
Approximation Schemes 

Open Shop Problem 



O||Cmax and Om||Cmax  
•  {J1,..., Jn} is set of jobs.   
•  {M1,..., Mm} is set of machines. 
•  Ji : {Oi1,..., Oim} is set of operations of job Ji ,  
•  Oik must be processed on machine Mk, 
•  Oik : pik ≥ 0  (i=1,…, n; k=1,…, m), 
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Lower bounds 

•  Let Pj be the length of job Jj, 
  
•  Pmax = maxj Pj is the maximum job length. 
•  Let Lk be the load of machine Mk. 
•  Lmax = maxi Li is the maximum machine load. 
                      
OPT ≥ max{Pmax , Lmax} 
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Greedy Algorithm for O||Cmax 

•  Whenever a machine becomes idle, if there is 
an unscheduled operation available to be 
scheduled on that machine, schedule it. 

•  An operation is available if it belongs to a 
job which is currently not undergoing any 
processing. 



2-approximation algorithm 

Theorem 8.1 (Racsmany [1982])  
    Greedy algorithm is a 2-approximation                     

algorithm for O||Cmax . 
    



Proof 
•  Consider the machine Mi that finishes last, and let Jj 

be the job whose operation Ok completes last on that 
machine. 

•  We claim that, at every point in time during the 
schedule, either job Jj is undergoing processing on 
some machine, or machine Mi  is busy or both.  

•  If such were not the case, operation Ok would have 
been scheduled earlier, since if Mi and Jj were both 
available earlier, clearly Ok  would have been 
processed at that time. 

•  Thus the schedule’s makespan is less than 
                                              Pmax+ Lmax ≤ 2OPT . 



Tight instance 
•  A simple example shows that the greedy algorithm 

does not do better than 2 – 1/m in the worst case.  
•  Given m machines and m + 1 jobs, each having a 

unit-length operation on each machine. 
•  It is not hard to see that the optimal schedule has 

length m + 1, since the jobs can simply be rotated 
through the machines.  

•  Suppose that the greedy algorithm assign m jobs in 
the interval (0, m]. Then the operation Jm+1 must 
undergo processing sequentially, and the overall 
schedule produced has length 2m,  
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Inapproximability of O||Cmax 

•  Theorem 8.2 (Williamson et al.) 
    The problem of deciding if there is an open 

shop schedule of length at most 4 is NP-
complete. 

•  Corollary 8.3 (Williamson et al.) 
    For any ρ < 5/4, there does not exist a 

polynomial-time ρ -approximation algorithm 
for the open shop problem, unless P = NP. 



Monotonne-Not-All-Equal-3Sat 

•  Instance: Set U of variables, collection Z of clauses 
over U such that each clause has size 3 and contains 
only unnegated variables. 

•  Question: Is the truth assignment for U such that each 
clause in C has at least one true variable  and at least 
one false variable? 



Instance I of SAT 

•  U = {x1,…, xu}, Z = {z1,…, zv} 
•  Suppose each variable xi  appears ti  times in Z. 
•  For notational convenience, we view the k-th 

occurrence of xi  as the variable xik. 
•  Let σ(xik) denote the next occurrence of xi , cyclically 

ordered; that is σ(xik) = xil, where l = k mod ti + 1. 
•  transform an instance I into an inWe stance IO of                        

the O||Cmax problem. 



Instance IO 
•  2u machines and 2u + v jobs 
•  For each variable xik we construct two machines MA(xik) and 

MB(xik) and 3 types of jobs: 
•  An assignment job Jik with operations A(xik) and B(xik) of length 2, 

which are to be processed by MA(xik) and MB(xik), respectively.  
•  A consistency job J′ik has operations A′(xik) and B′(xik) of length 2 

and 1, respectively, which must be processed by MB(xik) and 
MA(σ(xik)). 

•  For each clause c = (x˅y˅z), we construct a clause job Jc with 
three unit-length operations T(x), T(y), and T(z), to be processed 
on MA(x), MA(y), and MA(z), respectively. 
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Consistency jobs 
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A consistency job ensures that the value of variable xik is  
equal to the value of its next occurrence. 
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Properties of instance IO 
Suppose that there is a schedule of length 4. 
•  In any such schedule, either every machine MA(xik) (k = 1,…, ti) process its 

assignment operation from time 0 to 2, or every machine MA(xik) process its 
assignment operation from time 2 to 4. 

•  If this is not a case, then the exists i and k such that MA(xik) processes its 
assignment operation from time 0 to 2, and MA(σ(xik)) processes its 
assignment operation from time 2 to 4. But MB(xik) processes its assignment 
operation from time 2 to 4. The consistency job for xik must be processed 
on both MB(xik) and MA(σ(xik)) from time 0 to 2, which is a contradiction. 
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Satisfying assignment 
•  For each variable xi , set xi  to be true if the assignment 

operation for MA(xik) runs from 0 to 2, and false otherwise. 
•  We know that a clause operation has been scheduled between 

time 2 and 4 in case the variable corresponding to that 
operation has been set true and sometime between time 0 and 
2 in case the variable has been set false. 

•  Because each clause job has three unit length operations wich 
have been scheduled in nonoverlapping time periods, not all of 
its operations can correspond to true variables and not all of its 
operations can correspond to false variables. Hence at least 
one variable of each clause must be true and at least one 
variable must be false.  



