
Approximation Schemes

Open Shop Problem

O||Cmax and Om||Cmax
•  {J1,..., Jn} is set of jobs.
•  {M1,..., Mm} is set of machines.
•  Ji : {Oi1,..., Oim} is set of operations of job Ji ,
•  Oik must be processed on machine Mk,
•  Oik : pik ≥ 0 (i=1,…, n; k=1,…, m),

Instance and Schedule: Cmax= 16

M1

M2

M3 J1 J4

J3 J2

J5

J1 J2 J3 J4

J2

J4 J5

J5

 p11 = 1 p12 = 2 p13 = 2

 p21 = 2 p22 = 2 p23 = 2

 p31 = 6 p32 = 2 p33 = 1

 p41 = 1 p42 = 2 p43 = 3

 p51 = 2 p52 = 5 p53 = 5

J1

0 20 5 10 15

J3

J1

J2

J3

J4

J5

Lower bounds

•  Let Pj be the length of job Jj,

•  Pmax = maxj Pj is the maximum job length.
•  Let Lk be the load of machine Mk.
•  Lmax = maxi Li is the maximum machine load.

OPT ≥ max{Pmax , Lmax}

.
1
∑
=

=
m

i
ijj pP

Greedy Algorithm for O||Cmax

•  Whenever a machine becomes idle, if there is
an unscheduled operation available to be
scheduled on that machine, schedule it.

•  An operation is available if it belongs to a
job which is currently not undergoing any
processing.

2-approximation algorithm

Theorem 8.1 (Racsmany [1982])
 Greedy algorithm is a 2-approximation

algorithm for O||Cmax .

Proof
•  Consider the machine Mi that finishes last, and let Jj

be the job whose operation Ok completes last on that
machine.

•  We claim that, at every point in time during the
schedule, either job Jj is undergoing processing on
some machine, or machine Mi is busy or both.

•  If such were not the case, operation Ok would have
been scheduled earlier, since if Mi and Jj were both
available earlier, clearly Ok would have been
processed at that time.

•  Thus the schedule’s makespan is less than
 Pmax+ Lmax ≤ 2OPT .

Tight instance
•  A simple example shows that the greedy algorithm

does not do better than 2 – 1/m in the worst case.
•  Given m machines and m + 1 jobs, each having a

unit-length operation on each machine.
•  It is not hard to see that the optimal schedule has

length m + 1, since the jobs can simply be rotated
through the machines.

•  Suppose that the greedy algorithm assign m jobs in
the interval (0, m]. Then the operation Jm+1 must
undergo processing sequentially, and the overall
schedule produced has length 2m,

Tight instance

J1 J2 J3

J4

M1

M2

M3

J1

J1

J2

J2

J3

J3 J4

J4

J1 J2 J3

J4

M1

M2

M3

J1

J1

J2

J2 J3

J3

J4

J4

Inapproximability of O||Cmax

•  Theorem 8.2 (Williamson et al.)
 The problem of deciding if there is an open

shop schedule of length at most 4 is NP-
complete.

•  Corollary 8.3 (Williamson et al.)
 For any ρ < 5/4, there does not exist a

polynomial-time ρ -approximation algorithm
for the open shop problem, unless P = NP.

Monotonne-Not-All-Equal-3Sat

•  Instance: Set U of variables, collection Z of clauses
over U such that each clause has size 3 and contains
only unnegated variables.

•  Question: Is the truth assignment for U such that each
clause in C has at least one true variable and at least
one false variable?

Instance I of SAT

•  U = {x1,…, xu}, Z = {z1,…, zv}
•  Suppose each variable xi appears ti times in Z.
•  For notational convenience, we view the k-th

occurrence of xi as the variable xik.
•  Let σ(xik) denote the next occurrence of xi , cyclically

ordered; that is σ(xik) = xil, where l = k mod ti + 1.
•  transform an instance I into an inWe stance IO of

the O||Cmax problem.

Instance IO
•  2u machines and 2u + v jobs
•  For each variable xik we construct two machines MA(xik) and

MB(xik) and 3 types of jobs:
•  An assignment job Jik with operations A(xik) and B(xik) of length 2,

which are to be processed by MA(xik) and MB(xik), respectively.
•  A consistency job J′ik has operations A′(xik) and B′(xik) of length 2

and 1, respectively, which must be processed by MB(xik) and
MA(σ(xik)).

