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Abstract—Under study is the problem of locating facilities when two competing companies suc-
cessively open their facilities. Each client chooses an open facility according to his own preferences
and return interests to the leader firm or to the follower firm. The problem is to locate the leader firm
so as to realize the maximum profit (gain) subject to the responses of the follower company and the
available preferences of clients. We give some formulations of the problems under consideration in
the form of two-level integer linear programming problems and, equivalently, as pseudo-Boolean
two-level programming problems. We suggest a method of constructing some upper bounds for
the objective functions of the competitive facility location problems. Our algorithm consists in
constructing an auxiliary pseudo-Boolean function, which we call an estimation function, and
finding the minimum value of this function. For the special case of the competitive facility location
problems on paths, we give polynomial-time algorithms for finding optimal solutions. Some results
of computational experiments allow us to estimate the accuracy of calculating the upper bounds for
the competitive location problems on paths.
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INTRODUCTION

The uncapacitated facility location problem is a well-known discrete optimization problem [3, 11].
In the maximization facility location problem, a manufacturer decides which facilities from a given set
to open and which open facility to assign to each client so as to maximize profit. The profit is equal
to the total benefit that the open facilities receive from serving the assigned clients minus some fixed
costs of opening facilities. Although we have two parts (i.e., the manufacturer and the consumer), it is
supposed in this model that a decision is made by the manufacturer that opens facilities and assigns
clients to the open facilities according to his objective function.

In this paper, we study a more general model, namely, the locating (opening) facilities under the as-
sumption of competition. It is supposed that two rival firms, manufacturing some product, successively
make decisions of opening their facilities from the given sets of possible facilities. In this model, each
client is assumed to make decision on the basis of his own preferences: he selects a best open facility
giving the profit to one of the firms. By analogy with the Stackelberg model [15], the process of making
decision in this competition location model consists of the three stages: At the first stage, one of the firms
(the leader firm) taking into account the possible responses of the second firm (the follower firm) opens
(locates) its facilities. At the second stage, the follower firm having information about open facilities of
the leader firm opens its facilities. Finally, each client selects a best open facility on the basis of his own
preferences. The literature, where the decision making process or its part is formalized as a three-stage
optimization process with using integer and mixed programming problems, can be considered as vast.
We will not try to overview all publications but refer to the definitive monographs and surveys on the
subject [6, 9, 11, 12, 14]. Note that almost all competitive location models use the equality constraint
on the number of the facilities opened both by the leader and follower firms. In this connection, note
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that the authors of [8] suggests a three-stage optimization model that has no bounds on the number
of open facilities but contains some fixed costs for opening facilities by both the leader and follower
firms and which, therefore, can be considered as a generalization of the classical uncapacitated facility
location problem. Note also that in all three-stage optimization models the objective function is the
profit (gain). Still different notions of optimal solutions are considered. For instance, [8] introduces the
notion of competitively stable solution, i.e., a solution in which the follower firm can open no “viable”
facility. Completing the survey on the available literature on the competition facility location problems,
we may conclude that, despite a vast number of papers on the subject containing different settings of
the problems and some studies of the properties of solutions to these problems, the number of papers is
not great where some methods of constructing the optimal solutions and upper bounds on the objective
functions are suggested. Note the papers [4, 13] that study the competitive facility location problems
under the auxiliary assumption that the number of the facilities opened by the follower firm is not great
or even equals one.

In this paper, we present and study the problems that formalize the above three-stage process of
competitive location of the leader and the follower firm. The models contain the fixed costs for opening
facilities, and expenses of opening the same facility can be different for the leader and the follower firm.
The preferences of the clients are formalized as in the location problems with orders [1, 5], by assigning
to each client a linear order on the set of possible facilities. This results in two-level mathematical
programming problems [7]. In the problems of this type, the constraints for part of variables are not
in the form of explicit relations (equations or inequalities) but are given implicitly as the set of optimal
solutions to some “inner” optimization problem whose parameters depend on a distinct part of variables.

In the next section, we give the formulations of the competitive location problems in the form of
two-level mathematical programming problems and describe the notion of optimal solution for these
problems. We consider the two settings that differ by the objective functions of the inner problem (the
follower firm problem): in the first, the profit is maximized; while in the next, the income of the follower
firm. We consider the different special cases of the problems in which the profit realized by a facility does
not depend on the facility but just on the clients that selected this facility. These models are written as the
two-level integer linear programming problems and are the main object of further study. The possibility
is mentioned of a representation of the second problem as a max-min integer linear programming
problem. In Section 2, we give some equivalent formulations of the problems in the form of pseudo-
Boolean two-level programming problems [10]. Section 3 considers the competitive location problems
on networks. For these problems, the order relations are determined by the shortest distances between
the vertices of a network. It is shown that, in the case when the network is a path, the problems under
consideration are polynomial-time solvable. The corresponding algorithms constructed on the basis of
the dynamic programming method [2, 3] run in time O(n5), where n is the number of vertices of the
network under study. In Section 4, we present an algorithm for finding an upper bound on the values
of the objective functions of our competitive location problems. Our approach uses their statements
in the form of pseudo-Boolean programming problems and reduces to constructing a pseudo-Boolean
function called an estimation function and calculating its minimum value. In the concluding section,
we consider a numerical instance of the competitive location problem for which the estimate function is
constructed and its upper bound is calculated. We present some results of a computational experiment
with the algorithm of constructing the upper bound for some classes of competitive location problems
on a network that alow us to evaluate the accuracy of calculating the upper bound for the problems of
these classes.

