must be contained 

in at least one of the districts, say in district F(ℓ). Then Opt = Opt(ℓ).  

     Since the representative for F(ℓ) gives a good approximation  
of Opt(ℓ), it also yields a good approximation of the global 
optimum. Hence, also the final output of the algorithm will      
be a good approximation of the global optimum. 



P2||Cmax 
•  J={1,..., n} is set of jobs.   
•  M1 and M2 are two identical machines. 
•  j : pj > 0 (i=1,…, n). 
•  The goal is to schedule the jobs on two identical 

parallel machines so as to minimize the maximum job 
completion time, the so-called makespan Cmax. 

•  All jobs are available at time zero. 
•  Preemption is not allowed. 



How to define the districts 
•  Big = { j ∈ J| pj  ≥ εL} 
•  Small = { j ∈ J| pj  < εL} 
•  Let Φ be a set of feasible solutions. 
•  Every feasible solution σ∈Φ specifies an assignment of the n 

jobs to the two machines.  
•  We define the districts Φ(1), Φ(2),… . according to the 

assignment of the big jobs to the two machines: Two feasible 
solutions σ1 and σ2 lie in the same district if and only if σ1 
assigns every big jobs to the same machine as σ2 does.  

•  Note that the assignment of the small jobs remains absolutely 
free.  



How many districts we obtain? 

•  There are at most 2L/εL= 2/ε big jobs. 
•  There are at most 22/ε different ways for 

assigning these jobs to two machines.  
•  The number of districts in our partition is 

bounded by  22/ε ! 
•  This value is independent of the input size.  



How to find good representatives 
•  Consider a fixed district Φ(l), and denote by OPT(l) the 

makespan of the best schedule in this district. In Φ(l) the 
assignments of the big jobs to their machines are fixed, and 
we denote by Bi

(l)  (i = 1, 2) the total processing time of big 
jobs assigned to machine Mi.  

•  T := max{Bi
(1), Bi

(2)} ≤ OPT(l). 

•  We assign the small jobs one by one to the machines; every 
time a job is assigned, it is put on the machine with the 
currently smaller workload.  

•  The resulting schedule σ(l) with makespan A(l) is our 
representative for the district Φ(l). Clearly, σ(l) is computable 
in polynomial time.  



How close is A(l) to OPT(l) ? 

1.  In case A(l) =T holds, we have A(l) = OPT(l). 
2.   In case A(l) >T holds, we consider the machine Mi 

with higher workload in the schedule σ(l). 
•  Then the last job that was assigned to Mi is a small job 

and thus has processing time at most εL.  
•  At the moment when this small job was assigned to Mi 

the workload of Mi  was at most psum / 2. 
•  A(l) ≤  (psum / 2) + εL ≤ (1 + ε)OPT ≤ (1 + ε)OPT(l)  

We obtain the second PTAS, say PTAS-2. 



Structuring the execution of an algorithm 

•  The main idea is to take an exact but slow algorithm A, and to 
interact with it while it is working. 

•  The algorithm accumulates a lot of auxiliary data during its 
execution, then we may remove part of this data and clean up 
the algorithm’s memory. As a result the algorithm becomes 
faster (since there is less data to process) and generates an 
incorrect output (since the removal of data introduces errors). 

•  In the ideal case, the time complexity of the algorithm 
becomes polynomial and the incorrect output constitutes a 
good approximation of the true optimum. 



Some ideas 

•  This approach can only work out if the 
algorithm itself is highly structured. 

•  Let us consider rather primitive algorithms that 
do not even try to optimize something. They 
simply generate all feasible solutions and only 
suppress obvious duplicates. They are of a 
severely restricted form and work in a severely 
restricted environment. 



P2||Cmax 
•  J={1,..., n} is set of jobs.   
•  M1 and M2 are two identical machines. 
•  j : pj > 0 (i=1,…, n). 
•  The goal is to schedule the jobs on two identical 

parallel machines so as to minimize the maximum job 
completion time, the so-called makespan Cmax. 

•  All jobs are available at time zero. 
•  Preemption is not allowed. 



Encoding of solutions 

•  Let σk be a feasible schedule for k jobs {1,..., k}.  
•  We encode a feasible schedule σk with machine loads 

L1 and L2 by the two-dimensional vector [L1, L2].  
•  Let Vk be the set of all vectors, that corresponded to 

feasible schedules of k jobs {1,..., k}.  



