
Linear Programming

Scheduling problems

Linear programming (LP)

()

.,,1for 0

 min

11

11111

11

nix
bxaxa

bxaxa

xcxcxz

i

mnmnm

nn

nn

…

…
!

…

…

=≥

≥++

≥++

→++=

 Extreme points

•  x ={x1,…,xn}∈Rn

•  A set S of all vectors x which
satisfy all the constraints of LP
is said to be a set of feasible solutions, and any x ∈ S is
a feasible solution or a feasible point.

•  If x1, x2 ∈ S, then α x1 + (1−α) x2 ∈ S, 0 ≤ α ≤ 1.
•  A point x ∈ S is called extreme point solution, it is

a vertex of polyhedron, i.e. it cannot be expressed as
a convex combination of two feasible solutions.

njx

mibxats

xc

j

i

n

j
jij

n

j
jj

,,1 ,0

,,1 , ..

min

1

1

…

…

=≥

=≥

→

∑

∑

=

=

Properties of extreme points

•  From linear programming theory we know that
for any objective function there is an extreme
point solution that is optimal.

•  Both ellipsoid algorithm and simplex method
find is an extreme point solution.

Why LP is so useful
in approximation algorithms?

•  Many combinatorial optimization problems
can be stated as integer programs.

•  Once this is done, the linear relaxation of this
program provides a natural way of lower
bounding the cost of the optimal solution.

Fundamental design techniques
•  LP-Rounding (Rounding)

–  Solve the linear program.
–  Convert the fractional solution obtained into an integral

solution.
–  The approximation guarantee is established by comparing

the cost of the integral and fractional solutions.
•  Primal-dual schema

–  An integral solution to the primal program and a feasible
solution to the dual program are constructed iteratively.

–  Any feasible solution to the dual also provides a lower
bound on OPT. The approximation guarantee is established
by comparing the two solutions.

Integrality gap

•  Given an LP-relaxation for a minimization
problem Π, let OPTf (I) denote the cost of an
optimal fractional solution to instance I, i.e.,
the objective function value of an optimal
solution to the LP-relaxation.

•  Define the integrality gap of
the relaxation to be ()

()
.sup

IOPT
IOPT

fI

Approximation factor and
integrality gap

•  If the cost of the solution found by the algorithm is
compared directly with the cost of an optimal
fractional solution (or a feasible dual solution), as is
done in most algorithms, the best approximation
factor we can hope to prove is the integrality gap of
relaxation.

•  Interestingly enough, for many problems, both
techniques have been successful in yielding
algorithms having guarantees essentially equal to the
integrality gap of the relaxation.

R| |Cmax

•  Given a set J={1,..., n} of jobs and
•  a set M={M1,..., Mm} of machines.
•  For each j ∈ J and Mi ∈ M, pij ≥ 0, the time

taken to process job j on machine Mi.
•  The problem is to schedule the jobs on the

machines so as to minimize the makespan.

ILP (R||Cmax)

{ } njmix

miCpx

njx
C

ij

Jj
ijij

Mi
ij

,,1 ,,,1 1 ,0

,,,1 ,

,,,1 ,1 s.t.
 minimize

max

max

……

…

…

==∈

=≤

==

∑

∑

∈

∈

xij is an indicator variable denoting whether job j is scheduled on Mi.
The first set of constraints ensure that each job is scheduled on one of
the machines. The second set ensures that each machine has processing
time of at most Cmax.

Remark

ILP (R||Cmax) has unbounded integrality gap.

•  Instance: J1 : pi1 = m (i=1,…, m).
•  Cmax (ILP) = m.
•  Cmax (LP) = 1.

 LP (R||Cmax)

•  Why the LP obtains the solution much better than
an optimal solution of the ILP?

•  The ILP automatically sets xij to 0, if pij > t.
•  The LP is allowed to set these variables to nonzero

values, and thereby obtain a cheaper solution.
•  We can improve LP to add the following constraint
∀i = 1,…,m, j=1,…,n: if pij > t, then xij=0.

•  However, this is not a linear constraint!

