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In the ðrjpÞ-centroid problem, two players, called a leader and a follower, open facilities to service clients.
Clients are identified with their location on the Euclidean plane. Facilities can be opened anywhere in the
plane. At first, the leader opens p facilities. Later on, the follower opens r facilities. Each client patronizes
the closest facility. Each player maximizes own market share. The goal is to find p facilities for the leader
to maximize his market share. It is known that this problem is ΣP

2-hard. We develop a local search
heuristic for this problem, based on the VNS framework. We apply the ðrjXp−1 þ 1Þ-centroid subproblem
for finding the best neighboring solution according to the swap neighborhood. It is shown that this
subproblem is polynomially solvable for fixed r. Computational experiments for the randomly generated
test instances confirm the value of the approach.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This paper addresses a Stackelberg facility location game on
Euclidean plane. We assume that the clients demands are con-
centrated at a finite number of points in the plane and the facilities
can be opened anywhere in the plane. In the first stage of the
game, a player, called the leader, opens p facilities. At the second
stage, another player, called the follower, opens own r facilities. At
the third stage, each client chooses the closest opened facility as a
supplier. In case of ties, the leader's facility is preferred. Each player
tries to maximize own market share but the leader knows how
many facilities the follower will locate. The goal of the game is to
find p points for the leader facilities to maximize his market share.

The field of competitive location constitutes a broad spectrum of
mathematical models, methods, and applications in operations
research, economics, and computer science. It is an interesting topic
for theoretical studies, experimental research and real-world appli-
cations. It is rooted in the work of Hotelling [18] who studied the
strategies of two players competing for clients on a line market. For a
survey of various competitive facility location models see [12,19].

Such facility location games on a network were studied by
Hakimi [15]. Following Hakimi, the leader problem is called a
centroid problem and the follower problem is called a medianoid
problem. In the literature this game can be found under such
names as pre-emptive capture problem [23], competitive location
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: +7 383 333 25 98.
vydov), jkochet@math.nsc.ru,
(E. Carrizosa).
nts 12-01-00077,

A local search heuristic for t
/j.cor.2013.05.003i
with foresight [21], leader–follower location problem [9], and competi-
tive p-median problem [2], see also [3,4].

Three types of possible facility locations can be considered:
�

he (
at the nodes of a graph (discrete case);

�
 at the nodes and anywhere on the edges of a graph

(absolute case);

�
 anywhere on a plane (continuous case).
Computational complexity of the game on general graphs is
studied in [20,24]. It is shown that the game is ΣP

2-hard for the
discrete and absolute cases. In [11] these results are strengthened
and complemented. Specifically, it is shown that the game is
ΣP
2-hard for the planar graphs in discrete and absolute cases and

in continuous case as well. The follower problem in these three
cases is NP-hard in the strong sense. The class ΣP

2 is a part of the
polynomial time hierarchy. It contains all decision problems
solvable in polynomial time on a nondeterministic Turing machine
with access to an oracle for NP. In particular, this class contains
decision problems which can be described using a formula of the
form ∃x∀yϕðx; yÞ, where ϕðx; yÞ is a quantifier-free formula. It is
widely assumed that the class ΣP

2 is a proper superset of the class
NP. Thus, the problems from this class turn out to be even more
hard than the well-known NP-complete problems [22].

In [7] the alternating heuristic for the centroid problem in the
plane is suggested. In each iteration of the heuristic, a solution of
one player is considered and the best answer for another player
is founded. Two greedy strategies are used to this end. In [10]
an improved alternating heuristic is developed. The branch and
bound method is applied at each iteration in order to calculate exact
market share of the players. At the final stage of the alternating
r|p)-centroid problem in the plane. Computers and Operations
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process, the clients are clustered, and an exact polynomial-time
algorithm for the ð1j1Þ-centroid problem is applied [13].

In this paper we present a local search heuristic using an exact
approach for the follower problem. We consider the ðrjXp−1 þ 1Þ-
centroid problem where the leader has p−1 facilities and tries to
open an additional facility in the best position. We use this
problem in order to find the best neighboring solution in the
swap neighborhood. It is shown that this problem is polynomially
solvable for fixed r. We solve the medianoid problem for many
leader solutions, but the number of such solutions is polynomially
bounded. Computational results for randomly generated instances
from the benchmark library Discrete Location Problems (http://math.
nsc.ru/AP/benchmarks/index.html) show that the new approach
dominates the previous heuristics. Preliminary version of the paper
is presented in the conference proceedings of the EURO MINI
Conference XXVIII on Variable Neighborhood Search [8].

