
Linear Programming 

  
Scheduling  problems 



Linear programming (LP) 
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       Extreme points 

•  x ={x1,…,xn}∈Rn 

•  A set S of all vectors x which                                                    
satisfy all the constraints of LP                                                        
is said to be a set of feasible solutions, and any x ∈ S is                 
a feasible solution or a feasible point. 

•  If x1, x2 ∈ S, then α x1 + (1−α) x2 ∈ S, 0 ≤ α ≤ 1.      
•  A point x ∈ S is called extreme point solution, it is                          

a vertex of polyhedron, i.e. it cannot be expressed as                          
a convex combination of two feasible solutions.  
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Properties of extreme points 

•  From linear programming theory we know that 
for any objective function there is an extreme 
point solution that is optimal. 

•  Both ellipsoid algorithm and simplex method 
find is an extreme point solution.  



Why LP is so useful                                            
in approximation algorithms?  

•  Many combinatorial optimization problems 
can be stated as integer programs. 

•  Once this is done, the linear relaxation of this 
program provides a natural way of lower 
bounding the cost of the optimal solution. 



Fundamental design techniques 
•  LP-Rounding  (Rounding) 

–  Solve the linear program. 
–  Convert the fractional solution obtained into an integral 

solution. 
–  The approximation guarantee is established by comparing 

the cost of the integral and fractional solutions. 
•  Primal-dual schema 

–  An integral solution to the primal program and a feasible 
solution to the dual program are constructed iteratively. 

–  Any feasible solution to the dual also provides a lower 
bound on OPT. The approximation guarantee is established 
by comparing the two solutions. 



Integrality gap 

•  Given an LP-relaxation for a minimization  
problem Π, let OPTf (I) denote the cost of an 
optimal fractional solution to instance I, i.e., 
the objective function value of an optimal 
solution to the LP-relaxation. 

•  Define the integrality gap of                                        
the relaxation to be              ( )

( )
.sup

IOPT
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Approximation factor and      
integrality gap 

•  If the cost of the solution found by the algorithm is 
compared directly with the cost of an optimal 
fractional solution (or a feasible dual solution), as is 
done in most algorithms, the best approximation 
factor we can hope to prove is the integrality gap of 
relaxation.  

•  Interestingly enough, for many problems, both 
techniques have been successful in yielding 
algorithms having guarantees essentially equal to the 
integrality gap of the relaxation. 



R| |Cmax 

•  Given a set J={1,..., n} of jobs and   
•  a set M={M1,..., Mm} of machines. 
•  For each  j ∈ J and Mi ∈ M, pij ≥ 0, the time 

taken to process job j on machine Mi. 
•  The problem is to schedule the jobs on the 

machines so as to minimize the makespan.  



ILP (R||Cmax) 
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xij is an indicator variable denoting whether job j is scheduled on Mi. 
The first set of constraints ensure that each job is scheduled on one of 
the machines. The second set ensures that each machine has processing 
time of at most Cmax. 



Remark 

ILP (R||Cmax) has unbounded integrality gap. 

•  Instance: J1 : pi1 = m  (i=1,…, m). 
•  Cmax (ILP) = m. 
•  Cmax (LP) = 1. 



 LP (R||Cmax) 

•  Why the LP obtains the solution much better than       
an optimal solution of the ILP? 

•  The ILP automatically sets xij to 0, if pij > t.  
•  The LP is allowed to set these variables to nonzero 

values, and thereby obtain a cheaper solution. 
•   We can improve LP to add the following constraint 
∀i = 1,…,m, j=1,…,n: if pij > t, then xij=0. 

•  However, this is not a linear constraint!  



Parametric pruning 

•  The parameter will be T∈Z+, which is our guess for a 
lower bound on the optimal makespan. The parameter 
will enable us to prune away all job-machine pairs 
such that pij > T. Define ST ={(i, j)| pij ≤ T}. 