1. FORMULATION OF COMPETITIVE LOCATION PROBLEMS

We now formulate the problems that generalize the classical maximization facility location problem
and, as was mentioned above, describe the situation when two competitive firms (the leader firm and the
follower firm) successively open their facilities manufacturing some product for satisfying the demands of
a given set of consumers (clients). The set of possible sites is given for locating facilities at each of which
either of the firms can open its own facility. For each of these sites, some fixed costs of opening a facility
are known, which can be different for the leader firm and the follower firm. It is assumed that each client
selects a serving facility on the basis of his own preferences, which can rank (order) all facilities available
to be opened. The rule of selecting a serving facility by the client consists in selecting the first open
facility according to the given order. We assume that, for each facility and each client, we are given the
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value of the profit that this facility realizes when serving this client. The income of either firm is the sum
of the profits received by its open facilities; and the profit of a firm is equal to the income minus the fixed
costs for opening the facilities.

In the situation under consideration, the decisions that determine the incomes and the profits of the
firms are made by all participants including the leader firm, the follower firm, and the clients. The decision
making process can be represented as the following three stage process:

1. The leader firm opens its facilities of possible sites of their location subject to the information that
the follower firm can also open its facilities and “capture” part of clients.

2. The follower firm, informed about the open facilities of the leader firm, opens its own facilities at
the sites not occupied by the open facilities of the leader firm.

3. Each client having information about the set of open facilities of either firm selects a serving facility
according to his rules and returns interest either to the leader firm or to the follower firm.

The problem stated on behalf of the leader company consists in selecting the location of facilities so
as to realize the maximum profit provided that the follower firm “captures” a part of clients by opening
its facilities according to its objective function. It is assumed that the goal of the follower firm is known
and both firms are informed about the rules that the clients use to select serving facilities.

Consider the two settings of the problem that differ in the objective functions of the follower firm:
In the first, we assume that the goal of the leader firm as well as the follower firm is the realization of
the maximum profit. In the second, the goal of the leader firm is to realize the maximum income, i.e.,
capturing the maximum number of clients. Moreover, in the second case, we will also assume that each
facility opened by the follower firm cannot be detrimental, i.e., the income realized by this facility cannot
be smaller than the fixed cost for its opening.

To formalize the statements of the problems we introduce the following notation:
I = {1, . . . ,m} is the set of facilities (possible sites for locating them);
J = {1, . . . , n} is the set of clients;
pij is the income realized by facility i in I opened by the leader firm when serving client j in J ;
qij is the income realized by facility i opened by the follower firm when serving client j in J ;
≺j is a linear order on I determining the preferences of client j in J , and i ≺j k means that of the two

open facilities i and k in I client j selects facility i; the relation i �j k means that either i ≺j k or i = k;
in the cases when it is clear with respect to which client the facilities are compared the index j in ≺j will
be omitted;

fi is the fixed cost of the leader firm for opening facility i in I;
gi is the fixed cost of the follower firm for opening facility i in I.
To formally write the problems we use the variables of the classical incapacitated facility location

problem:
xi is the variable indicating if facility i in I is opened by the leader firm, i.e., xi = 1 if it is opened and

xi = 0 otherwise.
xij is the variable indicating if facility i in I opened by the leader firm is selected by client j in J , i.e.,

xij = 1 if it is selected and xij = 0 otherwise;
zi is the variable indicating if the follower firm opens facility i in I, i.e., zi = 1 if it opens and zi = 0

otherwise;
zij is the variable indicating if client j in J selects facility i in I opened by the follower firm, i.e., zij = 1

if it selects and zij = 0 otherwise.
By using the above variables, in the case when the goal of the follower firm is realizing the maximum

profit, the competitive location problem is written as follows:

max
(xi),(xij)

{
−

∑
i∈I

fixi +
∑
j∈J

( ∑
i∈I

pijxij

)(
1 −

∑
i∈I

z̃ij

)}
, (1)
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∑
i∈I

xij = 1, j ∈ J, (2)

xi ≥ xij , i ∈ I, j ∈ J, (3)

xi +
∑
i≺j l

xlj ≤ 1, i ∈ I, j ∈ J, (4)

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J, (5)

(z̃i), ((z̃ij)) is an optimal solution of the problem (7)–(11), (6)

max
(zi),(zij)

{
−

∑
i∈I

gizi +
∑
j∈J

∑
i∈I

qijzij

}
, (7)

∑
i∈I

zij ≤ 1, j ∈ J, (8)

zi ≥ zij , i ∈ I, j ∈ J, (9)

xi + zi +
∑
i≺j l

zlj ≤ 1, i ∈ I, j ∈ J, (10)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J. (11)

The above problem like any two-level programming problem includes the inner optimization problem
(7)–(11) which we call the follower firm problem.

