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Abstract

In the (r | p)-centroid problem, two players, called leader and follower, open facilities
to service clients. We assume that clients are identified with their location on the
Euclidean plane, and facilities can be opened anywhere in the plane. The leader
opens p facilities. Later on, the follower opens r facilities. Each client patronizes the
closest facility. Our goal is to find p facilities for the leader to maximize his market
share. For this ΣP

2 -hard problem we develop the VNS heuristic, based on the exact
approach for the follower problem. We apply the (r | Xp−1+1)-centroid subproblem
for finding the best neighboring solution according to the swap neighborhood. It
is shown that this subproblem is polynomially solvable for fixed r. Computational
experiments for the randomly generated test instances show that the VNS heuristic
dominates the previous ones.
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1 Introduction

This paper addresses a Stackelberg facility location game on a two–dimensional
Euclidean plane. We assume that the clients demands are concentrated at a
finite number of points in the plane. In the first stage of the game, a player,
called the leader, opens his own p facilities. At the second stage, another
player, called the follower, opens his own r facilities. At the third stage, each
client chooses the closest opened facility as a supplier. In case of ties, the
leader’s facility is preferred. Each player tries to maximize his own market
share. The goal of the game is to find p points for the leader facilities to max-
imize his market share. We assume that the leader knows how many facilities
the follower will locate.

Such Stackelberg game was studied by Hakimi [4] for location on a network.
Following Hakimi, the leader problem is called a centroid problem and the
follower problem is called a medianoid problem. A comprehensive review of
complexity results and properties of the problems can be found in [6].

In [1] the alternating heuristic for the centroid problem is suggested. Two
greedy strategies are used for the follower problem. In [2] an improved alter-
nating heuristic is developed. In each iteration of the alternating heuristic, we
consider the solution of one player and compute the best answer for another
player. The branch and bound method is applied for this end. At the end
of the alternating process, the clients are clustered, and an exact polynomial-
time algorithm for the (1 | 1)-centroid problem is applied. In [3] it is shown
that the centroid problem is ΣP

2 -hard and the medianoid problem is NP-hard
in the strong sense.

In this paper we present the VNS local search heuristic using an ex-
act approach for the follower problem. We consider the (r | Xp−1 + 1)-
centroid problem where the leader moves exactly one facility. We use this
problem in order to find the best neighboring solution in the swap neighbor-
hood. It is shown that this problem is polynomially solvable for fixed r. We
solve the medianoid problem for many leader solutions, but the number of
such solutions is polynomially bounded. Computational results for randomly
generated instances from the benchmark library Discrete Location Problems
(http:// math.nsc.ru/AP/benchmarks/index.html) show that the new ap-
proach dominates the previous heuristics.

2 Mathematical model

Let us consider a two–dimensional Euclidean plane in which n clients are
located. We assume that each client j has a positive demand wj. Let X
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be the set of p points where the leader opens his own facilities and let Y be
the set of r points where the follower opens his own facilities. The distances
from client j to the closest facility of the leader and the closest facility of the
follower are denoted as d(j,X) and d(j, Y ), respectively. Client j prefers Y
over X if d(j, Y ) < d(j,X) and prefers X over Y otherwise. By

U(Y ≺ X) := {j | d(j, Y ) < d(j,X)}

we denote the set of clients preferring Y over X. The total demand captured
by the follower by locating his facilities at Y while the leader locates his
facilities at X is given by

W (Y ≺ X) :=
∑

(wj | j ∈ U(Y ≺ X)).

For X given, the follower tries to maximize his own market share. The
maximal value W ∗(X) is defined to be

W ∗(X) := max
Y,|Y |=r

W (Y ≺ X).

This maximization problem will be called the follower problem. The leader
tries to minimize the market share of the follower. This minimal valueW ∗(X∗)
is defined to be

W ∗(X∗) := min
X,|X|=p

W ∗(X).

For the best solution X∗ of the leader, his market share is
∑n

j=1wj−W ∗(X∗).
In the (r | p)–centroid problem, the goal is to find X∗ and W ∗(X∗).

3 The follower problem

Let us first describe an exact approach for the follower problem. Such problem
is rewritten as an integer linear programming problem, and solved using a
branch and bound method.

For each client j, we introduce a disk Dj with radius d(j,X) and center in
the point where this client is located. Let us consider the resulting intersec-
tion of two or more such disks. These disks and their intersections are called
regions. The total number of regions is big, but we can eliminate some, and
consider the convex regions as those defined by intersections only. Thus, we
have at most n2 regions. Now we define a binary matrix (akj) to indicate
the clients which will patronize a facility of the follower if it is opened inside
of a region. Formally, define akj := 1 if a facility of the follower in region k
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captures the client j and akj := 0 otherwise. In order to present the follower
problem as an integer linear program we introduce two sets of the decision
variables:

yk =

⎧⎨
⎩

1 if the follower opens his own facility inside of region k,

0 otherwise,

zj =

⎧⎨
⎩

1 if the follower captures client j,

0 otherwise.

