
Approximation schemes

Bin packing problem

Bin Packing problem

•  Given n items with sizes a1,…,an ∈ (0,1].
•  Find a packing in unit-sized bins that minimizes

the number of bins used.

First Fit

•  Consider items in an arbitrary order. In this
i-th step, it has a list of partially packed bins,
say B1,…, Bk . It attempts to put the next item,
ai, in one of these bins, in this order. If ai does
not fit into any of these bins, it opens a new
bin Bk+1, and puts ai in it.

First Fit Algorithm

Input (a1,…,an)
1)  i ← 1, k ← 1, bin(1) ← 1, bin(2) ← 1.
2)  While i ≤ n do:
 r ← min{j ≤ k+1| ai ≤ bin(j)}
 if (r ≤ k) then bin(r) ← bin(r) – ai
 otherwise k ← k + 1
 bin(k) ← 1 – ai
 bin(k+1) ← 1
Output (k)

Approximation ratio of
First Fit Algorithm

Теорема 6.1
 First Fit algorithm is a 2-approximation

for the bin packing problem.

Proof: If the algorithm use k bins.

2
1

1

−
>≥∑

=

kaOPT
n

i
i 12 −> kOPT kOPT ≥2

Inapproximability

Theorem 6.2
 For any ε > 0, there is no approximation algorithm

having a guarantee of 3/2 − ε for the bin packing
problem, assuming P ≠ NP.

.

Proof

•  If there were such an algorithm, then we show how to
solve the NP-hard problem of deciding if there is a
way to partition n nonnegative numbers a1,…, an into
two sets, each adding up to

•  Clearly, the answer to this question is ‘yes’ iff the n
items can be packed in 2 bins of size

•  If the answer is “yes’ the 3/2 − ε factor algorithm will
have to give an optimal packing, and thereby solve
the partitioning problem.

.2
1∑i i

a

.2
1∑i i

a

An asymptotic PTAS

•  Theorem 6.3
 For any ε, 0 < ε ≤ 1/2, there is an algorithm Aε that

runs in time polynomial in n and finds a packing
using at most (1+2ε)OPT + 1 bins.

Packing of big items with fixed
number of item sizes

•  Lemma 6.4
 Let ε > 0 be fixed, and let K > 0 be a fixed nonnegative

integer. Consider the restriction of the bin packing
problem to instances in which each item is of size at
least ε and the number of distinct item sizes is K.
There is a polynomial time algorithm that optimally
solves the restricted problem.

Proof
•  The number of items in a bin is bounded by ⎣1/ε⎦:= M.
•  Therefore, the number of different bin types is

bounded by , which is a constant.

•  The total number of bins used is at most n.
•  The number of possible feasible packing is bounded by
 which is polynomial in n.
•  Enumerating them and picking the best packing gives

the optimal answer.

R
M
KM

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
:

1

,:
1

P
R
Rn

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+

Packing of big items

•  Lemma 6.5
 Let ε > 0 be fixed. Consider the restriction of the bin

packing problem to instances in which each item is of
size at least ε. There is a polynomial time
approximation algorithm that solves the restricted
problem within a factor of (1+ε).

Proof

Let I denote the given instance. Sort the n items by increasing size.

I

Partition them into K=⎡1/ε2⎤ groups each having at most Q=⎣nε2⎦ items.

Proof

Let I denote the given instance. Sort the n items by increasing size.

I

Partition them into K=⎡1/ε2⎤ groups each having at most Q=⎣nε2⎦ items.

Rounding up the size of each item to the size of the largest item in its group.

Proof

Let I denote the given instance. Sort the n items by increasing size.

J

Partition them into K=⎡1/ε2⎤ groups each having at most Q=⎣nε2⎦ items.

Rounding up the size of each item to the size of the largest item in its group.

A new instance J has at most K different item sizes.

By Lemma 6.5 we can find an optimal packing for J.

Proof (2)

•  Clearly, this will also be a valid packing for the
original item sizes.

•  We show below that OPT(J) ≤ (1+ε) OPT(I).
•  Let us construct another instance, say J ʹ, by rounding

down the size of each item to that of the smallest item
in its group.

•  The crucial observation is that a packing
for instance J ʹ yields a packing for all but
the largest Q items of instance J.