The objective function (1) of the problem expresses the value of the profit realized by the leader firm
subject to the loss of part of the clients “captured” by the follower firm. It is indeed the case as the
inequality (8) holds for some j ∈ J with equality; i.e., if, for a client j, there is a facility opened by the
follower firm that is better than any open facility of the leader firm then the income realized by the leader
firm from client j becomes equal to zero. The constraint (2) guarantees that each client can select only
one facility of the leader firm; and the inequality (3) means that only one open facility can be selected. The
constraints (4) realize the rule used by a client to select an open facility. The objective function and the
constraints of the problem (7)–(11) can be treated similarly. The constraint (10) guarantees selecting
an open facility by a client according to the given rule and, moreover, shows that if a facility is opened by
the leader firm then it cannot be opened by the follower firm.

In the case when the goal of the follower firm is realizing the maximum income subject to the
additional assumption of profitability of each open facility, the competitive location problem differ only
in the constraints related to the follower firm problem. These are written as follows:

((z̃i), (z̃ij)) is an optimal solution of the problem (13)–(18), (12)

max
(zi),(zij)

∑
j∈J

∑
i∈I

qijzij, (13)

∑
i∈I

zij ≤ 1, j ∈ J, (14)

zi ≥ zij , i ∈ I, j ∈ J, (15)

xi + zi +
∑
i≺j l

zlj ≤ 1, i ∈ I, j ∈ J, (16)
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∑
j∈J

qijzij ≥ gizi, i ∈ I, (17)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J. (18)

Here (17) means that the income realized by each facility opened by the follower firm must be at least
the fixed cost for opening this facility.

Let us specify the notion of optimal solution of the competitive facility location problems (1)–(11)
and (1)–(5), (12)–(18) taking it into account that the inner problems can have several different optimal
solutions.

Let X denote the solution ((xi), (xij)) satisfying (2)–(5) which we call the feasible solution of
the competitive facility location problem (1)–(11) and (1)–(5), (12)–(18). For a fixed solution X, let
Z denote a feasible solution ((zi), (zij)) of the problem (7)–(11) or (13)–(18) depending on which
problem is the inner problem of the competitive facility location problem under consideration. Let O(X)
denote the set of optimal solutions Z̃ of the inner problem. Let L(X,Z) denote the value of the objective
function (1) on X and Z. Then the above-formulated competitive facility location problems can be briefly
written as

max
X

L(X, Z̃), Z̃ ∈ O(X).

For the competitive facility location problem, call a feasible solution X∗ optimal if the inner problem
has an optimal solution Z̃∗ ∈ O(X) satisfying the following two conditions:

1. L(X∗, Z̃∗) ≤ L(X∗, Z̃) for every Z̃ ∈ O(X∗).

2. For every feasible solution X, there exists an optimal solution Z̃ ∈ O(X) such that

L(X∗, Z̃∗) ≥ L(X, Z̃).

It is easy that if, for every solution X, the values of L(X, Z̃) are the same for each Z̃ ∈ O(X) then the
first optimality condition certainly holds. In the general case, this definition of optimal solution gives that
the competitive facility location problems (1)–(11) and (1)–(5), (12)–(18) are equivalently rewritten in
the form of the problem

max
X

min
Z̃∈O(X)

L(X, Z̃).

This is the max-min two-level mathematical programming problem such that the set of feasible
solutions Z̃ is determined implicitly as the set of optimal solutions of the inner problem.

We will study the competitive facility location problems (1)–(11) and (1)–(5), (12)–(18) under the
following additional condition that allows us to restate them as the two-level integer linear programming
problems: Assume that the income realized by each facility from client j in J does not depend on the
facility and is equal to bj ; i.e., we assume that, for every j ∈ J and i ∈ I, we have pij = qij = bj .

In this case, the function L(X,Z) takes the form

L(X,Z) = −
∑
i∈I

fixi +
∑
j∈J

bj

(
1 −

∑
i∈I

z̃ij

)

and, therefore, the variables xij , i ∈ I and j ∈ J, can be excluded from the problems. In result, the
problem (1)–(11) can be rewritten as

max
(xi)

min
(z̃i),(z̃ij)

{
−

∑
i∈I

fixi +
∑
j∈J

bj

(
1 −

∑
i∈I

z̃ij

)}
, (19)

∑
i∈I

xi ≥ 1, (20)

xi ∈ {0, 1}, i ∈ I, (21)
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((z̃i), (z̃ij)) is an optimal solution of the problem (23)–(27), (22)

max
(zi),(zij)

{
−

∑
i∈I

gizi +
∑
j∈J

∑
i∈I

bjzij

}
, (23)

∑
i∈I

zij ≤ 1, j ∈ J, (24)

zi ≥ zij , i ∈ I, j ∈ J, (25)

xi + zi +
∑
i≺j l

zlj ≤ 1, i ∈ I, j ∈ J, (26)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J. (27)

The similar formulation of the problem (1)–(5), (12)–(18) differs from (19)–(27) in the constraints
related to the follower firm problem which have the following form:

((z̃i), (z̃ij)) is an optimal solution of the problem (29)–(34), (28)

max
(zi),(zij)

∑
j∈J

∑
i∈I

bjzij , (29)

∑
i∈I

zij ≤ 1, j ∈ J, (30)

zi ≥ zij , i ∈ I, j ∈ J, (31)

xi + zi +
∑
i≺j l

zlj ≤ 1, i ∈ I, j ∈ J, (32)

∑
j∈J

bjzij ≥ gizi, i ∈ I, (33)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J. (34)

The above formulations (19)–(27) and (19)–(21), (28)–(34) of the competitive facility location
problems are the two-level integer linear programming problems. Nevertheless, this remark does not
apply to either problem in the same manner.