•  We will define a family of linear programs, LP(T), 
one for each value of parameter T∈Z+. LP(T) uses the 
variables xij for (i, j) ∈ ST  only, and asks if there is a 
feasible, fractional schedule of makespan ≤ T using 
the restricted possibilities. 



LP(T) 

•  T∈Z+: ST ={(i, j)| pij ≤ T}. 
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Properties of extreme point solutions 

•  Lemma 9.1                               
   Any extreme point solution to LP(T) has at 

most n + m nonzero variables. 



Proof of Lemma 9.1 
•  Let r = |ST| represent the number of variables on 

which LP(T) is defined. 
•  A feasible solution to LP(T) is an extreme point 

solution ⇔ it corresponds to setting r linearly 
independent constraints of LP(T) to equality. 

•  Of these r linearly independent constraints, at              
least r – (n + m) must be chosen from the third                 
set of constraints. 

•  The corresponding variables are set to 0. 



Proof of Lemma 9.1 
•  Let r = |ST| represent the number of variables on 

which LP(T) is defined. 
•  A feasible solution to LP(T) is an extreme point 

solution ⇔ it corresponds to setting r linearly 
independent constraints of LP(T) to equality. 

•  Of these r linearly independent constraints, at              
least r – (n + m) must be chosen from the third                 
set of constraints. 

•  The corresponding variables are set to 0. 
•  So, any extreme point solution has at most n + m 

nonzero variables. 



Definition 

•  Let x be an extreme point solution  to LP(T). 
   We will say that job j is integrally set in x if it 

is entirely assigned to one machine. Otherwise, 
we will say that job  j is fractionally set. 



Properties of extreme point solutions 

•  Corollary 9.2                               
   Any extreme point solution to LP(T) must set 

at least n – m job integrally. 



Proof 
•  Let 

–  x be an extreme point solution to LP(T) 
–  α be the number of jobs integrally set by x 
–  β be the number of jobs fractionally set by x 

•  α + β = n 



Proof 
•  Let 

–  x be an extreme point solution to LP(T) 
–  α be the number of jobs integrally set by x 
–  β be the number of jobs fractionally set by x 

•  α + β = n 
•  Each fractional job is assigned to at least 2 machines 

and therefore results in at least 2 nonzero entries in x. 
•  α + 2β ≤ n + m. 
•  β ≤ m and α ≥ n – m. 



Bipartite graph 

( ) { }.0|),(   ,, ≠== ijxjiEEMJG ∪
Machines and Jobs 



F ⊂ J, F is the set of jobs that are 
fractionally set in x 

( ) { }.10|),(   ,, <<== ijxjiEEMFH ∪
Machines and Jobs 



Matching 

 
    A matching in H will be called a perfect 

matching if  it matches every job Ji∈F. 
 
   The rounding procedure uses the fact               

that graph H has a perfect matching.  
 
 



Binary search 

   The algorithm starts by computing the range in 
which it finds the right value of T. For this, it 
constructs the greedy schedule, in which each 
job is assigned to the machine on which it has 
the smallest processing time.  Let α be the 
makespan of this schedule. Then the range is 

                  α/m ≤ Cmax(σ*) ≤ α. 



Algorithm LST (Lenstra, Shmoys, 
Tardosh 1990) 

Input ( J={1,..., n}, M={M1,..., Mm}, p: J×M → Q+)  
1.  By a binary search in the interval [α/m,α], find the smallest 

value of T∈Z+ for which LP(T) has a feasible solution. Let 
this value be T*. 

2.  Find an extreme point solution, say x, to LP(T*) . 
3.  Assign all integrally set jobs to machines as in x. 
4.  Construct graph H and find a perfect matching  µ in it. 
5.  Assign fractionally set jobs to machines according to 

matching. Let σ be the obtained schedule. 
Output (σ) 



Pseudo-Forest 

•  We will say that a connected graph on vertex 
set V is a pseudo-tree if it contains at most |V | 
edges. 

•  A graph is a pseudo-forest if each its 
connected components is a pseudo-tree.  

    Lemma 9.3  Graph G is a pseudo-forest. 