Parametric pruning

•  The parameter will be T∈Z+, which is our guess for a
lower bound on the optimal makespan. The parameter
will enable us to prune away all job-machine pairs
such that pij > T. Define ST ={(i, j)| pij ≤ T}.

•  We will define a family of linear programs, LP(T),
one for each value of parameter T∈Z+. LP(T) uses the
variables xij for (i, j) ∈ ST only, and asks if there is a
feasible, fractional schedule of makespan ≤ T using
the restricted possibilities.

LP(T)

•  T∈Z+: ST ={(i, j)| pij ≤ T}.

()

()

() Tij

ij
Sjij
ij

Sjii
ij

Sjix

miTpx

njx
T

T

T

∈≥

=≤

==

∑

∑

∈

∈

, 0

,,1 ,

,,1 ,1
:)(LP

,:

,:

…

…

Properties of extreme point solutions

•  Lemma 9.1
 Any extreme point solution to LP(T) has at

most n + m nonzero variables.

Proof of Lemma 9.1
•  Let r = |ST| represent the number of variables on

which LP(T) is defined.
•  A feasible solution to LP(T) is an extreme point

solution ⇔ it corresponds to setting r linearly
independent constraints of LP(T) to equality.

•  Of these r linearly independent constraints, at
least r – (n + m) must be chosen from the third
set of constraints.

•  The corresponding variables are set to 0.

Proof of Lemma 9.1
•  Let r = |ST| represent the number of variables on

which LP(T) is defined.
•  A feasible solution to LP(T) is an extreme point

solution ⇔ it corresponds to setting r linearly
independent constraints of LP(T) to equality.

•  Of these r linearly independent constraints, at
least r – (n + m) must be chosen from the third
set of constraints.

•  The corresponding variables are set to 0.
•  So, any extreme point solution has at most n + m

nonzero variables.

Definition

•  Let x be an extreme point solution to LP(T).
 We will say that job j is integrally set in x if it

is entirely assigned to one machine. Otherwise,
we will say that job j is fractionally set.

Properties of extreme point solutions

•  Corollary 9.2
 Any extreme point solution to LP(T) must set

at least n – m job integrally.

Proof
•  Let

–  x be an extreme point solution to LP(T)
–  α be the number of jobs integrally set by x
–  β be the number of jobs fractionally set by x

•  α + β = n

Proof
•  Let

–  x be an extreme point solution to LP(T)
–  α be the number of jobs integrally set by x
–  β be the number of jobs fractionally set by x

•  α + β = n
•  Each fractional job is assigned to at least 2 machines

and therefore results in at least 2 nonzero entries in x.
•  α + 2β ≤ n + m.
•  β ≤ m and α ≥ n – m.

Bipartite graph

() { }.0|),(,, ≠== ijxjiEEMJG ∪
Machines and Jobs

F ⊂ J, F is the set of jobs that are
fractionally set in x

() { }.10|),(,, <<== ijxjiEEMFH ∪
Machines and Jobs

Matching

 A matching in H will be called a perfect

matching if it matches every job Ji∈F.

 The rounding procedure uses the fact

that graph H has a perfect matching.

Binary search

 The algorithm starts by computing the range in
which it finds the right value of T. For this, it
constructs the greedy schedule, in which each
job is assigned to the machine on which it has
the smallest processing time. Let α be the
makespan of this schedule. Then the range is

 α/m ≤ Cmax(σ*) ≤ α.

Algorithm LST (Lenstra, Shmoys,
Tardosh 1990)

Input (J={1,..., n}, M={M1,..., Mm}, p: J×M → Q+)
1.  By a binary search in the interval [α/m,α], find the smallest

value of T∈Z+ for which LP(T) has a feasible solution. Let
this value be T*.

2.  Find an extreme point solution, say x, to LP(T*) .
3.  Assign all integrally set jobs to machines as in x.
4.  Construct graph H and find a perfect matching µ in it.
5.  Assign fractionally set jobs to machines according to

matching. Let σ be the obtained schedule.
Output (σ)

Pseudo-Forest

•  We will say that a connected graph on vertex
set V is a pseudo-tree if it contains at most |V |
edges.

•  A graph is a pseudo-forest if each its
connected components is a pseudo-tree.