Given a fixed solution X of the problems (19)–(27) and (19)–(21), (28)–(34), let O1(X) denote the
set of optimal solutions of the problem (23)–(27); and let O2(X) and D2(X) be the set of optimal and
feasible solutions of the problem (29)–(34), respectively. Let F2(Z) be the objective function (29) of the
problem (29)–(34). Note that since

L(X,Z) = −
∑
i∈I

fixi +
∑
j∈J

bj

(
1 −

∑
i∈I

zij

)
= −

∑
i∈I

fixi +
∑
j∈J

bj − F2(Z),

the value of L(X,Z) will be the same for all optimal solutions Z̃ ∈ O2(X). Therefore,

min
Z̃∈O2(X)

L(X, Z̃) = −
∑
i∈I

fixi +
∑
j∈J

bj − F2(Z̃)

= −
∑
i∈I

fixi +
∑
j∈J

bj − max
Z∈D2(X)

F2(Z) = min
Z∈D2(X)

L(X,Z).
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Hence, the problem (19)–(21), (28)–(34) is equivalent to the following max-min integer linear
programming problem:

max
(xi)

min
(zi),(zij)

{
−

∑
i∈I

fixi +
∑
j∈J

bj

(
1 −

∑
i∈I

zij

)}
,

∑
i∈I

xi ≥ 1, xi ∈ {0, 1}, i ∈ I,

where ((zi), (zij)) is a feasible solution of (29)–(34).

In this problem, the set of solutions ((zi), (zij)) of which the best one is selected is given explicitly by
the constraints (30)–(34).

Taking into account this representation of the problem (19)–(21), (28)–(34), we see that

min
Z̃∈O2(X)

L(X, Z̃) = min
Z∈D2(X)

L(X,Z) ≤ min
Z̃∈O1(X)

L(X, Z̃).

for every solution X of the problems (19)–(27) and (19)–(21), (28)–(34). The last inequality holds
because, for an optimal solution Z̃ of (23)–(27), the constraint (33) is clearly satisfied. Therefore, the
solution Z̃ is a feasible solution of (29)–(34).

It follows that an upper bound on the values of the objective function (19) of the problem (19)–(27)
will be simultaneously an upper bound for the values of the objective function (19) of the problem (19)–
(21), (28)–(34).

2. EQUIVALENT FORMULATION
OF THE COMPETITIVE FACILITY LOCATION PROBLEMS

Since, for a fixed solution (xi) of the problems (19)–(27) and (19)–(21), (28)–(34), the values of
the variables zij , i ∈ I and j ∈ J, of a feasible solution ((zi), (zij)) of the inner problems (23)–(27) and
(29)–(34) are determined uniquely by the vectors (xi) and (zi); therefore, these variables can be excluded
from consideration as well as previously were excluded the variables xij , i ∈ I and j ∈ J . To obtain the
corresponding equivalent formulations of our problems introduce the following notation:

For an arbitrary (0, 1)-vector w = (wi), i ∈ I, and for given j ∈ J , let ij(w) denote i0 in the set
I0 = {i ∈ I | wi = 0} such that i0 �j i for every i ∈ I0. If I0 = ∅ then let ij(w) denote i0 ∈ I such that
i �j i0 for every i ∈ I. For (0, 1)-vectors (xi) and (zi), let y = (yi) and u = (ui) denote (0, 1)-vectors
such that yi = 1 − xi and ui = 1 − zi, i ∈ I.

Using the above notation, we obtain that, for every solutions (xi) and ((zi), (zij)) for every j ∈ J , the
following equalities hold:

∑
i∈I

zij = 1 −
∏

i≺ij(y)

ui =
∏

i�ij(u)

yi.

Indeed, assume that ui = 1 for every i ≺ ij(y). Then ij(y) � ij(u) and so yi = 0 for some i � ij(u).
Consequently, in this case, the equalities hold. If ui = 0 for some i ≺ ij(y) then ij(u) ≺ ij(y) and so
yi = 1 for every i � ij(u). Therefore, in this case, the desired equalities hold as well.