Dynamic programming 

Input ( J={1,..., n}, p: J → Z+) 
1)   Set V0={[0,0]}, i=0.  
2)   While i ≠ n  do: 

       for every vector [x,y] in Vi put [x + pi ,y]                                
and [x,y + pi ] in Vi+1;  

       i:= i +1; 
3)    Let [x*,y*]∈ Vn  be the vector that minimizes the 

value max[x,y]∈Vn{x,y}. 
Output ([x*,y*]) 



Running time  
•  The coordinates of all vectors in all sets Vi are integers in the 

range from 0 to psum. 
•  The cardinality of every vector set Vi is bounded from above by 

(psum)2. 
•  The time complexity of DP is proportional to O(n(psum)2). 
•  Size of the input |I| is bounded by  O(log(psum))=O(ln(psum))             

or O(n log pmax). 
•  The overall time complexity of DP will be exponential in the size 

of the input, and hence algorithm A will not have polynomial time 
complexity. 

•  The algorithm DP has a pseudo-polynomial time complexity. 



How to simplify the vector sets? 

•  All considered vectors correspond to geometric points 
in the rectangle [0, psum]×[0, psum]. 

•  We subdivide this rectangle with horizontal and 
vertical cuts into lots of boxes.  

•  In both directions these cuts are made at the 
coordinates Δi, where Δ = 1+ (ε/2n), i = 1, 2, …, K.  

•  K = ⎡logΔ(psum)⎤= ⎡ln(psum)/ln Δ⎤= ⎡((1+2n )/ε) ln(psum)⎤. 



Selection of vectors 
•  Let two vectors [x1,y1] and [x2,y2] are in the same box.  
•  x1/Δ ≤ x2 ≤ x1Δ  and y1/Δ ≤ y2 ≤ y1Δ . 
•  Out of every box that has non-empty intersection  

with Vi we select a single vector and put it into the   
so-called trimmed vector set Vi

#. 
•  All remaining vectors from the vector set Vi that have 

not been selected are lost for the further computations. 
•  And in phase i + 1, the so-called trimmed algorithm 

generates its new vector set from the smaller set Vi
# 

and not from the set Vi. 



FPTAS  

Input ( J={1,..., n}, p: J → Z+) 
1)   Set V0

#={[0,0]}, i=0.  
2)   While i ≠ n  do: 

for every vector [x,y]∈ Vi
#
 put [x + pi ,y]                       

and [x,y + pi ] в Vi+1;  
      i:= i +1; 
Transform vector set Vi into trimmed vector set Vi

#. 
3)    Let [x*,y*]∈Vn

#
 , be the vector that minimizes the 

value max [x,y]∈Vn#{x,y} 
Output ([x*,y*]) 



Running time of FPTAS 

•  The trimmed vector set Vi
# contains at most 

one vector from each box in the subdivision.  
•  Altogether there are K2 boxes. 
•  The running time of FPTAS O(nK2). 
•  nK2 = n⎡((1+2n )/ε) ln(psum)⎤2  

•  FPTAS has a time complexity that is 
polynomial in the input size and in 1/ε. 



How to analyze the worst case 
behavior? 

•  Lemma 6.2 
•   For every vector [x,y]∈ Vi there exists a vector 

[x#,y#]∈ Vi
#

 , such that x# ≤ Δix and y# ≤ Δiy.  



Proof (by induction) 
•  i =1:  (x1/Δ ≤ x2 ≤ x1Δ  и y1/Δ ≤ y2 ≤ y1Δ ) 
•  i ‒1 → i: consider an arbitrary vector [x,y]∈ Vi .  
•  The untrimmed algorithm puts this vector into Vi when it adds 

job Ji to some feasible schedule for the first i − 1 jobs. 
•  It follows that ∃ [a,b]∈ Vi-1 ,  either [x,y]= [a+pk,b],                        

or [x,y]= [a,b+pk]. 
•  Hence, ∃ [a#,b#]∈       : a# ≤ Δi ‒ 1a, b# ≤ Δi ‒ 1b . 
•  Algorithm FPTAS generates vector [a#+pk ,b#] and select [α,β] 

such that α ≤ Δ(a#+pk ) и β ≤ Δb# . 
•  We get α ≤ Δ(a#+pk ) ≤ Δi a+Δpk ≤ Δi(a+pk) =Δix and β ≤ Δiy. 

#
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We obtain FPTAS. 
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Exercise  
•  In the PTAS-1 for P2||Cmax, we replaced the small jobs in instance I by lots of 

chunks of length εL in instance I#. Consider the following alternative way of 
handling the small jobs in I: Put all the small jobs into a canvas bag. While 
there are at least two jobs with lengths smaller than εL in the bag, merge two 
such jobs. That is, repeatedly replace two jobs with processing times             
p′, p′′ ≤ εL by a single new job of length p′ + p′′. The simplified instance I#  
consists of the final contents of the bag. Will this lead to another PTAS for 
P2||Cmax?  

•  Does the Observation 6.1 still hold true?  
•  How can you bound the number of jobs in the simplified instance I#?  
•  How would you translate an optimal schedule for I# into an approximate 

schedule for I? 
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