The paper is organized as follows. Section 2 introduces the
relevant notations and states the problem. Section 3 addresses the
follower problem and reformulates it as a linear integer program-
ming problem. Section 4 goes on to provide the main theoretical
result of the ðrjXp−1 þ 1Þ-centroid problem. Sections 5 and 6 develop
the VNS metaheuristic and show the computational results, respec-
tively. Finally, our conclusions are presented in Section 7.
2. Mathematical model

Let us consider a two-dimensional Euclidean plane in which n
clients are located. We assume that each client j has a positive
demand wj. Let X be the set of p points where the leader opens his
own facilities and let Y be the set of r points where the follower
opens his own facilities. The distances from client j to the closest
facility of the leader and the closest facility of the follower are
denoted as dðj;XÞ and dðj;YÞ, respectively. Client j prefers Y over X if
dðj;YÞodðj;XÞ and prefers X over Y otherwise. By

UðY≺XÞ≔fjjdðj;YÞodðj;XÞg
we denote the set of clients preferring Y over X. The total demand
captured by the follower is given by

WðY≺XÞ≔∑ðwjjj∈UðY≺XÞÞ:
For X given, the follower tries to maximize his own market

share. The maximal value WnðXÞ is defined to be

WnðXÞ≔ max
Y ;jYj ¼ r

WðY≺XÞ:

This maximization problemwill be called the follower problem. The
leader tries to minimize the market share of the follower. This
minimal value WnðXnÞ is defined to be

WnðXnÞ≔ min
X;jXj ¼ p

WnðXÞ:

For the best solution Xn of the leader, his market share is ∑n
j ¼ 1wj−

WnðXnÞ. In the ðrjpÞ-centroid problem, the goal is to maximize the
leader market share and find Xn and WnðXnÞ.
3. The follower problem

Let us first describe an exact approach for the follower
problem. Such problem is rewritten as an integer linear program-
ming problem, and solved using the branch and bound method.

For each client j, we introduce a disk Dj with radius dðj;XÞ and
center in the point where this client is located. Let us consider the
resulting intersection of two or more such disks. These disks and
their intersections are called regions. The total number of regions is
large, but we can eliminate some of them, and consider the convex
regions as those defined by intersections only. Thus, we have m
Please cite this article as: Davydov I, et al. A local search heuristic for t
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regions and m≤nðn−1Þ=2 [14]. In fact, there are at most nðn−1Þ=2
pairs of circles with nonempty intersections. Hence, we have at
most nðn−1Þ intersection points. Each intersection point is adjacent
to four regions, and only one of them is convex. Thus, the number
of vertices for convex regions is bounded by nðn−1Þ. Each region
has at least two vertices, hence, we have at most nðn−1Þ=2 convex
regions.

Now we define a binary matrix ðakjÞ to indicate the clients
which will patronize a facility of the follower if it is opened inside
of a region. Formally, define akj≔1 if a facility of the follower
in region k captures the client j and akj≔0 otherwise. In order
to present the follower problem as an integer linear program we
introduce two sets of the decision variables:

yk ¼
1 if the follower opens facility inside of region k;

0 otherwise;

(

zj ¼
1 if the follower captures client j;
0 otherwise:

�

Now the follower problem can be written as the maximum
capture problem

max ∑
n

j ¼ 1
wjzj

subject to zj≤ ∑
m

k ¼ 1
akjyk; j¼ 1;…;n;

∑
m

k ¼ 1
yk ¼ r;

yk; zj∈f0;1g; k¼ 1;…;m; j¼ 1;…;n:

The objective function gives the market share of the follower.
The first constraint guarantees that client j will patronize a facility
of the leader only if the follower has no facility at the distance less
than dðj;XÞ. The second constraint allows the follower to open
exactly r facilities. Note that all points inside a region are equivalent
for the follower. Thus, we choose one of them as exact coordinates
for the follower facility, for example, a middle point for the two
vertices from the boundary of the region.

In our computational experiments we observe that the inte-
grality gap is small for this problem in the case of Euclidean plane.
The branch and bound method easily finds an optimal solution.
For this reason, the exact value WnðXÞ is used in our heuristic
for the centroid problem. Note that the follower problem is
polynomially solvable for fixed r.
4. Subproblem for a facility of the leader

Let us consider the ðrjXp−1 þ 1Þ-centroid subproblem where the
leader has a set of p−1 facilities and wants to open another facility
in the best position. We claim that there is a relatively small
number of points in the Euclidean plane which we should check
for finding this best position. We solve the follower problem
for each the point and choose one with the maximal leader
market share.

As we have mentioned above, for each client j we have the disk
Dj with radius Rj ¼ dðj;Xp−1Þ. Hence, the plane is divided into
regions. When the leader opens a new facility, some of the disks
and corresponding regions are modified. More specifically, some of
the regions become smaller. Note that all points inside of each
region are equivalent for the follower. Thus, we will get a new
instance of the follower problem if and only if some of the regions
are vanished. Hence, we should check all points for the new
he (r|p)-centroid problem in the plane. Computers and Operations
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Fig. 2. Case 2.
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facility where at least one region is vanished. Further, we need the
following well-known result for the Euclidean spaces [6].

