Approximation Schemes

Open Shop Problem

$O \| C_{\max} \text{ and } Om \| C_{\max} \|$

- $\{J_1, \dots, J_n\}$ is set of jobs.
- $\{M_1, \dots, M_m\}$ is set of machines.
- $J_i: \{O_{i1}, ..., O_{im}\}$ is set of operations of job J_i ,
- O_{ik} must be processed on machine M_k ,
- $O_{ik}: p_{ik} \ge 0$ (*i*=1,..., *n*; *k*=1,..., *m*),

Instance and Schedule: $C_{\text{max}} = 16$

Lower bounds

- Let P_j be the length of job J_j , $P_j = \sum_{i=1}^{m} p_{ij}$.
- $P_{\max} = \max_{j} P_{j}$ is the maximum job length.
- Let L_k be the load of machine M_k .
- $L_{\max} = \max_i L_i$ is the maximum machine load.

 $OPT \ge \max\{P_{\max}, L_{\max}\}$

Greedy Algorithm for $O||C_{\text{max}}|$

- Whenever a machine becomes idle, if there is an unscheduled operation available to be scheduled on that machine, schedule it.
- An operation is available if it belongs to a job which is currently not undergoing any processing.

2-approximation algorithm

Theorem 8.1 (Racsmany [1982])

Greedy algorithm is a 2-approximation algorithm for $O||C_{\text{max}}$.

Proof

- Consider the machine M_i that finishes last, and let J_j be the job whose operation O_k completes last on that machine.
- We claim that, at every point in time during the schedule, either job J_j is undergoing processing on some machine, or machine M_i is busy or both.
- If such were not the case, operation O_k would have been scheduled earlier, since if M_i and J_j were both available earlier, clearly O_k would have been processed at that time.
- Thus the schedule's makespan is less than

$$P_{\max} + L_{\max} \le 20$$
PT.

Tight instance

- A simple example shows that the greedy algorithm does not do better than 2 1/m in the worst case.
- Given m machines and m + 1 jobs, each having a unit-length operation on each machine.
- It is not hard to see that the optimal schedule has length m + 1, since the jobs can simply be rotated through the machines.
- Suppose that the greedy algorithm assign m jobs in the interval (0, m]. Then the operation J_{m+1} must undergo processing sequentially, and the overall schedule produced has length 2m,

Tight instance

Inapproximability of $O||C_{max}|$

• Theorem 8.2 (Williamson et al.)

The problem of deciding if there is an open shop schedule of length at most 4 is *NP*-complete.

• Corollary 8.3 (Williamson et al.)

For any $\rho < 5/4$, there does not exist a polynomial-time ρ -approximation algorithm for the open shop problem, unless P = NP.

Monotonne-Not-All-Equal-3Sat

- Instance: Set *U* of variables, collection *Z* of clauses over *U* such that each clause has size 3 and contains only unnegated variables.
- Question: Is the truth assignment for *U* such that each clause in *C* has at least one true variable and at least one false variable?

Instance I of SAT

•
$$U = \{x_1, \dots, x_u\}, Z = \{z_1, \dots, z_v\}$$

- Suppose each variable x_i appears t_i times in Z.
- For notational convenience, we view the *k*-th occurrence of x_i as the variable x_{ik} .
- Let $\sigma(x_{ik})$ denote the next occurrence of x_i , cyclically ordered; that is $\sigma(x_{ik}) = x_{il}$, where $l = k \mod t_i + 1$.
- transform an instance *I* into an inWe stance I_O of the $O||C_{\text{max}}$ problem.

Instance I_O

- 2u machines and 2u + v jobs
- For each variable x_{ik} we construct two machines $M_A(x_{ik})$ and $M_B(x_{ik})$ and 3 types of jobs:
- An *assignment* job J_{ik} with operations $A(x_{ik})$ and $B(x_{ik})$ of length 2, which are to be processed by $M_A(x_{ik})$ and $M_B(x_{ik})$, respectively.
- A consistency job J'_{ik} has operations $A'(x_{ik})$ and $B'(x_{ik})$ of length 2 and 1, respectively, which must be processed by $M_B(x_{ik})$ and $M_A(\sigma(x_{ik}))$.
- For each clause $c = (x \lor y \lor z)$, we construct a clause job J_c with three unit-length operations T(x), T(y), and T(z), to be processed on $M_A(x)$, $M_A(y)$, and $M_A(z)$, respectively.

