
Linear Program 

  
Set Cover 



Set Cover 

•  Given a universe U of n elements, a 
collection of subsets of U, S = {S1,…, Sk}, 
and a cost function c: S → Q+. 

•  Find a minimum cost subcollection of S 
that covers all elements of U.  



Frequency 

•  Define the frequency fi of an element ei  to be 
the number of sets it is in.  

•  Let  f = maxi=1,…,n fi. 



IP (Set Cover) 
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LP-relaxation 
 (Set Cover) 
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Algorithm LP-rounding 

 

1.  Find an optimal solution to the LP-relaxation.	
2.  Pick all sets S for which xS ≥ 1/f in this solution. 



f-approximation 

   Theorem 10.1 
   Algorithm LP-rounding achieves an approximation 

factor of f for the set cover problem. 
Proof. 
•  Consider an arbitrary element e. Each element is in at most f sets. 
•  e ∈ U: (1) ⇒ ∃ xS ≥ 1/f (e ∈ S) ⇒ e is covered. 
•  We have xS ≥ 1/f  for every picked set S. Therefore the cost of the 

solution is at most f times the cost of fractional cover. 



2-approximation 

   Corollary 10.2 
    Algorithm LP-rounding achieves an 

approximation factor of f for the vertex       
cover problem. 



Tight example (hypergraph) 

V1 

V2 

V3 

Vk 

V=V1∪V2 ∪… ∪Vk 

nk  hyperedges 

Each hyperedge picks one vertex from 
each Vi. In the set cover instance, 
elements correspond to hyperedges 
and sets correspond to vertices.   



Primal and Dual programs 
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The 1-st LP-Duality Theorem 

       
   The primal program has finite optimum iff its dual 

has finite optimum. Moreover, if x*=(x1*,…, xn*) 
and y*=(y1*,…, ym*) are optimal solutions for the 
primal and dual programs, respectively, then  
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Weak Duality Theorem 
•  If x = (x1,…, xn) and y = (y1,…, ym) are feasible solutions for the 

primal and dual programs, respectively, then 

•  Proof. Since y is dual feasible and xj are nonnegative, 

•  Similarly, since x is primal feasible and yi are nonnegative, 
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Weak Duality Theorem(2) 

•  We obtain 

•  By the 1-st LP-Duality theorem, x and y are both 
optimal solutions iff both inequalities hold with 
equality. Hence we get the following result about 
the structure of optimal solutions. 
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The 2-nd LP-Duality Theorem 

•  Let x and y be primal and dual feasible solutions , 
respectively. Then, x and y are both optimal iff all 
of the following conditions are satisfied: 
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Primal-Dual Schema 

•  The primal-dual schema is the method of 
choice for designing approximation algorithms 
since it yields combinatorial algorithms with 
good approximation factors and good running 
times. 

•  We will first present the central ideas behind 
this schema and then use it to design a simple  
f factor algorithm for set cover, where f is the 
frequency of the most frequent element.  



Central idea 

•  Most known approximation algorithms using 
the primal–dual schema run by ensuring one 
set of conditions and suitably relaxing the 
other. In the following description we capture 
both situations by relaxing both conditions. 
Eventually, if primal conditions are ensured, 
we set α = 1, and if dual conditions are 
ensured, we set β = 1.  



Complementary slackness conditions 
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Primal complementary slackness conditions 
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•  Proposition 10.3 
        If x and y are primal and dual feasible 

solutions satisfying the conditions stated above 
then 
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Proof  

.
11 1

1 11

∑∑ ∑

∑ ∑∑

== =

= ==

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎟
⎠

⎞
⎜
⎝

⎛
≤

m

i
ii

dualm

i
i

n

j
jij

n

j
j

m

i
iij

primaln

j
jj

ybyxa

xyaxc

αβα

α



Primal-Dual Scheme 

•  The algorithm starts with a primal infeasible solution and dual feasible 
solution; these are usually trivial solutions x = 0 and  y = 0. 

•  It iteratively improves the feasibility of the primal solution, and the 
optimality of the dual solution, ensuring that in the end a primal feasible 
solution is obtained and all conditions stated above, with a suitable choice 
of α and β are satisfied. 

•  The primal solution is always extended integrally, thus ensuring that the 
final solution is integral. 