Now the follower problem can be written as the maximum capture problem:

max
n∑

j=1

wjzj

subject to zj ≤
n2∑
k=1

akjyk, j = 1, . . . , n,

n2∑
k=1

yk = r,

yk, zj ∈ {0, 1}.
The objective function gives the market share of the follower. The first

constraint guarantees that client j will patronize a facility of the leader only
if the follower has no facility at the distance less than d(j,X). The second
constraint allows the follower to open exactly r facilities.

In our computational experiments we observe that the integrality gap is
small for this problem in the case of the two-dimensional Euclidean plane. The
branch and bound method easily finds an optimal solution. For this reason,
the exact value W ∗(X) is used in our heuristic for the centroid problem. Note
that the follower problem is polynomially solvable for fixed r.

4 Subproblem for a facility of the leader

Let us consider the (r | Xp−1+1)-centroid subproblem where the leader has a
set of p−1 facilities and want to open another one facility in the best position.
We claim that there is a small number of points in the Euclidean plane which
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we should check for finding this best position. For such points we solve the
follower problem and choose the point with maximal leader market share.

For each client j we have disk Dj with radius Rj = d(j,X). If we move the
new facility, some regions are modified. Note, that all points inside a region
are equivalent for the follower. We will get a new instance of the follower
problem if a new region is created or an old region is vanished. Thus, we
should consider these cases only. Further, we need the following well-known
result for the Euclidean spaces.

Theorem 1. (Helly) Suppose that G1, . . . , Gk is a finite collection of convex
subsets of d-dimensional Euclidean space, where k > d. If the intersection of
every d+1 of these sets is nonempty, then the whole collection has a nonempty
intersection.

Theorem 2. The (r | Xp−1+1)-centroid problem is polynomially solvable for
fixed r.
Sketch of the proof. By Theorem 1, we can restrict our attention by the
triples of the clients and corresponding disks. Let D1, D2, D3 be the disks with
radii R1, R2, R3 respectively and the leader opens a new facility. Consider the
simplest case: D1 ∩ D2 �= ∅, D1 ∩ D3 = ∅, D2 ∩ D3 = ∅ (see Fig.1). The
region D1 ∩D2 allows the follower capturing clients 1, 2. To prevent it, new
facility of the leader may be opened on the straight line between clients 1
and 2 or in disk D′

1 with radius R′
1 = d(1, 2)− R2 or in disk D′

2 with radius
R′

2 = d(1, 2) − R1. The case D1 ∩ D2 �= ∅, D1 ∩ D3 �= ∅, D2 ∩ D3 �= ∅ but
D1 ∩D2 ∩D3 = ∅ is similar to the previous one (see Fig.2).

Now we consider the most interesting case: D1 ∩D2 ∩D3 �= ∅ (see Fig.3).
To destroy this region, the leader can open new facility in disk D′

1 or in disk
D′

2 or in disk D′
3 or in the shaded nonconvex region.

Note that all points on the dotter lines and in the shaded region are iden-
tical for the new facility. Hence, we may consider these lines and shaded
regions and their intersections only. Number the lines and regoins is polyno-
mially bounded and we get the desired. �
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Fig. 1. The simplest case

Fig. 2. The case D1 ∩D2 ∩D3 = Ø
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Fig. 3. The case D1 ∩D2 ∩D3 �= Ø

5 Computational experiments

We use the obtained results for the local search under the Swap neighborhood.
We apply the VNS framework [5] where (k, l)-Swap neighborhoods are used
with different values k and l. In this neighborhoods we move k facilities to
new positions but not far than the distance l from the current positions. The
values l = 100, 150, 200, 250, 300 and k = 1, 2, 3 are used at the shaking step
and l = 50, k = 1 at the local improvement step of the method.

We have coded the VNS algorithm in Delphi 7.0 environment and tested
it on benchmark instances from the electronic library Discrete Location Prob-
lems. For all instances we have n = 50, and demand points are randomly
distributed among the square 7000×7000 uniformly. Two types of weights are
considered: wj = 1 and wj ∈ [1, 200]. For all instances the behavior of the
algorithm with p = r = 10 is studied. Table 1 shows the computational results
for 10 instances. The second column of the Table 1 presents the market share
of the leader according to the alternating heuristic from [1]. In brackets these
values are shown as percentages. The third column shows the same values for
the alternating heuristic with clustering from [2]. The last column presents
the leader market share for the VNS algorithm. As we can see, the local search
approach based on the discretization result for (r|Xp−1 + 1)-centroid problem
is useful and can increase the leader market share. The same conclusions were
obtained in the case wj = 1.
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Table 1
Market share of the leader, wj ∈ [1, 200]

Instance Alternating Procedure of VNS

number heuristic clustering algorithm

111 1404 (31%) 1671 (37%) 1860 (41%)

211 1591 (28%) 1992 (35%) 2250 (40%)

311 1379 (29%) 1756 (37%) 1948 (41%)

411 1541 (29%) 1917 (36%) 2106 (40%)

511 1418 (31%) 1668 (37%) 1996 (40%)

611 1234 (27%) 1735 (38%) 1874 (42%)

711 1512 (27%) 1918 (34%) 2215 (40%)

811 1318 (26%) 1803 (36%) 1933 (39%)

911 1375 (27%) 1868 (35%) 2222 (42%)

1011 1467 (29%) 1875 (37%) 2061 (41%)
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