(x1˅x2˅x4)˄ (x2˅x3˅x4) 
MA(x11) A(x11) 
MB(x11) 

MA(x21) 

MB(x21) 

MA(x22) 

MB(x22) 

MA(x31) 

MB(x31) 

MA(x41) A(x41) 
MB(x41) A′(x41) 
MA(x42) A(x42) 
MB(x42) A′(x42) 

B(x11) 
B′(x22) 

A′(x21) 

A′(x22) 

B′(x21) 

B(x41) 

B(x42) 

B′(x42) 

B′(x41) 

assignment job x1  

assignment job x2  

assignment job x3  

assignment job x4  

clause job for x1˅x2˅x4 

clause job for x2˅x3˅x4 

consistency jobs 

 x1:= 1  

 x2:= 0  

 x3:= 0  

 x4:= 1  



Om||Cmax  
Let 0 < ε < 1 be some small number                             
such that 1/ ε is an integer. 
Let m ≥ 3 be an integer 
LB = max{Pmax ,  Lmax} 
LB ≤ OPT(Cmax) ≤ 2LB  



Partition of jobs 
 (0 < ε′ < ε/(m2+1) < 1) 

We define three set of jobs. 
For a rational number α with εm/ε ≤ α ≤ ε set 
 
Big = {Jj ∈ J| Pj  ≥ αLB}, 
Small = {Jj ∈ J|  αε′LB < Pj  < αLB}, 
Tiny = {Jj ∈ J| Pj ≤ αε′LB}. 
 
•  The number of big jobs is bounded by m/α ≤ mε′-m/ε′ . 
•  The total length of the small jobs is at most ε′LB.  



How to choose such α 
Small = {Jj ∈ J|  αε′LB < Pj  < αLB} 

•  Define a sequence of real numbers αl = (εʹ)l, l ≥ 0 . 
•  Consider the sets Sl of small operations with respect to αl. 
•  For i ≠ j the sets Si and are Sj disjoint 
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How to choose such α 

•  Since the total length of all operations is at most mLB, the 
exists a number k ≤ m/ε′ for which Sk is as desired. 

•  We set α = αk. Note that the value of α depends on the input, 
but it is bounded by constants independent on the input.  
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Algorithm OpenShop 

1.  Find an optimal schedule σ1 for big jobs.  
–  We fix an order of the big jobs for each machine and fix an order of 

the operations for each big job. On any machine Mi, the schedule big 
jobs induces a sequence of gaps. 

2.  Schedule tiny operations into gaps of σ1. Denote the obtained 
schedule as σ2. 

3.  Add the small jobs at the end of σ2 in a greedy way. 



Step 1 
•  The number of big jobs is bounded by 
•  The number of big jobs is bounded by a constant that only 

depends on ε and m.  
•  We enumerate all schedules of big jobs and take the best one. 

We note that OPT(Big) ≤ OPT. 
•  There are at most m2/α gaps in the schedule σ1.  
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Steps 2 and 3 
•  Starting at time t = 0, the algorithm tries to schedule one of the 

available unscheduled tiny operations at every time t where 
one of the machines Mi becomes idle. 

•  Let at time t an available operation Oik be considered and the 
remaining part of the gap is less than the length of operation 
Oik. The reason is that some big operation Oʹ  starts at time τ 
and pik > τ − t.  In this case shift operation Oʹ  and every 
operation, which starts after the completion of Oʹ , to the right 
by pik − τ + t time units. 

•  Let Cmax(σ2) be the length of the obtained schedule. 
•  Starting at timeCmax(σ2) schedule the small jobs in a greedy 

way. 
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Analysis of the algorithm 
•  Let Cmax(σ) be the makespan of the schedule by Algorithm 

OpenShop. Since the total length of small jobs is at most ε′LB, 
it follows that Cmax(σ) ≤ Cmax(σ2) + ε′LB. 

•  Let us estimate Cmax(σ2). 
•  Let Ojk be an operation, which completes last in σ2,                        

i.e. Сjk = Cmax(σ2). 
•  Let λ be the sum of the lengths of all shifts produced by the 

algorithm. 
•  Let µ be the total idle times on machine Mk. 
 



Ojk is an operation of a big job 

•  Cmax(σ2) ≤ Cmax(σ1) + λ 
•   λ ≤ (m2/α)⋅αε′LB = m2ε′LB 
•  Cmax(σ2) ≤ Cmax(σ1) + m2ε′LB ≤ OPT + m2ε′LB  



Ojk is an operation of a tiny job 

•  Cmax(σ2) ≤ Lk + µ 
•    µ ≤ pk ≤ αε′LB 
•  Cmax(σ2) ≤ OPT + αε′LB ≤  
                                      < OPT + m2ε′LB 

Cmax(σ) ≤ Cmax(σ2) + ε′LB ≤                                                  
          ≤ OPT + (m2+1)ε′LB ≤ (1 + ε) OPT. 



PTAS 

 Theorem 8.4 (Sevastianov, Woeginger 1996) 
     For every fixed ε > 0 and any fixed m ≥ 2, there 

exists a polynomial-time (1+ ε)-approximation 
algorithm for the Om||Cmax problem.   

 



Exercise 

•  Let σ be the schedule obtained by the greedy 
algorithm. Let H be the set of intervals in σ 
such that no machine is idle during these 
intervals. Let W be the total length of the 
intervals from H. Suppose that W ≥ 3Pmax. 

•  Obtain a good estimate of the ratio                        
of Cmax(σ) to OPT. 