Using these equalities, we have

max
(xi)

min
(z̃i),(z̃ij)

{
−

∑
i∈I

fixi +
∑
j∈J

bj

(
1 −

∑
i∈I

z̃ij

)}

= max
(yi)

min
(ũi)

{
−

∑
i∈I

fi(1 − yi) +
∑
j∈J

bj

(
1 −

∏
i�ij(ũ)

yi

)}
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= −
∑
i∈I

fi +
∑
j∈J

bj + max
(yi)

min
(ũi)

{∑
i∈I

fiyi −
∑
j∈J

bj

∏
i�ij(ũ)

yi

}

= −
∑
i∈I

fi +
∑
j∈J

bj − min
(yi)

max
(ũi)

{
−

∑
i∈I

fiyi +
∑
j∈J

bj

∏
i�ij(ũ)

yi

}
,

max
(zi),(zij)

{
−

∑
i∈I

gizi +
∑
j∈J

∑
i∈I

bizij

}

= max
(ui)

{
−

∑
i∈I

gi(1 − ui) +
∑
j∈J

bj

(
1 −

∏
i≺ij(y)

ui

)}

= −
∑
i∈I

gi +
∑
j∈J

bj − min
(ui)

{
−

∑
i∈I

giui +
∑
j∈J

bj

∏
i≺ij(y)

ui

}
.

Whence we obtain the equivalent formulation of the problem (19)–(27) in the form of the min-max
pseudo-Boolean two-level programming problem:

min
(yi)

max
(ũi)

{
−

∑
i∈I

fiyi +
∑
j∈J

bj

∏
i�ij(ũ)

yi

}
, (35)

∏
i∈I

yi = 0, (36)

yi ∈ {0, 1}, i ∈ I, (37)

(ũi) is an optimal solution of the problem (39)–(40), (38)

min
(ui)

{
−

∑
i∈I

giui +
∑
j∈J

bj

∏
i≺ij(y)

ui

}
, (39)

ui ∈ {0, 1}, i ∈ I. (40)

By analogy, we obtain that the problem (19)–(21), (28)–(34) has an equivalent formulation as a min-
max pseudo-Boolean programming problem.

3. NETWORK COMPETITIVE FACILITY LOCATION PROBLEMS
Let G = (V,E) be a connected graph with vertex set V and edge set E, and let each edge have

positive weight called the edge length. The length of a path in G is equal to the sum of lengths of the
edges constituting this path. Call a path from vertex i to vertex j shortest if the length of this path is
at most the length of any path from i to j. Denote the length of such a path by d(i, j). We assume that
d(i, i) = 0.

Consider a competitive facility location problem such that the set of facilities I and the set of clients J
coincide with the vertex set V of a given graph G(V,E). Suppose also that, for each j ∈ J , an order
relation ≺j on I is determined by the lengths of the shortest paths to the vertex j. Assume that i ≺j k
if d(i, j) < d(k, j) or d(i, j) = d(k, j) and i < k. Under the above assumptions our competitive facility
location problems will be called network competitive facility location problems.

Let us show that if G is a path (i.e., it has the vertices of degree at most 2) then the problem (19)–(27)
on G and the problem (19)–(21), (28)–(34) on G can be solved in polynomial time.

Fix a solution (xi) of problems (19)–(27) and (19)–(21), (28)–(34). Let I0 = {i ∈ I | xi = 1} be
a set {i1, i2, . . . , iK} where 0 = i0 < i1 < i2 < · · · < iK < iK+1 = n + 1. For convenience, we assume
that I0 also includes the fictive elements 0 and n + 1. Therefore, append the set of vertices V of G by 0
and n + 1 and assume that fn+1 = 0, bn+1 = 0, and i ≺j 0, i ≺j n + 1 for all j ∈ J and i ∈ I.

Note that, by the properties of the relations ≺j on the vertices of the path, the feasible solutions
((zi), (zij)) of the inner problems (23)–(27) and (29)–(34) have the following properties for all k =
1, . . . ,K + 1:
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• if zi = 1 and i ∈ {ik−1, . . . , ik} then zij = 0 for every j /∈ {ik−1, . . . , ik};

• if zi = 1 and i /∈ {ik−1, . . . , ik} then zij = 0 for every j ∈ {ik−1, . . . , ik}.

It follows that, for a fixed solution (xi), each of the inner problems (23)–(27) and (29)–(34) splits into
the K + 1 inner problems such that kth inner problem, k = 1, . . . ,K + 1, differs from the corresponding
original problem in that the sets I and J are replaced by Ik and Jk, Ik = Jk = {ik−1, . . . , ik}. Moreover,
the kth inner problem is considered for a fixed vector (xi), i ∈ Ik, where xik−1

= xik = 1 and xi = 0 for
i �= ik−1, i �= ik.

Let
((

z̃k
i

)
,
(
z̃k
ij

))
denote an optimal solution of the kth inner problem, k = 1, . . . ,K + 1. Note that,

for k = 1, . . . ,K + 1, by the properties of the relations ≺j on the vertices of a path, for every optimal
solution

((
z̃k
i

)
,
(
z̃k
ij

))
in the case of the problem (23)–(27), the vector

(
z̃k
i

)
will have at most two unit

components; and, in the case of the problem (29)–(34), there exists an optimal solution
((

z̃k
i

)
,
(
z̃k
ij

))

such that the vector
(
z̃k
i

)
has at most two unit components. It follows that, for a fixed solution (xi)

in the case of either problems (19)–(27) and (19)–(21), (28)–(34), a desired optimal solution of the
corresponding inner problem can be found in time O(n3).

