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INTRODUCTION

In facility location problems with clients’ preferences (see [1, 2]), there are two levels of decision mak-
ing. At the upper level, a set of facilities to be opened is chosen. Then, at the lower level, the clients are
assigned to these facilities according to the clients' preferences. The problem is to choose the facilities to be
opened so as to serve all the clients with minimizing the total cost.

First, the location problems with clients’ preferences were considered in [3]. Later, similar models were
independently proposed in [2, 4]. If the clients’ preferences at the lower level are in agreement with the
matrix of the transportation cost at the upper level, we have the classical facility location problem (see [1]).
Therefore, the problems with clients’ preferences (the 

 

p

 

-median problem, the simple facility location prob-
lem, and their generalizations) are NP-hard in the strong sense and do not belong to the class APX (see [5]).
In [1, 2], the close relationships of these problems with pseudo-Boolean functions was established. It was
shown that these problems are equivalent; more precisely, given a location problem with clients’ prefer-
ences, an equivalent minimization problem for a pseudo-Boolean function can be constructed in a polyno-
mial time and conversely. In [6, 7], it was shown how this property of the location problem can be used to
reduce its dimension.

In [8] the problem with a fixed number of facilities was studied. A genetic algorithm was proposed for
finding near optimal solutions. This algorithm uses local optima under Lin–Kernighan neighborhoods as
individuals of the population. The proposed approach was tested on instances with a considerable integrality
gap and showed good performance.

To find an exact solution, the problem is reduced to an integer linear program (ILP). In [9] well-known
and new valid inequalities were considered. They help improve lower bounds and the efficiency of the
branch-and-cut method. In [6, 8], various formulations of the problem in terms of integer linear program-
ming were considered, and a formulation based on reducing the original problem to the problem on a pair
of matrices was proposed. Using this formulation, an improved lower bound can be obtained by increasing
the number of variables.

In this paper, we propose a new formulation based on the analysis of the reduction to the problem on a
pair of matrix (see [6, 8]). It provides a lower bound that is not worse than that obtained in [6], but this bound
is obtained using a new family of valid inequalities rather than by increasing the number of variables. The
relationship of this problem with the set packing problem is examined. The valid inequalities for this prob-
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lem can be used to solve the facility location problem with clients' preferences. It is shown that the inequal-
ities proposed in [9] are a particular case of these valid inequalities.

The paper is organized as follows. In Section 1, the problem statement is presented and its properties are
analyzed. In Section 2, a review of the known ILP formulations is given and a new family of valid inequal-
ities is proposed. The relationship with the set packing problem is investigated in Section 3. In the final sec-
tion, we discuss the results and the lines of further studies.

1. STATEMENT OF THE PROBLEM
Introduce the following notations. 

 

I

 

 = {1, 2, …, 

 

m

 

}

 

 is the set of facilities; 

 

J

 

 = {1, 2, …, 

 

n

 

}

 

 is the set of
clients; 

 

f

 

i

 

 

 

≥

 

 0

 

 (

 

i

 

 

 

∈ 

 

I

 

) is the cost of opening the facility 

 

i

 

; 

 

c

 

ij

 

 

 

≥

 

 

 

0

 

 (

 

i

 

 

 

∈ 

 

I

 

, 

 

j

 

 

 

∈ 

 

J

 

) is the matrix of the production
and delivery costs for servicing the clients; 

 

g

 

ij

 

 

 

≥

 

 0

 

 (

 

i

 

 

 

∈ 

 

I

 

, 

 

j

 

 

 

∈ 

 

J

 

) is the matrix of the clients' preferences; more
precisely, if 

 

 < 

 

, then the client 

 

j

 

 prefers the open facility 

 

i

 

1

 

 to the open facility 

 

i

 

2

 

.

The variables of the problem are as follows:

Using this notation, we obtain the following bilevel programming problem (see [4, 10]): find

 

(1)

 

subject to

 

(2)

 

where 

 

(

 

y

 

)

 

 is the optimal solution of the client problem: find

 

(3)

 

subject to

 

(4)

(5)

(6)

 

Objective function (1) of the upper level problem gives the cost of servicing the clients and opening the facil-
ities. Objective function (3) of the lower level problem guarantees that the clients are served in conformity
with their preferences. Constraints (4) ensure that each client is served by exactly one facility. Inequalities (5)
indicate that the clients can be served only by open facilities.