•  For each clause c = (x˅y˅z), we construct a clause job Jc with
three unit-length operations T(x), T(y), and T(z), to be processed
on MA(x), MA(y), and MA(z), respectively.

(x1˅x2˅x4)˄ (x2˅x3˅x4)
MA(x11) A(x11)
MB(x11)

MA(x21)

MB(x21)

MA(x22)

MB(x22)

MA(x31)

MB(x31)

MA(x41) A(x41)
MB(x41) A′(x41)
MA(x42) A(x42)
MB(x42) A′(x42)

B(x11)
B′(x22)

A′(x21)

A′(x22)

B′(x21)

B(x41)

B(x42)

B′(x42)

B′(x41)

assignment job x1

assignment job x2

assignment job x3

assignment job x4

clause job for x1˅x2˅x4

clause job for x2˅x3˅x4

consistency jobs

Consistency jobs

MA(x21)

MB(x21)

MA(x22)

MB(x22)

B′(x22)

A′(x21)

A′(x22)

B′(x21)

assignment job x2

consistency jobs

A consistency job ensures that the value of variable xik is
equal to the value of its next occurrence.

(x1˅x2˅x4)˄ (x2˅x3˅x4)
MA(x11) A(x11)
MB(x11)

MA(x21)

MB(x21)

MA(x22)

MB(x22)

MA(x31)

MB(x31)

MA(x41) A(x41)
MB(x41) A′(x41)
MA(x42) A(x42)
MB(x42) A′(x42)

B(x11)
B′(x22)

A′(x21)

A′(x22)

B′(x21)

B(x41)

B(x42)

B′(x42)

B′(x41)

assignment job x1

assignment job x2

assignment job x3

assignment job x4

clause job for x1˅x2˅x4

clause job for x2˅x3˅x4

consistency jobs

Properties of instance IO
Suppose that there is a schedule of length 4.
•  In any such schedule, either every machine MA(xik) (k = 1,…, ti) process its

assignment operation from time 0 to 2, or every machine MA(xik) process its
assignment operation from time 2 to 4.

•  If this is not a case, then the exists i and k such that MA(xik) processes its
assignment operation from time 0 to 2, and MA(σ(xik)) processes its
assignment operation from time 2 to 4. But MB(xik) processes its assignment
operation from time 2 to 4. The consistency job for xik must be processed
on both MB(xik) and MA(σ(xik)) from time 0 to 2, which is a contradiction.

MA(xik)

MB(x21)

MA(σ(xik))

MB(x22) A(σ(xik))

A(xik)

A′(xik)
B′(xik)

assignment job xi

consistency jobs

Satisfying assignment
•  For each variable xi , set xi to be true if the assignment

operation for MA(xik) runs from 0 to 2, and false otherwise.
•  We know that a clause operation has been scheduled between

time 2 and 4 in case the variable corresponding to that
operation has been set true and sometime between time 0 and
2 in case the variable has been set false.

•  Because each clause job has three unit length operations wich
have been scheduled in nonoverlapping time periods, not all of
its operations can correspond to true variables and not all of its
operations can correspond to false variables. Hence at least
one variable of each clause must be true and at least one
variable must be false.

(x1˅x2˅x4)˄ (x2˅x3˅x4)
MA(x11) A(x11)
MB(x11)

MA(x21)

MB(x21)

MA(x22)

MB(x22)

MA(x31)

MB(x31)

MA(x41) A(x41)
MB(x41) A′(x41)
MA(x42) A(x42)
MB(x42) A′(x42)

B(x11)
B′(x22)

A′(x21)

A′(x22)

B′(x21)

B(x41)

B(x42)

B′(x42)

B′(x41)

assignment job x1

assignment job x2

assignment job x3

assignment job x4

clause job for x1˅x2˅x4

clause job for x2˅x3˅x4

consistency jobs

 x1:= 1

 x2:= 0

 x3:= 0

 x4:= 1

Om||Cmax
Let 0 < ε < 1 be some small number
such that 1/ ε is an integer.
Let m ≥ 3 be an integer
LB = max{Pmax , Lmax}
LB ≤ OPT(Cmax) ≤ 2LB

Partition of jobs
 (0 < ε′ < ε/(m2+1) < 1)

We define three set of jobs.
For a rational number α with εm/ε ≤ α ≤ ε set

Big = {Jj ∈ J| Pj ≥ αLB},
Small = {Jj ∈ J| αε′LB < Pj < αLB},
Tiny = {Jj ∈ J| Pj ≤ αε′LB}.