 $(x_1 \lor x_2 \lor x_4) \land (x_2 \lor x_3 \lor x_4)$

assignment job x_1

- assignment job x_2
- assignment job x_3
- assignment job x_4
- clause job for $x_1 \lor x_2 \lor x_4$
- clause job for $x_2 \lor x_3 \lor x_4$

Consistency jobs

assignment job x_2

consistency jobs

A consistency job ensures that the value of variable x_{ik} is equal to the value of its next occurrence.

 $(x_1 \lor x_2 \lor x_4) \land (x_2 \lor x_3 \lor x_4)$

assignment job x_1

- assignment job x_2
- assignment job x_3
- assignment job x_4
- clause job for $x_1 \lor x_2 \lor x_4$
- clause job for $x_2 \lor x_3 \lor x_4$

Properties of instance I_O

Suppose that there is a schedule of length 4.

- In any such schedule, either every machine $M_A(x_{ik})$ $(k = 1, ..., t_i)$ process its assignment operation from time 0 to 2, or every machine $M_A(x_{ik})$ process its assignment operation from time 2 to 4.
- If this is not a case, then the exists *i* and *k* such that $M_A(x_{ik})$ processes its assignment operation from time 0 to 2, and $M_A(\sigma(x_{ik}))$ processes its assignment operation from time 2 to 4. But $M_B(x_{ik})$ processes its assignment operation from time 2 to 4. The consistency job for x_{ik} must be processed on both $M_B(x_{ik})$ and $M_A(\sigma(x_{ik}))$ from time 0 to 2, which is a contradiction.

assignment job x_i

consistency jobs

 $A(x_{ik})$ $M_A(x_{ik})$ $M_{R}(x_{21})$ $A'(x_{ik})$ $M_A(\sigma(x_{ik}))$ $B'(x_{ik})$

Satisfying assignment

- For each variable x_i , set x_i to be *true* if the assignment operation for $M_A(x_{ik})$ runs from 0 to 2, and *false* otherwise.
- We know that a clause operation has been scheduled between time 2 and 4 in case the variable corresponding to that operation has been set true and sometime between time 0 and 2 in case the variable has been set false.
- Because each clause job has three unit length operations wich have been scheduled in nonoverlapping time periods, not all of its operations can correspond to *true* variables and not all of its operations can correspond to *false* variables. Hence at least one variable of each clause must be *true* and at least one variable must be *false*.

 $(x_1 \lor x_2 \lor x_4) \land (x_2 \lor x_3 \lor x_4)$

assignment job x_1

- assignment job x_2
- assignment job x_3
- assignment job x_4
- clause job for $x_1 \lor x_2 \lor x_4$
- clause job for $x_2 \lor x_3 \lor x_4$

$Om \| C_{\max} \|$

Let $0 < \varepsilon < 1$ be some small number such that $1/\varepsilon$ is an integer. Let $m \ge 3$ be an integer $LB = \max\{P_{\max}, L_{\max}\}\$ $LB \le OPT(C_{\max}) \le 2LB$

Partition of jobs
$$(0 < \varepsilon' < \varepsilon/(m^2+1) < 1)$$

We define three set of jobs.

For a rational number α with $\varepsilon^{m/\varepsilon} \leq \alpha \leq \varepsilon$ set

$$\mathbf{Big} = \{J_j \in J | P_j \ge \alpha LB\},\$$
$$\mathbf{Small} = \{J_j \in J | \alpha \varepsilon' LB < P_j < \alpha LB\},\$$
$$\mathbf{Tiny} = \{J_j \in J | P_j \le \alpha \varepsilon' LB\}.$$

- The number of big jobs is bounded by $m/\alpha \le m\varepsilon'^{-m/\varepsilon'}$.
- The total length of the small jobs is at most $\varepsilon' LB$.