Problem (1)–(6) is denoted by BLP, and its objective function (1) is denoted by 

 

F

 

(

 

y

 

, 

 

x

 

*(

 

y

 

))

 

. This function
is interpreted as the total expenses of the first decision maker (DM

 

1

 

) that makes decisions at the upper level.
For the given vector 

 

y

 

, the solution 

 

x

 

*(

 

y

 

)

 

 is the optimal choice of suppliers in accordance with the clients'
preferences. In the general case, this choice is not unique. Then, the BLP needs to be refined; namely, a more
precise definition of the optimal solution must be given. In particular, one can consider cooperative and anti-
cooperative strategies for the DM

 

1

 

 and the second decision maker DM

 

2

 

 who makes decisions at the lower
level. If the DM

 

2

 

 wants to minimize (maximize) the total expenses of the DM

 

1

 

, we have a cooperative (anti-
cooperative) statement of the problem. Below, we consider a simpler case when a unique optimal decision
of the DM

 

2 

 

exists for any decision of the DM

 

1

 

. This property is guaranteed if the entries of the matrix 

 

g

 

ij

 

 in

gi1 j gi2 j

yi

1, if the facility i is opened,

0, otherwise,⎩
⎨
⎧

=

xij

1, if the client j is served by facility i,

0,     otherwise.⎩
⎨
⎧

=

cijxij* y( )
j J∈
∑

i I∈
∑y

min f iyi

i I∈
∑+

yi 0 1,{ }, i I ,∈ ∈

xij*

gijxij

j J∈
∑

i I∈
∑x

min

xij

i I∈
∑ 1, j J ,∈=

xij yi, i I , j J ,∈ ∈≤

xij 0 1,{ }, i I , j J .∈ ∈ ∈
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every column j ∈ J are distinct. In other words, for any pair of facilities, every client prefers one of them. In
this case, the objective function F(y, x*(y)) is uniquely determined by the vector y, and we may write F(y)
instead of F(y, x*(y)). Thus, by the optimal solution of the problem, we mean the vector y* satisfying con-
straints (2) and minimizing F(y).

Let us show that the cooperative and anticooperative statements of the problem can be reduced to this
particular case. Denote by Opt(y) the set of the optimal solutions of problem (3)–(6) for the given vector y.
Then, the BLP in the cooperative statement can be written as

(7)

In the anticooperative statement, it is written as

(8)

Theorem 1. Problems (7) and (8) can be reduced to the BLP with the unique clients’ optimal choice.

Proof. Consider problem (7). Given its initial data, we construct a new equivalent BLP problem in which
the entries in every column of the preference matrix  are distinct. The new problem differs from the orig-
inal one only in this matrix.

For every column j ∈ J of the matrix (gij) in problem (7), we define a permutation π( j ) = (π1, …, πm) of
the elements of the set I such that

If  = , we assume that  ≤ . Set  = i for all i ∈ I. By construction, all the entries of the

matrix ( ) in every column are different. Therefore, for any y, the set Opt(y) consists of a single element.
It is easy to verify that the optimal solution of the new problem is also optimal for problem (7). The case of
the anticooperative setting is considered in a similar manner. The theorem is proved.

Assume that the strategy of the DM2 is not known. For example, we may assume that he chooses an ele-
ment in Opt(y) depending on y. In this case, problems (7) and (8) give a lower and an upper bounds of the
optimum in this difficult-to-formalize problem.

It is known (see [2, 8]) that the BLP with the unique clients’ optimal choice can be reduced to an ILP.
There are several reduction techniques that differ in the number of variables and constraints. Define the sets
Sij = {k ∈ I |gkj < gij} and Tij = {k ∈ I |gkj > gij} (i ∈ I, j ∈ J). Note that we have the following implication
for the optimal solution of the client problem:

(9)

Using this property, the BLP can be written as follows (see [2, 6]): find

(10)

subject to

(11)

(12)

(13)

(14)

Indeed, for the optimal solution of problem (10)–(14), all the constraints of the original problem are satis-
fied, and constraints (11) ensure that xij is an optimal solution of the client problem. We also can consider

F y x,( ) yi 0 1,{ } i I∈,∈{ }
y x Opt y( )∈,

min .