Proof
OPT(J) ≤(1+ε) OPT(I)

J

I

J′

() ()IOPTJOPT ≤' () () () QIOPTQJOPTJOPT +≤+≤ '

() εnIOPT ≥ ()IOPTnQ εε ≤= 2 () () ()IOPTJOPT ε+≤ 1

Fernandes de la Vega and Lueker
Algorithm

Input (a1,…,an)
1)  Remove items of size less than ε.
2)  Round to obtain constant number of item sizes.
3)  Find optimal packing.
4)  Use this packing for original item sizes.
5)  Pack items of size < ε using First-Fit.
Output (k)

An asymptotic PTAS

•  Theorem 6.3
 For any ε, 0 < ε ≤ 1/2, there is an algorithm Aε that

runs in time polynomial in n and finds a packing
using at most (1+2ε)OPT + 1 bins.

Proof of Theorem 6.3

•  Let k be the number of used bins.
•  Let I denote the given instance, and Iʹ denote the instance obtained by

discarding items of size < ε from I.
•  By Lemma 6.5 we can find a packing for Iʹ using at most (1+ε)OPT(I′)

bins.
•  If no additional bins are needed, then we have a packing in k =

(1+ε)OPT(I′) ≤ (1+ε)OPT(I) bins.
•  In the second case, all but the last bin must be full to the extent of

at least 1–ε.
•  Therefore, the sum of items in I is at least (k–1)(1–ε) ≤ OPT(I).
•  We get k ≤ OPT(I)/(1–ε) + 1≤ (1+2ε)OPT(I)+1, (0 < ε < 1/2).

 P||Cmax

•  Given processing times for n jobs, p1,…,pn, and
an integer m.

•  Find an assignment of the jobs to m identical
machines so that the completion time, also called
the makespan, is minimized

Greedy Algorithm (GL)

•  Schedule the jobs one by one, in an arbitrary
order.

•  Each job being assigned to a machine with
least amount of work so far.

The first approximation algorithm

Theorem 6.6 (Graham [1966])
 Алгоритм GL is (2 – 1/m)-approximation

algorithm for P||Cmax.

Proof

,
*
max kpC ≥

()

() () () () .1211111

1

*
max

*
max

*
max

1

max

CmCmCpmpm

ppmpsCC

k

n

j
j

k
kj

jkkk
LS

−=−+≤−+

=+≤+==

∑

∑

=

≠

Jk

M1
M2
M3
M4

sk Ck t = 0

() ,1
1

*
max ∑

=

≥
n

j
jpmC

 P||Cmax

•  The minimum makespan problem is strongly
NP-hard; thus it does not admit an FPTAS,
assuming P ≠ NP. We will obtain a PTAS for
it. The minimum makespan problem is closely
related to the bin packing problem by the
following observation.

P||Cmax and the bin packing problem
M1
M2
M3
M4

0 t

0

t

4 bins

There exists a schedule with makespan t iff
n objects of sizes p1, p2,…, pn can be packed
into m bins of capacity t each.

P||Cmax and the bin packing problem
M1
M2
M3
M4

0 t

0

t

4 bins

bins(i,t) is the minimum number of bins of size t,
required to pack these n objects.

(){ }mtItC ≤= ,bins:min*
max

Binary search

•  Thus if we know or forecast Сmax in an optimal solution
we can reduce P||Cmax to the bin packing problem.

 is a lower bound.

•  We can determine the minimum makespan by a binary

search in the interval [LB, 2LB].

() { }
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

jj

n

j
j ppmLB max,1max

1

LBCLB 2*
max ≤≤

Observation

•  At first sight, this reduction may not seem very
useful since the bin packing problem is also NP-
hard. However, it turns out that this problem is
polynomial time solvable if the object sizes are
drawn from a set of fixed cardinality. We will use
this fact critically for solving the minimum
makespan problem.

Bin packing with fixed number of
object sizes

•  Let k be the fixed number of object sizes.
•  Fix an ordering on the object sizes.
•  Now, an instance of the bin packing problem can be described

by a k-tuple, (i1, i2,…, ik) specifying the number of objects of
each size.

•  Let BINS(i1, i2,…, ik) denote the minimum number of bins
needed to pack these objects.

(4,1,2,5)

One bin
 For a given instance (n1, n2,…, nk), Σni = n,

we first compute Q, the set of all k-tuples
(q1, q2,…, qk) such that BINS(q1, q2,…, qk) = 1
and 0 ≤ qi ≤ ni , 1≤ i ≤ k.

(4,1,2,5)

One bin
 For a given instance (n1, n2,…, nk), Σni = n,

we first compute Q, the set of all k-tuples
(q1, q2,…, qk) such that BINS(q1, q2,…, qk) = 1
and 0 ≤ qi ≤ ni , 1≤ i ≤ k.