Proof of Lemma 9.3 

•  Consider a connected component GC .  
•  Restrict LP(T) and x to the jobs and machines of GC 

only,  to obtain LPC(T) and xC . 
•  The important observation is that xC must be an 

extreme point solution to LPC(T). 
•  Lemma 9.1  ⇒ xC has at most nC + mC nonzero 

variables ⇒ GC has at most nC + mC edges ⇒                 
GC is a pseudo-tree. 



Perfect Matching 

• Lemma 9.4                              
   Graph H has a perfect matching. 



Proof of Lemma 9.4 
•  Each job that is integrally set in x has exactly one edge incident 

at it in G . Remove these jobs, together with their incident edges, 
from G .  Clearly the remaining graph is H.   

•  Since an equal number of edges and vertices were removed, H is 
also pseudo-forest. 

•  In H, each job has a degree of at least 2. 
•  So, all leaves in H must be machines.  
•  Keep matching a leaf with the job it is incident to, and  remove 

them both from the graph. 



Machines and Jobs and Matching 



Machines and Jobs and Matching 



Proof of Lemma 9.4 
•  Each job that is integrally set in x has exactly one edge incident 

at it in G . Remove these jobs, together with their incident edges, 
from G .  Clearly the remaining graph is H.   

•  Since an equal number of edges and vertices were removed, H is 
also pseudo-forest. 

•  In H, each job has a degree of at least 2. 
•  So, all leaves in H must be machines.  
•  Keep matching a leaf with the job it is incident to, and  remove 

them both from the graph. 
•  In the end we will be left with even cycles. 
•  Match off alternate edges of each cycle. 
•  This gives a perfect matching in H. 



Machines and Jobs and Matching 



Machines and Jobs and Matching 



Algorithm LST 

• Theorem 9.5 
   Algorithm LST achieves an approximation 

guarantee of factor 2 for the R| |Cmax problem. 



Algorithm LST (Lenstra, Shmoys, 
Tardosh 1990) 

Input ( J={1,..., n}, M={M1,..., Mm}, p: J×M → Q+)  
1.  By a binary search in the interval [α/m,α], find the smallest 

value of T∈Z+ for which LP(T) has a feasible solution. Let 
this value be T*. 

2.  Find an extreme point solution, say x, to LP(T*) . 
3.  Assign all integrally set jobs to machines as in x. 
4.  Construct graph H and find a perfect matching  µ in it. 
5.  Assign fractionally set jobs to machines according to 

matching. Let σ be the obtained schedule. 
Output (σ) 



Proof of Theorem 9.5 

•  Clearly, T* ≤ OPT, since LP(OPT) has a feasible 
solution. The extreme point solution, x, to LP(T*) has 
a fractional makespan of ≤ T*. 

•  Therefore, the restriction of x to integrally set of jobs 
has an integral makespan of ≤ T* . 

•  The perfect matching found in H schedules at most 
one extra job on each machine.   

•  Hence, the total makespan is ≤ 2T* ≤ 2OPT. 
•  The algorithm clearly runs in polynomial time. 



Tight examples 
•  Let us provide a family of tight examples. The m-th instance 

consists of m2 − m + 1 jobs that need to be scheduled on m 
machines. The first job has a processing time of m on all 
machines, and all the remaining jobs have unit processing time 
on each machine.   

•  The optimal schedule assigns the first job to one machine,         
and m of the remaining jobs to each of the remaining m − 1 
machines. Its makespan is m. 

•  Suppose the following extreme point solution to LP(m) is 
picked. It assign 1/m of the first job and m − 1 other jobs to 
each of the m machines. Rounding will produce a schedule 
having a makespan of 2m − 1. 



The Instance with 4 machines 
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Exercises 

•  Does Algorithm LST achieve a better factor than 2 
for the special case that the machines are identical? 

•  Prove that xC must be an extreme point solution to 
LPC(T). 

•  Prove that the solution given to LP(m) in the Example 
is an extreme point solution. 


