Linear Programming

Scheduling problems

Linear programming (LP)

$$z(x) = c_1 x_1 + \ldots + c_n x_n \rightarrow \min$$

$$a_{11}x_1 + \dots + a_{1n}x_n \ge b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \ge b_m$$

$$x_i \ge 0 \text{ for } i = 1, \dots, n.$$

Extreme points

- $x = \{x_1, \dots, x_n\} \in \mathbb{R}^n$
- A set *S* of all vectors *x* which satisfy all the constraints of LP is said to be a *set of feasible solutions*, and any $x \in S$ is *a feasible solution* or *a feasible point*.
- If x^1 , $x^2 \in S$, then $\alpha x^1 + (1-\alpha) x^2 \in S$, $0 \le \alpha \le 1$.
- A point $x \in S$ is called *extreme point solution*, it is a vertex of polyhedron, i.e. it cannot be expressed as a convex combination of two feasible solutions.

$$\sum_{j=1}^{n} c_j x_j \rightarrow \min$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i, \quad i = 1, \dots, m$$
$$x_j \ge 0, \qquad j = 1, \dots, n$$

Properties of extreme points

- From linear programming theory we know that for any objective function there is an extreme point solution that is optimal.
- Both ellipsoid algorithm and simplex method find is an extreme point solution.

Why LP is so useful in approximation algorithms?

- Many combinatorial optimization problems can be stated as integer programs.
- Once this is done, the linear relaxation of this program provides a natural way of lower bounding the cost of the optimal solution.

Fundamental design techniques

• LP-Rounding (Rounding)

- Solve the linear program.
- Convert the fractional solution obtained into an integral solution.
- The approximation guarantee is established by comparing the cost of the integral and fractional solutions.

Primal-dual schema

- An integral solution to the primal program and a feasible solution to the dual program are constructed iteratively.
- Any feasible solution to the dual also provides a lower bound on OPT. The approximation guarantee is established by comparing the two solutions.

Integrality gap

- Given an LP-relaxation for a minimization problem Π, let OPT_f(I) denote the cost of an optimal fractional solution to instance I, i.e., the objective function value of an optimal solution to the LP-relaxation.
- Define the **integrality gap** of the relaxation to be OPT(I)

Approximation factor and integrality gap

- If the cost of the solution found by the algorithm is compared directly with the cost of an optimal fractional solution (or a feasible dual solution), as is done in most algorithms, the best approximation factor we can hope to prove is the integrality gap of relaxation.
- Interestingly enough, for many problems, both techniques have been successful in yielding algorithms having guarantees essentially equal to the integrality gap of the relaxation.

$R||C_{\max}|$

- Given a set $J = \{1, ..., n\}$ of jobs and
- a set $M = \{M_1, \dots, M_m\}$ of machines.
- For each $j \in J$ and $M_i \in M$, $p_{ij} \ge 0$, the time taken to process job j on machine M_i .
- The problem is to schedule the jobs on the machines so as to minimize the makespan.

ILP $(R || C_{\text{max}})$

 x_{ij} is an indicator variable denoting whether job *j* is scheduled on M_i . The first set of constraints ensure that each job is scheduled on one of the machines. The second set ensures that each machine has processing time of at most C_{max} .

Remark

ILP $(R||C_{\text{max}})$ has unbounded integrality gap.

- Instance: $J_1 : p_{i1} = m \ (i=1,...,m).$
- C_{\max} (ILP) = m.
- $C_{\max}(LP) = 1.$

LP $(R||C_{\max})$

- Why the LP obtains the solution much better than an optimal solution of the ILP?
- The ILP automatically sets x_{ij} to 0, if $p_{ij} > t$.
- The LP is allowed to set these variables to nonzero values, and thereby obtain a cheaper solution.
- We can improve LP to add the following constraint $\forall i = 1, ..., m, j = 1, ..., n$: if $p_{ij} > t$, then $x_{ij} = 0$.
- However, this is not a linear constraint!