Taking into account this for a fixed solution (xi), we can represent the objective function (19) of the
problem (19)–(27) as follows:

min
(z̃i),(z̃ij)

{
−

∑
i∈I

fixi +
∑
j∈J

bj

(
1 −

∑
i∈I

z̃ij

)}

= −
∑
i∈I

fixi +
∑
j∈J

bj − max
(z̃i),(z̃ij)

∑
j∈J

∑
i∈I

bj z̃ij

=
K+1∑
k=1

{
fik +

ik∑
j=ik−1+1

bj − max
(z̃k

i ),(z̃k
ij)

ik∑
j=ik−1+1

ik∑
i=ik−1+1

bj z̃
k
ij

}
.

Set

l(ik−1, ik) = −fik +
ik∑

j=ik−1+1

bj − max
(z̃k

i ),(z̃k
ij)

ik∑
j=ik−1+1

ik∑
i=ik−1+1

bj z̃
k
ij ,

where
((

z̃k
i

)
,
(
z̃k
ij

))
is an optimal solution of the kth inner problem of (23)–(27), k = 1, . . . ,K,. Then we

obtain the following equivalent formulation of the problem (19)–(27) on a path:

max
K

max
i1,...,iK

K+1∑
k=1

l(ik−1, ik); (41)

0 = i0 < i1 < · · · < iK < iK+1 = n + 1. (42)

The problem (19)–(21), (28)–(34) on a path can be represented in the same form. For this problem, the
function l(ik−1, ik) is written as

l(ik−1, ik) = −fik +
ik∑

j=ik−1+1

bj −
ik∑

j=ik−1+1

ik∑
i=ik−1+1

bj z̃
k
ij,

where
((

z̃k
i

)
,
(
z̃k
ij

))
is an optimal solution of the kth inner problem of (29)–(34), k = 1, . . . ,K. Note

that, for the either problems, by the above mentioned properties of optimal solutions
((

z̃k
i

)
,
(
z̃k
ij

))
of the

inner problems, the calculation of l(ik−1, ik) on every pair of points can be done in O(n3) time.
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Given algorithm for solving the problem (41), (42) is based on the dynamic programming method
[2, 3]. For every i ∈ {0, 1, . . . , n + 1}, let S(i) denote the optimal value of the objective function of the
following problem:

max
K

max
i1,...,iK

K+1∑
k=1

l(ik−1, ik); 0 = i0 < i1 < · · · < iK < iK+1 = i.

Assume that S(0) = 0.
The algorithm for solving (41), (42) consists of the two phases: The first phase includes n + 1 steps.

At the ith step, i = 1, . . . , n + 1, S(i) is computed by the formula

S(i) = max
0≤i′<i

{S(i′) + l(i′, i)}.

The second phase consists of a preliminary step and finitely many main steps. At the preliminary step,
put i′0 = n + 1. At tth main step, t = 1, 2, . . ., the algorithm seeks for the element i′t, 0 ≤ i′t < i′t−1, such
that

S
(
i′t−1

)
= S

(
i′t

)
+ l

(
i′t, i

′
t−1

)
.

If i′t > 0 then the next step starts. If i′t = 0 then put K = t − 1 and construct the optimal solution
{i1, . . . , iK}, where ik = i′K−k+1, k = 1, . . . ,K; and after the completion the algorithm terminates.

Provided that the function l(ik−1, ik) is given, the algorithm for solving the problem (41), (42) runs
in time O(n2) and computing all required values of l(ik−1, ik) can be implemented in O(n5) time.

Thus, we proved the following
Theorem 1. The competitive facility location problem (19)–(27) and (19)–(21), (28)–(34) on

a path with n vertices is polynomial-time solvable with time complexity O(n5).

4. UPPER BOUND ON THE OBJECTIVE FUNCTION
OF COMPETITIVE FACILITY LOCATION PROBLEMS

Consider the problem (19)–(27) and its equivalent formulation as a pseudo-Boolean two-level pro-
gramming problem (35)–(40). Construct a pseudo-Boolean function f(yi, . . . , ym) such that, at every
(0, 1)-vector y = (yi), the value of f does not exceed the value of the objective function (35). Call this
pseudo-Boolean function f(yi, . . . , ym) the estimation function.

To construct the estimation pseudo-Boolean function for every j0 ∈ J define the set Ij0 ⊂ I as
follows: Let i0 ∈ I. Consider the set

N(i0, j0) = {i ∈ I | i ≺j0 i0}
and the set

J(i0) = {j ∈ J | i0 �j i for every i /∈ N(i0, j0)}
that gives the points j ∈ J for which the element i0 is more preferable than each i /∈ N(i0, j0). This
set is nonempty because j0 ∈ J(i0). If N(i0, j0) = ∅ then we assume by definition that i0 ∈ Ij0 .
If N(i0, j0) �= ∅ then, for all k ∈ N(i0, j0), construct

J(k, i0) = {j ∈ J(i0) | k ≺j i0}
that defines the points j ∈ J(i0) for which the element k is more preferable than i0. We assume that
i0 ∈ Ij0 if and only if, for every k ∈ N(i0, j0),

gk >
∑

j∈J(k,i0)

bj.