•  The improvements to the primal and the dual go hand-in-hand : the current 
primal solution is used to determine the improvement to the dual, and vice 
versa. 

•  Finally, the cost of the dual solution is used as a lower bound on OPT. 



LP-relaxation 
 (Set Cover) 
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Dual Program 
 (Set Cover) 
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α = 1, β = f 
Primal complementary slackness conditions 
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     Set will be said to be tight, if 
Pick only tight sets in the cover. 

Each element having a nonzero dual value  
can be covered at most f times. 



Primal-Dual Algorithm 

0)    Input (U, Ω, c: Ω → Q+) 
1)   x ← 0, y ← 0 .	
2)   Until all elements are covered, do: 

•  Pick an uncovered element, say e, and raise ye until 
some set goes tight. 

•  Pick all tight sets in the cover and update x. 
•  Declare all the elements occurring in these sets as 

“covered”. 
3)   Output (x) 



f-factor approximation 

• Theorem 10.4 
   Primal-Dual Algorithm achieves an 

approximation factor of f. 



Proof 

•  The algorithm terminates when all elements are covered 
(feasibility). 

•  Only tight sets are picked in the cover by the algorithm. 
Values of ye in tight sets no longer change (feasibility and 
primal condition). 

•  Each element having a nonzero dual value can be covered at 
most f times (dual condition). 

•  By proposition 10.3 the approximation factor is f. 



Tight example 
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Vertex cover 

•  Given  an undirected graph G = (V, E), and a cost 
function on vertices c: V → Q+. 

•  Find a minimum cost vertex cover. 



IP (Vertex Cover) 

minimize     c S( )
v∈V
∑ xv

s.t.     xu + xv ≥1        (u,v)∈ E    
       xv ∈ 0,  1{ }        v ∈V



LP-relaxation 
 (Vertex Cover) 

minimize     c S( )
v∈V
∑ xv

s.t.     xu + xv ≥1        (u,v)∈ E    
                xv ≥ 0           v ∈V



Half-integral solution 

•  Recall that an extreme point solution of a set of 
linear inequalities is a feasible solution that cannot 
be expressed as convex combination of two other 
feasible solutions.  

•  A half-integral solution to LP is a feasible solution 
in which each variable is 0, 1, or 1/2.  



Property of extreme points 

   Lemma 10.5 
•  Let x be a feasible solution to the LP-relaxation that 

is not half- integral.  
•  Then, x is the convex combination of two feasible 

solutions and is therefore not an extreme point 
solution for the set of inequalities in LP.  



Proof 
•  Consider the set of vertices for which solution x does not 

assign half-integral values. Partition this set as follows. 

•   For ε > 0, define the following two solutions.  

V+ = v : 1
2
< xv <1
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2
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yv =
xv +ε,    xv ∈V+
xv −ε,    xv ∈V−
xv,   otherwise

   zv =
xv −ε,    xv ∈V+
xv +ε,    xv ∈V−
xv,   otherwise
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Proof (2) 

•  By assumption, V+∪V− ≠ ∅, and so x is distinct 
from y and z.  

•  Furthermore, x is a convex combination of y and z, 
since x = 1/2(y + z).  

•  We will show, by choosing ε > 0 small enough, 
that y and z are both feasible solutions for LP, 
thereby establishing the lemma.  



Proof (3) 
•  Ensuring that all coordinates of y and z are nonnegative is easy.  
•  Suppose xu + xv > 1. Choose ε small enough, such that y and z 

do not violate the constraint for such an edge.  
•  xu + xv = 1. There are essentially three possibilities for xu and xv.  

–  xu = xv = 1;  
–  xu = 0, xv = 1;  
–  u ∈ V+, v ∈ V−.  

•  In all three cases, for any choice of ε,  
                                                xu + xv = yu + yv = zu + zv = 1. 



Property of extreme points 

   Theorem 10.6 
•  Any extreme point solution for the set of inequalities 

in LP is half-integral.  

•  Theorem 10.6 directly leads to a factor 2 
approximation algorithm for vertex cover: find an 
extreme point solution, and pick all vertices that are 
set to half or one in this solution.  



Exercise  

•  Modify Algorithm LP-rounding so that it picks 
all sets that are nonzero in the fractional 
solution. Show that the algorithm also achieves 
a factor of f.  

•  Hint: Use the primal complementary slackness 
conditions to prove this.  