F y x,( ) yi 0 1,{ } i I∈,∈{ }
x Opt y( )∈

max
y

min .

gij'

gπ1 j … gπm j.≤ ≤

gπi j gπi 1+ j cπi j cπi 1+ j gπi j'

gij'

xij = 1( ) yk = 0( ), k Sij.∈⇒

min cijxij

j J∈
∑

i I∈
∑ f iyi

i I∈
∑+

yk xij 1, k Sij, i I , j J ,∈ ∈ ∈≤+

xij

i I∈
∑ 1, j J ,∈=

0 xij yi, i I , j J ,∈ ∈≤ ≤

xij yi 0 1,{ }, i I , j J .∈ ∈ ∈,
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the bilevel problem with a fixed number of facilities to be opened, this is a so-called p-median problem (see
[8]). In this case, the following constraint is added to the integrality constraints at the upper level:

(15)

here, p ∈ Z+ is the number of facilities to be opened. For this problem, all the assertions that were discussed
for the BLP are valid, as well as a similar reduction to an ILP with additional constraint (15). In the next
section, we propose techniques for strengthening formulation (10)–(14).

2. STRENGTHENING THE FORMULATION

For many ILPs, there exist several equivalent formulations. The quality of a formulation is usually esti-
mated by the integrality gap defined as gap = (Opt – LP)/Opt, where Opt is the optimal value and LP is the
value of the linear relaxation. The less the integrality gap, the stronger is the formulation. A perfect formu-
lation exactly describes the convex hull of the set of feasible integer points. However, the derivation of such
a formulation is equivalent to solving the original problem (see [11]). In many cases, this is practically
impossible. For formulation (10)–(14), the integrality gap can be as large as 20–30% (see [7, 9]). Even in
the particular case fi = 0 for i ∈ I, this value can be arbitrarily close to 100% (see [6, 7]). Below, we propose
a technique for strengthening the original formulation of the problem so as to reduce the integrality
gap. Note that this approach does not rule out Gomory cuts or any other cuts for solving problems (e.g.,
see [11–13]).

Definition 1. Let U be a set of points in �n. The inequality aTu ≤ b is said to be valid for U if aTu ≤ b for
all u ∈ U. 

Denote by Pc the polyhedron of problem (10)–(14), which is the convex hull of the integer points satis-
fying constraints (11)–(14). Let LB1 be the optimum in linear programing problem (10)–(13).

2.1. Well-known Valid Inequalities 

For the polyhedron Pc, several valid inequalities are known. They induce various formulations, which
differ in the number of variables, the number of constraints, and, as a result, in the integrality gap.

1. Single client preference inequalities (see [3]) are written as

(16)

If the facility i is open, then the client j is not served by less preferable facilities, i.e., by the facilities belong-
ing to the set Tij. These inequalities dominate inequalities (11). The lower bound given by the linear program
(10), (12), (13), subject to (16) is denoted by LB2. We have LB1 ≤ LB2.

2. In [9], a strengthening of inequalities (16) was proposed. Let j1, j2 ∈ J and i ∈ I. If the facility i is open,
the client j1 will not use the facilities from the set  and the client j2 will not use the facilities from ;
that is,

(17)

We call these inequalities preferences of a pair of clients.
3. Inequalities (17) can be extended to the case of an arbitrary number of clients. Let j1, …, js ∈ J and

i ∈ I. Then, the inequalities

(18)

yi

i I∈
∑ p;=

C1 i j,( ): yi xkj

k Tij∈
∑ 1, i I , j J .∈ ∈≤+

Ti j1
Ti j2

C2 i j1 j2, ,( ): xk j1

k Ti j1
∈
∑ xk j2

k Ti j2
Si j1

∩∈
∑ yi 1.≤+ +

Cs i j1 … js, , ,( ) : xk j1

k Ti j1
∈
∑ xk jt

k Ti jt
∩
q = 1

t 1–

Si jq⎝ ⎠
⎛ ⎞∩∈

∑
t 2=

s

∑ yi 1,≤+ +
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are valid for Pc (see [9]). They induce an exponential number of additional constraints. Some of them can
dominate the others. For that reason, only a part of these inequalities should be used. In [9], it is proposed
to choose the elements j1, …, js ∈ J for which the sets  (t = 1, 2, …, s) are mutually disjoined.