Note that, for each j0 ∈ J , the set Ij0 is nonempty because if i0 �j0 i for each i ∈ I then i0 ∈ Ij0 .

The following establishes an important property of Ij0 :
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Lemma 1. If (xi) is a solution of the problem (19)–(27) such that xi = 0 for all i ∈ Ij0 then,
for an optimal solution ((z̃i), (z̃ij)) of the problem (23)–(27) at which the objective function (19)
takes the minimum value, we have

∑
i∈I

z̃ij0 = 1.

Proof. Consider an optimal solution ((z̃i), (z̃ij)) of (23)–(27) satisfying the property in the assumptions
of the lemma and assume that z̃ij0 = 0 for all i ∈ I. Let i0 ∈ I be such that xi0 = 1 and xi = 0, z̃i = 0
for all i ∈ N(i0, j0). By the definition of J(i0), for any j ∈ J(i0), we have i0 ≺j i for each i ∈ I such that
z̃i = 1. Since i0 /∈ Ij0 , there exists k ∈ N(i0, j0) for which J(k, i0) has the property

gk ≤
∑

j∈J(k,i0)

bj.

Thus, we see that, for some k ∈ I, z̃k = 0, there exists a set J(k, i0) such that, for all j ∈ J(k, i0), we
have k ≺j i0 and i0 ≺j i for every i ∈ I, z̃i = 1. Furthermore, the above inequality holds for the set.
This means that the solution

((
z̃′i

)
,
(
z̃′ij

))
differing from the original optimal solution ((z̃i), (z̃ij)) only

in that z̃′k = 1 and z̃′kj = 1, j ∈ J(i0, k), also will be an optimal solution of the problem (23)–(27) and,
moreover, will provide a smaller value of the objective function (19). This contradicts the choice of the
optimal solution ((z̃i), (z̃ij)) and proves Lemma 1.

Consider the problem (35)–(40) and, by using the above-established, prove the following
Lemma 2. For every solution y = (yi) of the problem (35)–(40) and an optimal solution

ũ = (ũi) of (39), (40) at which the objective function (35) takes the maximum value,
∏

i�ij0 (ũ)

yi ≥
∏

i∈Ij0

yi for all j0 ∈ J.

Proof. If yi = 0 for some i ∈ Ij0 then the inequality holds. Let yi = 1 for every i ∈ Ij0 . Then by Lemma 1
for the optimal solution (ũi) of the problem (39), (40) on which the objective function (35) takes the
maximum value, ij0(ũ) ≺ ij0(y). Therefore, yi = 1 for any i � ij0(ũ) and, consequently, the desired
inequality holds. The proof of Lemma 2 is over.

Consider a pseudo-Boolean function of the form

f0(y1, . . . , ym) = −
∑
i∈I

fiyi +
∑
j∈J

bj

∏
i∈Ij

yi.

By Lemma 2 for every vector y = (yi),

max
(ũi)

{
−

∑
i∈I

fiyi +
∑
j∈J

bj

∏
i�ij(ũ)

yi

}
≥ f0(y1, . . . , ym).

Hence, f0(y1, . . . , ym) is an estimation function and

f0 = min
(yi)

{
f0(y1, . . . , ym) + F

∏
i∈I

yi

}
,

where F > min
i∈I

fi, is a lower bound for the objective function (35) of the problem (35)–(40). Thus, we

arrive at the following
Theorem 2. The number

UB =
∑
j∈J

bj −
∑
i∈I

fi − f0

is an upper bound for the optimal value of the objective function (19) of the problem (19)–(27).
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A network G with 11 vertices

The above upper bound, as was mentioned earlier, is an upper bound for the optimal value of the
objective function (19) of (19)–(21), (28)–(34).

The algorithm for computing the upper bound for the objective function of the problems (19)–(27)
and (19)–(21), (28)–(34) includes the two phases: In the first phase, the estimation pseudo-Boolean
function is constructed and, in the second phase, its minimum value is computed. Constructing the
estimation function reduces to finding Ij for each j ∈ J . From the definition of this set it follows that the
set can be constructed in time O(m2n2). For solving the minimization problem for the pseudo-Boolean
function equivalent to the uncapacitated facility location problem [3] we can use quite a few algorithms
[3] based on the ideas of implicit enumeration and local search.

5. A NUMERICAL EXAMPLE AND RESULTS OF A COMPUTATIONAL EXPERIMENT

We present the results of the algorithm constructing the upper bound for an instance of the problem
(19)–(27) on the network G depicted in the figure.

The network has 11 vertices with the numbers indicated in the centers of the circles representing
the vertices of the network. The distances between the neighboring vertices defining for the clients the
facility selection rules are indicated near the edges connecting the neighboring vertices. The input data
of the instance are given in the table.