(4,1,2,5)

(0,0,0,1)
(0,0,0,2)
(1,0,1,0)
(0,1,0,0)

k
k

i
i nnQ ≤≤∏

=1

Dynamic Programming
•  We compute all entries of the k-dimensional table

BINS(i1, i2,…, ik) for every
(i1, i2,…, ik)∈{0,…,n1}×{0,…,n2}×…× {0,…,nk}.

•  The table is initialized by setting BINS(q) = 1 for
every q∈Q.

•  Then, we use the following recurrence to compute the
remaining entries

•  Computing each entry takes O(nk) time. Thus, the
entire table can be computed in O(n2k) time.

{ }.),,,BINS(min1),,,BINS(221121 kkQqk qiqiqiiii −−−+=
∈

……

Basic idea
•  The basic idea is that if we can tolerate some error in computing

the minimum makespan, then we can reduce this problem to the
restricted version of bin packing in polynomial time.

•  There will be two sources of error:
–  rounding object sizes so that there are a bounded number of

different sizes.
–  terminating the binary search to ensure polynomial running

time.
•  Each error can be made as small as needed, at the expense of

running time. Moreover, for any fixed error bound, the running
time is polynomial in n, and thus we obtain a polynomial
approximation scheme.

Core Algorithm for fixed t (LB ≤ t ≤ 2LB)
Input (p1,…,pn,ε,t)
1)  Divide set of jobs (objects) into two sets Big = { j | pj ≥ tε}

and Small = { j | pj < tε}.
2)  Round a size of each big objects:

•  if pj∈[tε(1+ε)i, tε(1+ε)i+1) then pj′← tε(1+ε)i.
3)  Find an optimal packing U of the rounded big objects (pj′)

in bins of size t using the dynamic programming algorithm.
4)  Consider the original sizes of objects. Then U is valid for a

bin sizes t(1+ε).
5)  Pack the small objects greedily in leftover spaces in the bins

using the first fit rule. Denote with α(I,ε,t) the number of
bins used by this algorithm.

Output (α(I,ε,t))

Running time of the Core Algorithm

•  The number of distinct values of pj′ is k= ⎡log1+ε1/ε⎤.
•  The running time of the Core Algorithm is the same

as the running time of the dynamic programming
algorithm and is equal to O(n2k).

•  For any fixed ε the running time of the Core Algorithm
is polynomial in n.

Lower bound

•  Лемма 6.7
 α(I,ε,t) ≤ bins(I,t).

Proof
•  If the algorithm does not open any new bins for the small

objects, then the assertion clearly holds since the rounded
down pieces have been packed optimally in bins of size t. It
follows that at least α(I,ε,t) bins is required.

•  In the other case, all but the last bin are packed at least to the
extent of t. It follows that the total size of objects greater
than t (α(I,ε,t) –1). Hence, the optimal packing of I in bins of
size t must also use at least α(I,ε,t) bins.

Lower bound on makespan

•  Corollary 6.8
 min{t: α(I,ε,t) ≤ m } ≤ OPT.

Lower bound on makespan

•  Corollary 6.8
 min{t: α(I,ε,t) ≤ m } ≤ OPT.

Proof.
 OPT = min{t: bins(I,t) ≤ m}.
 Lemma 6.7 implies that for every t: α(I,ε,t) ≤ bins(I,t).
 Hence, min{t: α(I,ε,t) ≤ m } ≤ OPT.

How to determine t ?

•  We perform the binary search on the interval [LB,2LB].
•  The length of the interval is LB at the start of the

search, and it reduces by a factor 2 in each iteration.
•  We continue the search until the available interval

drops to a length of εLB. Let T be the right endpoint of
the interval we terminate with.

•  This will require ⎡log21/ε⎤ iterations.

Lower bound

•  Lemma 6.9
 T ≤ (1+ε)OPT.
 Proof.
 min{t: α(I,ε,t) ≤ m }∈ [T – εLB, T]
 T ≤ min{t: α(I,ε,t) ≤ m }+ εLB ≤ (1+ ε)OPT.

PTAS

•  Theorem 6.10
 For every ε > 0, there exists algorithm Aε , that

produces a valid schedule having makespan at most
(1+ε)2OPT ≤ (1+3ε)OPT in O(n2k ⎡log21/ε⎤) time,
where k = ⎡log1+ε1/ε⎤.

Exercise

•  Consider a more restricted algorithm than First-Fit,
called Next-Fit, which tries to pack the next item only
in the most recently started bin. If it does not fit, it is
packed in a new bin. Show that this algorithm also
achieves factor 2. Give a factor 2 tight example.