4. Also, inequalities dominating (13) were proposed in [9]. Let j1, j2 ∈ J and i ∈ I. Then,

if (19)

For  = , we have  = .

Denote by LB4 the optimum in linear program (10), (12), (13), (19) with all the inequalities (18). By LB3,
we denote the optimum in linear programing problem (10), (12), (13), (19) with the subset of inequalities
(18) proposed in [9]. Then, LB2 ≤ LB3 ≤ LB4.

2.2. Reduction to the Problem on a Pair of Matrices 

Consider the matrices A = (aij) (i ∈ I, j ∈ J1) and B = (bij) (i ∈ I, j ∈ J2) containing the same number of
rows. The problem on a pair of matrices (see [1]) is to find a nonempty subset S ⊆ I that provides the min-
imum for the objective function

If A is a diagonal matrix, we obtain the simple facility location problem. In [2, 4], a reduction of the BLP to
the problem on a pair of matrices was proposed. On the basis of this reduction, a new formulation of the
original problem in terms of ILP was obtained in [8, 6].

Let us represent the matrix (cij) as the sum of two matrices cij = aij + bij. For each j ∈ J, given the matrix
(gij), we find the permutation π( j) and set

Let  = min{0;  – } (l = 1, 2, …, m – 1) and Lj = {l ∈ {1, 2, …, m – 1}|  < 0}. Note that, for
the given j ∈ J, we can uniquely determine πl ∈ I by l ∈ Lj. For each j ∈ J, we define the nonnegative matrix

By the construction of the matrix ( ), we have

Now, the BLP can be written as

(20)

Ti jt

Si j2
Si j1

, then xi j1
xi j2

.≤⊆

Si j1
Si j2

xi j1
xi j2

aij
i S∈

max
j J1∈
∑ bij.

i S∈
min

j J2∈
∑+

aπ1 j 0, bπ1 j cπ1 j,= =

aπk j min 0 cπl 1+ j cπl j–,{ }, k
l 1=

k 1–

∑ 2 3 … m,, , ,= =

bπk j cπ1 j max 0 cπl 1+ j cπl j–,{ }, k
l 1=

k 1–

∑+ 2 3 … m., , ,= =

∆l
j

cπl 1+ j cπl j ∆l
j

ail

0, if i Tπl j,∈

∆l
j
, if i– Tπl j,∉⎩

⎨
⎧

i I , l L j.∈ ∈=

ail

aij ail ∆l
j

+( ), i
l L j∈
∑ I , j J .∈ ∈=

ail
i yi = 1
max

l L j∈
∑

j J∈
∑ bij

i yi = 1
min

j J∈
∑ f i

i yi = 1

∑+ +
⎩ ⎭
⎨ ⎬
⎧ ⎫

yi 0 1,{ }∈
min ∆l

j
.

l L j∈
∑

j J∈
∑+
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Define the auxiliary variables  ∈ {0, 1} (l ∈ Lj, j ∈ J) and rewrite this problem as follows (see [8]): find

(21)

subject to

(22)

(23)

(24)

(25)

(26)

Denote by LB5 the optimum in linear program (21)–(25). It can be proved (see [8]) that LB5 ≥ LB2.
In fact, the reduction to the problem on a pair of matrices is another method for obtaining lower bounds

by constructing extended formulations. Indeed, the resulting formulation is a problem in the larger space of

variables (x, y, v) ∈ �m · n
 × �m

 × . The original formulation involves the space of variables (x,

y) ∈ �m · n
 × �m

. A clear drawback of the extended formulations is the increase in the number of variables;
the attempts to strengthen the formulation in the original space usually result in a large number of additional
constraints (for example, in inequalities (18)). A possible way of preventing the excessive growth of the
extended formulations is using them as the basis for the construction of new valid inequalities and the cor-
responding separation algorithms [11, 13].