The income bj realized from client j, the fixed costs fi and gi

of opening facility i by the leader firm and the follower firm

1 2 3 4 5 6 7 8 9 10 11

bj 10 15 20 10 15 20 10 15 20 5 5

fi 28 28 28 28 28 28 28 28 28 28 28

gi 18 18 18 18 18 18 18 18 18 18 18

The optimal solution of the instance is the vector
(
x�

i

)
, where x�

3 = x�
9 = 1, x�

i = 0 for i �= 3, i �= 9;
and the corresponding optimal solution of the inner problem is defined by the vector

(
z̃�
i

)
, where

z̃�
4 = z̃�

5 = 1, z̃�
i = 0 for i �= 4, i �= 5. The facilities of the leader firm will serve the clients located at the

vertices with numbers 2, 3, 8, 9, and 10 delivering the total income equal to 75. Therefore, the maximum
profit of the leader firm is equal to 19.
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The sets Ij , j = 1, . . . , 11, required for computing the upper bound in the case of the instance are as
follows:

I1 = {1, 2, 5}, I5 = {1, 5, 6, 8}, I9 = {9},
I2 = {1, 2, 3}, I6 = {6}, I10 = {6, 7, 9, 10, 11},
I3 = {3}, I7 = {4, 7, 10, 11}, I11 = {4, 7, 9, 10, 11}.
I4 = {3, 4, 7}, I8 = {5, 6, 8, 9},

The minimum value f0 of the corresponding estimation function attains at the vector
(
y�

i

)
and is

equal to −207, where y�
3 = y�

6 = 0, y�
i = 1 for i �= 3 and i �= 6. Therefore, the upper bound is

11∑
j=1

bj −
11∑
i=1

fi − f0 = 145 − 308 + 207 = 44,

while the optimal value of the objective function is 19.

To show the efficiency of the suggested upper bound we give the results of a computational experiment
consisting in computing an upper bound for the objective function of the problem (19)–(27) on a path
and comparing them with the optimal values of the objective function.

Computations were done for two classes of the problems with input data produced as follows:

• The number of the vertices is 100.

• The distance between neighboring vertices is a uniformly distributed random variable with integer
values between 1 and 6.

• The income bj realized from client j is a uniformly distributed random variable with integer values
between 5 and 15.

• The fixed costs fi of opening facility i by the leader firm is a constant value equal to 40.

• The fixed costs of opening facility i by the follower firm is a constant value equal to 35 for the first
class of the problems and 40 for the second.

Computations were done for the series of 20 problems from each class. For the specified problem,
we computed the accuracy of the upper bound equal to the ratio of the value of the upper bound to the
optimal value of the objective function. For the first class of problems, the average value of the accuracy
is equal to 1.81 and, for the second class, 1.47.

The retrieved values of the accuracy seem to be quite acceptable and leave hope for the efficient
utilization of the above-suggested upper bound when constructing branch-and-bound type algorithms
for solving the competitive facility location problems. Notice also that the optimal solutions of the
competitive facility location problem (pseudo-Boolean two-level programming problems) resulted from
computations and the optimal solutions of the minimization problem for the corresponding estimation
pseudo-Boolean functions have the sets of zero components close with respect to the number and the
structure. This leaves hope for the utilization of the optimal solution of the minimization problem for
the estimation function as a base for constructing approximation solutions for the competitive facility
location problems studied in this paper.

ACKNOWLEDGMENTS

The author was supported by the Russian Foundation for Basic Research (projects nos. 06–01–
00075 and 08–07–00037).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 3 No. 4 2009



432 BERESNEV

REFERENCES
1. E. V. Alekseeva and Yu. A. Kochetov, “Genetic Local Search in the p-Median Problem with Preferences of

Clients,” Diskret. Anal. Issled. Oper. Ser. 2, 14 (1), 3–13 (2007).
2. R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming (Princeton Univ. Press, Princeton, 1962;

Nauka, Moscow, 1965).
3. V. L. Beresnev, Discrete Problems of Location and Polynomials in Boolean Variables (Sobolev Inst.

Math., Novosibirsk, 2005) [in Russian].
4. C. Campos and J. A. Moreno, “Multiple Voting Location Problems,” European J. Oper. Res. 191 (2), 436–

452 (2008).
5. L. Canovas, S. Garsia, M. Labbe, and A. Marin, “A Strengthened Formulation for the Simple Plant Location

Problems with Order,” Oper. Res. Lett. 35, 141–150 (2007).
6. H. A. Eiselt and G. Laporte, “Sequential Location Problems,” European J. Oper. Res. 96, 217–231 (1996).
7. S. Dempe, Foundations of Bilevel Programming (Kluwer Acad., Dordrecht, 2002).
8. G. Dobson and U. Karmarkar, “Competitive Location on a Network,” Oper. Res. 35, 565–574 (1987).
9. Facility Location: Applications and Theory, Ed. by Z. Drezner and H. W. Hamacher (Springer, Berlin,

2002).
10. P. L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related Areas (Springer,

Berlin, 1968).
11. P. B. Mirchandani and R. L. Francis, Discrete Location Theory (Wiley, New York, 1990).
12. F. Plastria, “Static Competitive Facility Location: An Overview of Optimization Approaches,” European J.

Oper. Res. 129, 461–470 (2001).
13. F. Plastria and L. Vanhaverbeke, “Discrete Models for Competitive Location with Foresight,” Comput. Oper.

Res. 35, 683–700 (2008).
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