Oral (mandatory) questions:
1. Concepts, notions, definitions: an input size, a polynomial-time algorithm (lecture 1), an undirected graph, a directed graph, an underlying undirected graph,  an induced subgraph,  a spanning subgraph, submodular and supermodular functions, a complete graph, a matching, a vertex cover, an edge cover, a stable set, a path, a Hamiltonian path, a circuit, a connected graph, a tree, a forest,  a cut, a strongly connected digraph, an arborescence, a topological order (lecture 2); an incidence matrix, an adjacency matrix, an adjacency list, Depth-First Search,  Breadth-First Search, an Eulerian walk, an Eulerian graph, a bipartition, a bipartite graph, (lecture 3); conservative weights, feasible potential (lecture 5); a network, a flow, an s-t-flow, the value of an s-t-flow,  the capacity of an s-t-cut, a residual graph, an f-augmenting path (lecture 6); an k-connected graph, an k-edge-connected graph, (lecture 7); an alphabet, strings, a language, a desicion problem, class P, class NP, a randomized algorithm, a Las Vegas algorithm, a Monte Carlo algorithm, a nondeterministic algorithm, a polynomial reduction (lecture 8); NP-complete problem (lecture 9); An optimization problem, NP-hard problem (lecture 10).
2. Formulations of problems: Minimum Spanning Tree Problem, Maximum Weight Forest  Problem, Maximum Weight Branching Problem, Minimum Weight Arborescence Problem, Minimum Weight Rooted Arborescence Problem (lecture 4); Shortest Paths Problem, All Pairs Shortest Paths Problem (lecture 5);  Maximum Flow Problem, (lecture 6) Directed Edge-Disjoint Paths Problem (lecture 7); Satisfiability, 3-SAT, Stable Set problem, Vertex Cover problem, Clique problem (lecture 9); Hamiltonian Circuit Problem (lecture 10).
3. The basic ideas and principles of the algorithm: Kruskal’s Algorithm, Prim’s Algorithm (lecture 4); Dijkstra’s Algorithm, Moore-Bellman-Ford Algorithm, Floyd-Warshall Algorithm (lecture 5);  Ford-Fulkerson Algorithm (лекция 6); Edmonds-Karp Algorithm (лекция 7); Алгоритм Хватала (лекция 16); Алгоритм MST, Алгоритм MST-2, Алгоритм Кристофидиса-Сердюкова (лекция 17); Алгоритм Хошбаум-Шмойса (лекция 18); Алгоритм «Первый подходящий», Жадный алгоритм для P|| Cmax (лекция 22).

4. Lemmas and Theorems: Теорема Кенига, Теорема Эйлера (лекция 3); Bellman’s principle of optimality (lecture 5)  Characterization of Maximum Flow Theorem, Maximum Flow and Minimum Cut Theorem (lecture 6); 1st Menger’s Theorem, 2-nd Menger’s Theorem (lecture 7); Church’s thesis (lecture 8); Cook theorem (lecture 9).

5. To be able to prove that P ( NP
Exersices. 

·  Let G be an undirected graph, and let (V(G), F1) and (V(G), F2) be two forests in G with |F1| < |F2|. 

· Prove that there exists an edge e ∈ F2\F1 such that (V(G), F1⋃{e}) is a forest. 
· Let G be a simple undirected graph. Show that G or its complement is connected.
· Show that any undirected graph has a cut containing at least half of the edges.

· Given a graph G, show that there is a linear-time algorithm to find a circuit or decide that none exists. 

· Given a digraph G, show how to identify the strongly connected component in polynomial time. What is running time of your algorithm?
· Prove that a strongly connected digraph whose underlying graph is non-bipartite contains a directed circuit of odd length.

· Given an undirected graph G with arbitrary weights c: E(G) → R. We ask for a minimum weight connected spanning subgraph. Can you solve this problem efficiently?
· Given an undirected graph G with weights c: E(G) → R and a vertex v ∊ V(G). We ask for a minimum weight spanning tree in G where v is not a leaf. Can you solve this problem in polynomial time?

· Show that in the case of integer capacities, the Ford-Fulkerson Algorithm may have an exponential number of augmentations.
· Prove: If Π =(X, Y) ∈ NP, then there exists a polynomial p such that Π can be solved by a deterministic algorithm having time complexity O(2p(n)), where n is the input size.
· Prove NP-completeness of Vertex cover and Clique.

· Prove that the TSP is NP-hard.
· Prove that the QAP0 is NP-hard.
· The decision problem Clique is NP-complete. Is it still NP-complete if restricted to a) bipartite graphs, b) planar graphs.