Theorem 2. The inequalities

(27)

are valid for Pc. 

Proof. Let ( , , ) be an optimal solution of problem (21)–(26).
1. First, we prove that inequality (25) turns into an equality for j1 = j2 on the optimal solution; that is,

(28)

Assume the converse, and let  =  +  for l ∈ Lj and j ∈ J, where  ≥ 0 for l ∈ Lj, and

 > 0. Then, we have

v l
j

min –∆l
j
v l

j

l L j∈
∑

j J∈
∑ bijxij

j J∈
∑

i I∈
∑ f iyi

i I∈
∑+ +

⎩ ⎭
⎨ ⎬
⎧ ⎫

∆l
j

l L j∈
∑

j J∈
∑+

yi xkj

k Tij∈
∑ 1, i I , j J ,∈ ∈≤+

xij

i I∈
∑ 1, j J ,∈=

0 xij yi, i I , j J ,∈ ∈≤ ≤

v l

j1 xi j2
, l

i Tπl j1
∉
∑ L j, j1 J , j2 J ,∈ ∈ ∈≥

v l
j

yi xij 0 1,{ }, l L j, j J , i I .∈ ∈ ∈ ∈, ,

�
L1 … Ln+ +

xi j1

i Tπl j1
∈
∑ xi j2

i Tπl j1
∉
∑ 1, l L j, i I , j1 j2 J , j1 j2,≠∈,∈ ∈≤+

x̂ ŷ v̂

v̂ l
j

x̂ij, l
i Tπl j∉
∑ L j, j J .∈ ∈=

v̂ l
j

x̂iji Tπl j∉∑ sl
j

sl
j

sl
j

l L j∈∑j 1=
n∑

cij x̂ij

j 1=

n

∑
i 1=

m

∑ f i ŷi

i 1=

m

∑+ ∆l
j

1 v̂ l
j

–( )
l L j∈
∑

j J∈
∑ bij x̂ij

j J∈
∑

i I∈
∑ f i ŷi

i 1=

m

∑+ +=

=  ∆l
j

x̂ij

i Tπl j∈
∑ sl

j
–

⎝ ⎠
⎜ ⎟
⎛ ⎞

l L j∈
∑

j J∈
∑ bij x̂ij

j J∈
∑

i I∈
∑ f i ŷi
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m
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We arrived at a contradiction.

2. Replacing (25) by

(29)

(30)

we obtain an equivalent problem. Substituting (29) into (30), we obtain the original problem with additional
inequalities

which is equivalent to formulation (21)–(26). Due to (23), we conclude that inequalities (27) are valid for
Pc, which completes the proof.

Denote by LB6 the optimal value in the linear programming relaxation of problem (10), (16), (12)–(14)
subject to additional inequalities (27).

Corollary 1. It holds that LB5 ≤ LB6. 

Thus, returning to the space of the original variables, we constructed new valid inequalities. The resulting
lower bound LB6 is not worse than the known bound LB5. In the next section, we describe one more method
for constructing valid inequalities based directly on the analysis of the original formulation.

3. CLIQUE INEQUALITIES

Now, we show the relationship of the BLP with the well-known set packing problem. The properties of
this problem’s polyhedron are well studied (see [12]). They can be used to obtain families of effective cut-
ting planes in problems with a similar structure (see [14–17]).

Consider a 0–1 matrix D and a nonnegative vector d. The set packing problem with the variables z is
formulated as follows:

It is equivalent to finding a maximum weighted independent set in the graph G = (V, E) constructed as fol-
lows. Every column of D is associated with a vertex in G. The vertices i and j are connected by an edge if
and only if the columns i and j are not orthogonal.