How to choose such α **Small** = { $J_j \in J$ | $\alpha \varepsilon' LB < P_j < \alpha LB$ }

- Define a sequence of real numbers $\alpha_l = (\epsilon')^l, l \ge 0$.
- Consider the sets S_l of small operations with respect to α_l .
- For $i \neq j$ the sets S_i and are S_j disjoint

How to choose such α

• Since the total length of all operations is at most *mLB*, the exists a number $k \le m/\epsilon'$ for which S_k is as desired.

$$\sum_{\in S_k} P_j \leq \varepsilon' L B.$$

• We set $\alpha = \alpha_k$. Note that the value of α depends on the input, but it is bounded by constants independent on the input.

Algorithm OpenShop

- 1. Find an optimal schedule σ_1 for big jobs.
 - We fix an order of the big jobs for each machine and fix an order of the operations for each big job. On any machine M_i , the schedule big jobs induces a sequence of gaps.
- 2. Schedule tiny operations into gaps of σ_1 . Denote the obtained schedule as σ_2 .
- 3. Add the small jobs at the end of σ_2 in a greedy way.

Step 1

- The number of big jobs is bounded by $\frac{m}{\alpha} \leq \frac{m}{\epsilon' \binom{m}{\epsilon'}}$.
- The number of big jobs is bounded by a constant that only depends on ε and *m*.
- We enumerate all schedules of big jobs and take the best one. We note that OPT(Big) ≤ OPT.
- There are at most m^2/α gaps in the schedule σ_1 .

Steps 2 and 3

- Starting at time t = 0, the algorithm tries to schedule one of the available unscheduled tiny operations at every time t where one of the machines M_i becomes idle.
- Let at time *t* an available operation O_{ik} be considered and the remaining part of the gap is less than the length of operation O_{ik} . The reason is that some big operation O' starts at time τ and $p_{ik} > \tau t$. In this case shift operation O' and every operation, which starts after the completion of O', to the right by $p_{ik} \tau + t$ time units.
- Let $C_{\max}(\sigma_2)$ be the length of the obtained schedule.
- Starting at time $C_{\max}(\sigma_2)$ schedule the small jobs in a greedy way.

Analysis of the algorithm

- Let $C_{\max}(\sigma)$ be the makespan of the schedule by Algorithm OpenShop. Since the total length of small jobs is at most $\varepsilon' LB$, it follows that $C_{\max}(\sigma) \leq C_{\max}(\sigma_2) + \varepsilon' LB$.
- Let us estimate $C_{\max}(\sigma_2)$.
- Let O_{jk} be an operation, which completes last in σ_2 , i.e. $C_{jk} = C_{\max}(\sigma_2)$.
- Let λ be the sum of the lengths of all shifts produced by the algorithm.
- Let μ be the total idle times on machine M_k .

O_{jk} is an operation of a big job

- $C_{\max}(\sigma_2) \leq C_{\max}(\sigma_1) + \lambda$
- $\lambda \leq (m^2/\alpha) \cdot \alpha \epsilon' LB = m^2 \epsilon' LB$
- $C_{\max}(\sigma_2) \le C_{\max}(\sigma_1) + m^2 \varepsilon' LB \le OPT + m^2 \varepsilon' LB$

O_{jk} is an operation of a tiny job

- $C_{\max}(\sigma_2) \leq L_k + \mu$
- $\mu \leq p_k \leq \alpha \epsilon' LB$
- $C_{\max}(\sigma_2) \leq OPT + \alpha \epsilon' LB \leq$

 $< OPT + m^2 \varepsilon' LB$

 $C_{\max}(\sigma) \le C_{\max}(\sigma_2) + \varepsilon' LB \le \\ \le OPT + (m^2 + 1)\varepsilon' LB \le (1 + \varepsilon) OPT.$

PTAS

Theorem 8.4 (Sevastianov, Woeginger 1996) For every fixed $\varepsilon > 0$ and any fixed $m \ge 2$, there exists a polynomial-time $(1+\varepsilon)$ -approximation algorithm for the $Om ||C_{max}$ problem.

Exercise

- Let σ be the schedule obtained by the greedy algorithm. Let *H* be the set of intervals in σ such that no machine is idle during these intervals. Let *W* be the total length of the intervals from *H*. Suppose that $W \ge 3P_{\text{max}}$.
- Obtain a good estimate of the ratio of $C_{\max}(\sigma)$ to OPT.