•  The number of big jobs is bounded by m/α ≤ mε′-m/ε′ .
•  The total length of the small jobs is at most ε′LB.

How to choose such α
Small = {Jj ∈ J| αε′LB < Pj < αLB}

•  Define a sequence of real numbers αl = (εʹ)l, l ≥ 0 .
•  Consider the sets Sl of small operations with respect to αl.
•  For i ≠ j the sets Si and are Sj disjoint

 ε′7 ε′5 ε′3 ε′
 ε′6 ε′4 ε′2

αk= εk

S1 S2

How to choose such α

•  Since the total length of all operations is at most mLB, the
exists a number k ≤ m/ε′ for which Sk is as desired.

•  We set α = αk. Note that the value of α depends on the input,
but it is bounded by constants independent on the input.

 ε′7 ε′5 ε′3 ε′
 ε′6 ε′4 ε′2

αk= εk

S1 S2

.LBP
kSj

j ε ʹ≤∑
∈

Algorithm OpenShop

1.  Find an optimal schedule σ1 for big jobs.
–  We fix an order of the big jobs for each machine and fix an order of

the operations for each big job. On any machine Mi, the schedule big
jobs induces a sequence of gaps.

2.  Schedule tiny operations into gaps of σ1. Denote the obtained
schedule as σ2.

3.  Add the small jobs at the end of σ2 in a greedy way.

Step 1
•  The number of big jobs is bounded by
•  The number of big jobs is bounded by a constant that only

depends on ε and m.
•  We enumerate all schedules of big jobs and take the best one.

We note that OPT(Big) ≤ OPT.
•  There are at most m2/α gaps in the schedule σ1.

() .εεα ʹʹ
≤ m
mm

M1

M2

M3

J1 J2

J3

J2 J1

J2

J5

J5

0 16 5 10 15

J3

Steps 2 and 3
•  Starting at time t = 0, the algorithm tries to schedule one of the

available unscheduled tiny operations at every time t where
one of the machines Mi becomes idle.

•  Let at time t an available operation Oik be considered and the
remaining part of the gap is less than the length of operation
Oik. The reason is that some big operation Oʹ starts at time τ
and pik > τ − t. In this case shift operation Oʹ and every
operation, which starts after the completion of Oʹ , to the right
by pik − τ + t time units.

•  Let Cmax(σ2) be the length of the obtained schedule.
•  Starting at timeCmax(σ2) schedule the small jobs in a greedy

way.

Step 2

M1

M2

M3

J1 J2

J3

J2 J1

J2

J5

J5

0 16 5 10

J3

M1

M2

M3

J1 J2

J3

J2 J1

J2

J5

J5

0 16 5 10

J3

Analysis of the algorithm
•  Let Cmax(σ) be the makespan of the schedule by Algorithm

OpenShop. Since the total length of small jobs is at most ε′LB,
it follows that Cmax(σ) ≤ Cmax(σ2) + ε′LB.

•  Let us estimate Cmax(σ2).
•  Let Ojk be an operation, which completes last in σ2,

i.e. Сjk = Cmax(σ2).
•  Let λ be the sum of the lengths of all shifts produced by the

algorithm.
•  Let µ be the total idle times on machine Mk.

Ojk is an operation of a big job

•  Cmax(σ2) ≤ Cmax(σ1) + λ
•  λ ≤ (m2/α)⋅αε′LB = m2ε′LB
•  Cmax(σ2) ≤ Cmax(σ1) + m2ε′LB ≤ OPT + m2ε′LB

Ojk is an operation of a tiny job

•  Cmax(σ2) ≤ Lk + µ
•  µ ≤ pk ≤ αε′LB
•  Cmax(σ2) ≤ OPT + αε′LB ≤
 < OPT + m2ε′LB

Cmax(σ) ≤ Cmax(σ2) + ε′LB ≤
 ≤ OPT + (m2+1)ε′LB ≤ (1 + ε) OPT.

PTAS

 Theorem 8.4 (Sevastianov, Woeginger 1996)
 For every fixed ε > 0 and any fixed m ≥ 2, there

exists a polynomial-time (1+ ε)-approximation
algorithm for the Om||Cmax problem.

Exercise

•  Let σ be the schedule obtained by the greedy
algorithm. Let H be the set of intervals in σ
such that no machine is idle during these
intervals. Let W be the total length of the
intervals from H. Suppose that W ≥ 3Pmax.

•  Obtain a good estimate of the ratio
of Cmax(σ) to OPT.