Denote by PG the polyhedron of the set packing problem, which is the convex hull of the 0–1 vectors
corresponding to the independent sets of the graph G. Consider one class of valid inequalities for PG that
we will need below. Any complete subgraph in a given graph is called clique. A clique that is not a part of

=  x̂πk j ∆l
j

l 1=

k 1–

∑
k 2=

m

∑
j J∈
∑ bij x̂ij

j J∈
∑

i I∈
∑ f i ŷi

i 1=

m

∑ ∆l
j
sl

j

l L j∈
∑

j J∈
∑–+ +

=  aij x̂ij

i I∈
∑

j J∈
∑ bij x̂ij

j J∈
∑

i I∈
∑ f i ŷi ∆l

j
sl

j

l L j∈
∑

j J∈
∑–

i 1=

m

∑+ +

=  cij x̂ij

j 1=

n

∑
i 1=

m

∑ f i ŷi ∆l
j
sl

j
 > 

l L j∈
∑

j J∈
∑–

i 1=

m

∑ cij x̂ij

j 1=

n

∑
i 1=
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∑ f i ŷi.
i 1=

m

∑+ +

v l

j1 xi j1
, l

i Tπl j1
∉
∑ L j, j1 J ,∈ ∈=

v l

j1 xi j2
, l

i Tπl j1
∉
∑ L j, j1 j2 J , j1 j2,≠∈,∈≥

xi j1

i Tπl j1
∉
∑ xi j2

, l
i Tπl j1

∉
∑ L j, j1 j2 J , j1 j2,≠∈,∈≥

d
Ú
z : Dz 1≤{ }

z
max .
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a larger clique is called a locally maximal clique. Let K be a clique in G. It is known (see [12]) that the clique
inequality

is valid for PG and it is facet defining if K is a locally maximal clique. In the formulation of the location
problem, a group of inequalities can be distinguished that define the relaxation of this problem to a set pack-
ing problem. Therefore, we can use the available families of valid inequalities for PG to solve the facility
location problem.

Return to the inequalities C2(i, j1, j2) (i ∈ I, j1, j2 ∈ J):

Consider the relaxation of the problem under examination to the set packing problem defined by this family
of inequalities. We construct a family of clique inequalities that are also valid for Pc. Now, add these ine-
qualities to the LP relaxation of problem (10), (12)–(14), (19). The corresponding lower bound is denoted
by LB7.

Theorem 3. It holds that LB4 ≤ LB7.

Proof. It is sufficient to show that inequalities (18) are clique inequalities for the proposed relaxation to
the set packing problem. For simplicity, we denote the graph vertices by the indexes of the corresponding
variables; that is, the vertex (i, j) corresponds to the variable xij, and the vertex i corresponds to the variable yi. By
W(i, j), we denote the set of vertices (i, j) the variables of which appear in the sum ; by W(i, j1, j2),
we denote the vertices corresponding to the sum

and by WS(i, jt), we denote the vertices corresponding to the sum

We prove the theorem by induction on the parameter s.

Induction hypothesis, s = 1.The inequalities Cs(i, j1) coincide with inequalities (16). Since they are
dominated by the inequalities C2(i, j1, j2) (j2 ∈ J), which were used to construct the graph, the vertices {i} ∪
W(i, j) form a clique. For s = 2, the inequalities Cs(i, j1, j2) coincide with C2(i, j1, j2). Therefore, the vertices
{i} ∪ W(i, j1) ∪ W(i, j1, j2) also form a clique.

Induction step. Assume that

are clique inequalities for a certain s; that is, we assume that the vertices from the set

zk

k K∈
∑ 1≤

xk j1

i Ti j1
∈
∑ xk j2

k Ti j2
Si j1

∩∈
∑ yi 1.≤+ +

Σk Tij∈ xkj

xk j2
;

k Ti j2
Si j1

∩∈
∑

xk jt
.

k Ti jt
∩
q = 1

t 1–

Si jq⎝ ⎠
⎛ ⎞∩∈

∑

xk j1

k Ti j1
∈
∑ xk jt

k Ti jt
∩
q = 1

t 1–

Si jq⎝ ⎠
⎛ ⎞∩∈

∑
t 2=

s

∑ yi 1, i I , j1 … js J ,∈, ,∈≤+ +

i{ } W i j1,( ) WS i jt,( )
t 2=

s

∪⎝ ⎠
⎛ ⎞∪ ∪
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form a clique. Consider the inequalities C(s + 1)(i, j1, …, js + 1):