 Lemma 9.3 Graph G is a pseudo-forest.

Proof of Lemma 9.3

•  Consider a connected component GC .
•  Restrict LP(T) and x to the jobs and machines of GC

only, to obtain LPC(T) and xC .
•  The important observation is that xC must be an

extreme point solution to LPC(T).
•  Lemma 9.1 ⇒ xC has at most nC + mC nonzero

variables ⇒ GC has at most nC + mC edges ⇒
GC is a pseudo-tree.

Perfect Matching

• Lemma 9.4
 Graph H has a perfect matching.

Proof of Lemma 9.4
•  Each job that is integrally set in x has exactly one edge incident

at it in G . Remove these jobs, together with their incident edges,
from G . Clearly the remaining graph is H.

•  Since an equal number of edges and vertices were removed, H is
also pseudo-forest.

•  In H, each job has a degree of at least 2.
•  So, all leaves in H must be machines.
•  Keep matching a leaf with the job it is incident to, and remove

them both from the graph.

Machines and Jobs and Matching

Machines and Jobs and Matching

Proof of Lemma 9.4
•  Each job that is integrally set in x has exactly one edge incident

at it in G . Remove these jobs, together with their incident edges,
from G . Clearly the remaining graph is H.

•  Since an equal number of edges and vertices were removed, H is
also pseudo-forest.

•  In H, each job has a degree of at least 2.
•  So, all leaves in H must be machines.
•  Keep matching a leaf with the job it is incident to, and remove

them both from the graph.
•  In the end we will be left with even cycles.
•  Match off alternate edges of each cycle.
•  This gives a perfect matching in H.

Machines and Jobs and Matching

Machines and Jobs and Matching

Algorithm LST

• Theorem 9.5
 Algorithm LST achieves an approximation

guarantee of factor 2 for the R| |Cmax problem.

Algorithm LST (Lenstra, Shmoys,
Tardosh 1990)

Input (J={1,..., n}, M={M1,..., Mm}, p: J×M → Q+)
1.  By a binary search in the interval [α/m,α], find the smallest

value of T∈Z+ for which LP(T) has a feasible solution. Let
this value be T*.

2.  Find an extreme point solution, say x, to LP(T*) .
3.  Assign all integrally set jobs to machines as in x.
4.  Construct graph H and find a perfect matching µ in it.
5.  Assign fractionally set jobs to machines according to

matching. Let σ be the obtained schedule.
Output (σ)

Proof of Theorem 9.5

•  Clearly, T* ≤ OPT, since LP(OPT) has a feasible
solution. The extreme point solution, x, to LP(T*) has
a fractional makespan of ≤ T*.

•  Therefore, the restriction of x to integrally set of jobs
has an integral makespan of ≤ T* .

•  The perfect matching found in H schedules at most
one extra job on each machine.

•  Hence, the total makespan is ≤ 2T* ≤ 2OPT.
•  The algorithm clearly runs in polynomial time.

Tight examples
•  Let us provide a family of tight examples. The m-th instance

consists of m2 − m + 1 jobs that need to be scheduled on m
machines. The first job has a processing time of m on all
machines, and all the remaining jobs have unit processing time
on each machine.

•  The optimal schedule assigns the first job to one machine,
and m of the remaining jobs to each of the remaining m − 1
machines. Its makespan is m.

•  Suppose the following extreme point solution to LP(m) is
picked. It assign 1/m of the first job and m − 1 other jobs to
each of the m machines. Rounding will produce a schedule
having a makespan of 2m − 1.

The Instance with 4 machines
J1

J4 J7

J2

M1

M2

M3

J5

J9

J8

J12

J11

J3 J6

J10 M4 J13

J1 J7

J1

M1

M2

M3

J5

J9

J8

J12

J11

J1 J6

J10 M4 J13

J1 J2 J3 J4

mC =*
max

M2

M3
M4

J1

M1

12ЛП
max −= mC

Exercises

•  Does Algorithm LST achieve a better factor than 2
for the special case that the machines are identical?

•  Prove that xC must be an extreme point solution to
LPC(T).

•  Prove that the solution given to LP(m) in the Example
is an extreme point solution.