Parametric pruning

- The parameter will be $T \in \mathbb{Z}^+$, which is our guess for a lower bound on the optimal makespan. The parameter will enable us to prune away all job-machine pairs such that $p_{ij} > T$. Define $S_T = \{(i, j) | p_{ij} \leq T\}$.
- We will define a family of linear programs, LP(*T*), one for each value of parameter $T \in \mathbb{Z}^+$. LP(*T*) uses the variables x_{ij} for $(i, j) \in S_T$ only, and asks if there is a feasible, fractional schedule of makespan $\leq T$ using the restricted possibilities.

LP(T)

• $T \in \mathbb{Z}^+$: $S_T = \{(i, j) | p_{ij} \le T\}.$

LP(T): $\sum_{i:(i,j)\in S_{T}} x_{ij} = 1, \quad j = 1,...,n$ $\sum_{j:(i,j)\in S_T} x_{ij} p_{ij} \le T, \quad i = 1, \dots, m$ $(i, j) \in S_T$ $x_{ii} \ge 0$

Properties of extreme point solutions

- Lemma 9.1
 - Any extreme point solution to LP(T) has at most n + m nonzero variables.

Proof of Lemma 9.1

- Let $r = |S_T|$ represent the number of variables on which LP(*T*) is defined.
- A feasible solution to LP(T) is an extreme point solution ⇔ it corresponds to setting *r* linearly independent constraints of LP(T) to equality.
- Of these *r* linearly independent constraints, at least r (n + m) must be chosen from the third set of constraints.
- The corresponding variables are set to 0.

Proof of Lemma 9.1

- Let $r = |S_T|$ represent the number of variables on which LP(*T*) is defined.
- A feasible solution to LP(T) is an extreme point solution ⇔ it corresponds to setting *r* linearly independent constraints of LP(T) to equality.
- Of these *r* linearly independent constraints, at least r (n + m) must be chosen from the third set of constraints.
- The corresponding variables are set to 0.
- So, any extreme point solution has at most n + m nonzero variables.

Definition

Let x be an extreme point solution to LP(T).
We will say that job j is integrally set in x if it is entirely assigned to one machine. Otherwise, we will say that job j is fractionally set.

Properties of extreme point solutions

• Corollary 9.2

Any extreme point solution to LP(T) must set at least n - m job integrally.

Proof

- Let
 - -x be an extreme point solution to LP(T)
 - $-\alpha$ be the number of jobs integrally set by x
 - $-\beta$ be the number of jobs fractionally set by x
- $\alpha + \beta = n$

Proof

- Let
 - -x be an extreme point solution to LP(T)
 - $-\alpha$ be the number of jobs integrally set by x
 - $-\beta$ be the number of jobs fractionally set by x
- $\alpha + \beta = n$
- Each fractional job is assigned to at least 2 machines and therefore results in at least 2 nonzero entries in *x*.
- $\alpha + 2\beta \leq n + m$.
- $\beta \leq m$ and $\alpha \geq n-m$.

Bipartite graph

$$G = (J \cup M, E), \quad E = \{(i, j) \mid x_{ij} \neq 0\}.$$

Machines and Jobs

 $F \subset J$, F is the set of jobs that are fractionally set in x

$$H = (F \cup M, E), \quad E = \{(i, j) \mid 0 < x_{ij} < 1\}.$$

Machines and Jobs

Matching

A matching in *H* will be called a *perfect matching* if it matches every job $J_i \in F$.

The rounding procedure uses the fact that graph H has a perfect matching.

Binary search

The algorithm starts by computing the range in which it finds the right value of *T*. For this, it constructs the greedy schedule, in which each job is assigned to the machine on which it has the smallest processing time. Let α be the makespan of this schedule. Then the range is

 $\alpha/m \leq C_{\max}(\sigma^*) \leq \alpha.$

Algorithm LST (Lenstra, Shmoys, Tardosh 1990)

Input ($J = \{1, ..., n\}, M = \{M_1, ..., M_m\}, p: J \times M \to \mathbf{Q}^+$)

- 1. By a binary search in the interval $[\alpha/m, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(*T*) has a feasible solution. Let this value be *T**.
- 2. Find an extreme point solution, say x, to LP(T^*).
- 3. Assign all integrally set jobs to machines as in x.
- 4. Construct graph *H* and find a perfect matching μ in it.
- 5. Assign fractionally set jobs to machines according to matching. Let σ be the obtained schedule.