We want to prove that the vertices from the set

and the vertices from the set WS(i, js + 1) form a clique. Indeed, for any t = 1, 2, …, s, the inequalities C2(i,
jt, js + 1)

were used in the construction of the graph. Therefore, the sets of vertices

form cliques. Consider two cases.
(i) For t = 1, we have the inequality

Since

we have

Therefore, the vertices of the sets {i}, W(i, j1), WS(i, js + 1) are mutually connected by edges.
(ii) Let t = 2, 3, …, s. Since

we have

Taking into account the fact that  ⊆ , we conclude that the vertices of the sets WS(i, jt) and
WS(i, js + 1) are also mutually connected by edges, which completes the proof.

Note that inequalities (18) have the structure of the polyhedron of the set packing problem. However, in
the proof of Theorem 3, we actually proved, in addition to the inequality LB4 ≤ LB7, that no new edges can
be produced using inequalities (18) when the graph of the set packing problem is constructed. Therefore,
there is no need to consider an exponentially large number of constraints, when the problem is relaxed to
the polyhedron of the set packing problem.

As has already been mentioned above, the use of the inequalities C2(i, j1, j2) (i ∈ I, j1, j2 ∈ J) is not the
only way to construct the graph. Introduce the additional variables  = 1 – yi. Then, inequalities (13) can

xk j1

k Ti j1
∈
∑ xk jt

k Ti jt
∩
q = 1

t 1–

Si jq⎝ ⎠
⎛ ⎞∩∈

∑
t 2=

s 1+

∑ yi+ +

=  xk j1

k Ti j1
∈
∑ xk jt

k Ti jt
∩
q = 1
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Si jq⎝ ⎠
⎛ ⎞∩∈

∑
t 2=

s

∑ yi xk js 1+

k Ti js 1+
∩
q = 1

s

Si jq⎝ ⎠
⎛ ⎞∩∈

∑ 1.≤+ + +

i{ } W i j1,( ) WS i jt,( )
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s
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⎛ ⎞∪ ∪
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∑ yi 1, i I .∈≤+ +

Si jq
q 1=

s

∩ Si j1
,⊆

WS i js 1+,( ) W i j1 js 1+, ,( ).⊆

Ti jt
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∩⎝ ⎠
⎛ ⎞∩ Ti jt
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be written in the form xij +  ≤ 1. Now, the following group of constraints can be written for the problem
under examination:

(31)

The set packing problem defined by inequalities (31) also is a relaxation of the original problem. Denote by
LB8 the lower bound obtained by the LP relaxation of problem (10), (12)– (14), (19) with the clique inequal-
ities for the new system (31). Then, we have LB8 ≥ LB7 and LB8 ≥ LB6.

CONCLUSIONS

In this paper, we investigated the lower bounds for the facility location problem with clients' preferences.
Some known equivalent formulations of the ILP for this problem were considered and new formulations
were proposed that differ in the integrality gap. The results can be represented by the scheme

The lower bound LB8 based on a new family of valid inequalities and on the cuttings of the set packing prob-
lem dominates the other known lower bounds and opens new possibilities for developing exact methods.

The bounds LB7 and LB8 were obtained using clique inequalities. Other families of valid inequalities for
the set packing problem are also known, for example, odd-hole inequalities (see [12]) and others (see [18–20]).
They can also be used for improving the lower bounds. To implement this approach, efficient algorithms for
finding the desired inequalities are needed. There can be an exponentially large number of such inequalities,
which makes the problem difficult. The development of efficient algorithms for finding the appropriate ine-
qualities is an important direction of further research.

More general location models (for example, competitive and dynamic models in which the clients' pref-
erences are taken into account, see [10, 21]) are also of interest. It seems likely that all the location models
can be generalized for the case when the clients' preferences are explicitly taken into account. The study of
such models and techniques for solving the corresponding optimization problems is the subject for further
research.
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