Output (σ)

Pseudo-Forest

- We will say that a connected graph on vertex set V is a *pseudo-tree* if it contains at most |V| edges.
- A graph is a *pseudo-forest* if each its connected components is a pseudo-tree.

Lemma 9.3 Graph G is a pseudo-forest.

Proof of Lemma 9.3

- Consider a connected component G_C .
- Restrict LP(*T*) and *x* to the jobs and machines of G_C only, to obtain LP_C(*T*) and x_C .
- The important observation is that x_C must be an extreme point solution to $LP_C(T)$.
- Lemma 9.1 $\Rightarrow x_C$ has at most $n_C + m_C$ nonzero variables $\Rightarrow G_C$ has at most $n_C + m_C$ edges \Rightarrow G_C is a pseudo-tree.

Perfect Matching

• Lemma 9.4

Graph *H* has a perfect matching.

Proof of Lemma 9.4

- Each job that is integrally set in x has exactly one edge incident at it in G. Remove these jobs, together with their incident edges, from G. Clearly the remaining graph is H.
- Since an equal number of edges and vertices were removed, *H* is also pseudo-forest.
- In *H*, each job has a degree of at least 2.
- So, all leaves in *H* must be machines.
- Keep matching a leaf with the job it is incident to, and remove them both from the graph.

Machines and Jobs and Matching

Machines and Jobs and Matching

Proof of Lemma 9.4

- Each job that is integrally set in x has exactly one edge incident at it in G. Remove these jobs, together with their incident edges, from G. Clearly the remaining graph is H.
- Since an equal number of edges and vertices were removed, *H* is also pseudo-forest.
- In *H*, each job has a degree of at least 2.
- So, all leaves in *H* must be machines.
- Keep matching a leaf with the job it is incident to, and remove them both from the graph.
- In the end we will be left with even cycles.
- Match off alternate edges of each cycle.
- This gives a perfect matching in *H*.

Machines and Jobs and Matching

Machines and Jobs and Matching

Algorithm LST

• Theorem 9.5

Algorithm LST achieves an approximation guarantee of factor 2 for the $R||C_{max}$ problem.

Algorithm LST (Lenstra, Shmoys, Tardosh 1990)

Input $(J = \{1, ..., n\}, M = \{M_1, ..., M_m\}, p: J \times M \to \mathbf{Q}^+)$

- 1. By a binary search in the interval $[\alpha/m, \alpha]$, find the smallest value of $T \in \mathbb{Z}^+$ for which LP(*T*) has a feasible solution. Let this value be *T**.
- 2. Find an extreme point solution, say x, to LP(T^*).
- 3. Assign all integrally set jobs to machines as in x.
- 4. Construct graph *H* and find a perfect matching μ in it.
- 5. Assign fractionally set jobs to machines according to matching. Let σ be the obtained schedule.

Output (σ)

Proof of Theorem 9.5

- Clearly, $T^* \leq OPT$, since LP(OPT) has a feasible solution. The extreme point solution, x, to LP(T^*) has a fractional makespan of $\leq T^*$.
- Therefore, the restriction of x to integrally set of jobs has an integral makespan of $\leq T^*$.
- The perfect matching found in *H* schedules at most one extra job on each machine.
- Hence, the total makespan is $\leq 2T^* \leq 2OPT$.
- The algorithm clearly runs in polynomial time.

Tight examples

- Let us provide a family of tight examples. The *m*-th instance consists of $m^2 m + 1$ jobs that need to be scheduled on *m* machines. The first job has a processing time of *m* on all machines, and all the remaining jobs have unit processing time on each machine.
- The optimal schedule assigns the first job to one machine, and *m* of the remaining jobs to each of the remaining m - 1machines. Its makespan is *m*.
- Suppose the following extreme point solution to LP(m) is picked. It assign 1/m of the first job and m 1 other jobs to each of the m machines. Rounding will produce a schedule having a makespan of 2m 1.

The Instance with 4 machines

Exercises

- Does Algorithm LST achieve a better factor than 2 for the special case that the machines are identical?
- Prove that x_C must be an extreme point solution to $LP_C(T)$.
- Prove that the solution given to LP(*m*) in the Example is an extreme point solution.