Theorem 1 (Helly). Suppose that G1;…;Gk is a finite collection of
convex sets of d-dimensional Euclidean space and k4d. If the
intersection of every dþ 1 of these sets is nonempty, then the whole
collection has a nonempty intersection.

For d¼2 this means that intersections of triples of disks determine
all collection of intersections. The collection of regions changes if
and only if intersections within at least one triple of disks changes.

Theorem 2. The ðrjXp−1 þ 1Þ-centroid problem is polynomially sol-
vable for fixed r.

Proof. Let D1, D2, D3 be a triple of disks with radii R1, R2, R3 and
centers in j1, j2, j3, respectively. Consider all possible cases when at
least one region is vanished.
Case 0: The disks have no mutual intersections. If the leader

opens new facility in one of the points j1, j2, or j3, then the
corresponding disk is vanished. Hence, we get a new instance of
the follower problem. Other points are equivalent and unimportant
for the leader.
Case 1: Two disks have a mutual intersection, for example,

D1∩D2 ≠ ∅, but disk D3 has no intersections with D1 and D2. The
region D1∩D2 is vanished if and only if new facility is opened in
interval j1, j2 or in a disk D′1 with radius R′1 ¼maxf0; dðj1; j2Þ−R2g
or in a disk D′2 with radius R′2 ¼maxf0; dðj1; j2Þ−R1g if the disks
exist (see Fig. 1).
Case 2: Each pair of disks has a mutual intersection, but the

triple of disks has no intersection. This case is similar to the
previous one but now we have to consider two auxiliary con-
centric disks D′j, D″j, D′jDD″j for each point j (see Fig. 2). Disk D′j
shows the points for deleting mutual intersections of the disk Dj

with other disks from the triple. The region D″j\D′j saves the
intersection with nearest from the disks but deletes the intersec-
tion with the other one. As in the previous case, the intervals jk, jl,
k, l¼ 1;2;3 allow the leader to delete the mutual intersections.
Note that the region D′j is closed while the region D″j\D′j is not
closed. It contains its external boundary but does not contain the
internal one. As we will see later, this circumstance is not important
for our analysis and we will ignore the region's boundaries.
Case 3: The triple of disks has a nonempty intersection. In the

previous cases we have got the regions which allow to delete the
pairwise intersections and, hence, the intersection of all disks.
Now we wish to get the regions for deleting of triple intersection
Fig. 1. Case 1.

Please cite this article as: Davydov I, et al. A local search heuristic for t
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but saving some pairwise intersections. This case can be divided
into three disjoint subcases.
Case 3a: New facility of the leader is opened in such a way that

all three disks are decreased. In other words, we consider the
region D1∩D2∩D3 (see Fig. 3). Let us denote by T the triangle j1, j2,
j3. Note that each point of the triangle allows to exclude the triple
intersection, but save the pairwise intersections. Thus, each point
of region T∩D1∩D2∩D3 has required property.
Case 3b: New facility of the leader is opened in such a way that

only two disks are decreased, say D1 and D2. In other words, we
consider region D1∩D2\D3. Let us introduce a point j3 as the
symmetrical point for j3 via the line j1, j2. Denote by T and D3 a
triangle and a disk which are symmetrical to T and D3 via the line
j1, j2, respectively. In order to eliminate the triple intersection,
we have to open new facility in T. To save pairwise intersections
and disk D3, we have to exclude from T regions D3, D′1 and D′2 (see
Fig. 4). Note that symmetrical region in T has the same properties.
Finally, we should remove interval j1, j2 from the resulting region.
Case 3c: New facility of the leader is opened in such a way that

only one disk is decreased, say D1. Denote by R the distance from j1
Fig. 3. Case 3a.

he (r|p)-centroid problem in the plane. Computers and Operations
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to region D2∩D3. Let us consider a disk D‴1 with radius R and
center in j1. Each point from region D‴1\ðD2∪D3Þ eliminates the
triple intersection but saves the disks D2 and D3 (see Fig. 5). In
order to save pairwise intersections D1∩D2 and D1∩D3, we should
exclude the disk D″1 from the region (see case 2).
Let us consider the final structure of regions (see Fig. 6). They are

described by the following points, intervals, and disks:
�

P
R

three points j1, j2, j3 (case 0);

�
 three intervals for pairs ðj1; j2Þ; ðj2; j3Þ; ðj1; j3Þ (case 1);

�
 six disks D′j, D″j, j¼ 1;2;3 (case 2);

�
 six disks D1, D2, D3 and their reflections D1;D2;D3 (cases 3a, 3b);

�
 three disks D‴j, j¼ 1;2;3 (case 3c).

We have at most 11 different instances of the follower problem
from the triple of disks. The first one is the same as initial one,
when the leader opens new facility outside of the grey area. The
second one appears by deleting triple intersection and saving
pairwise intersections. Three instances correspond to deleting only
one pairwise intersection, other three instances correspond to
deleting two pairwise intersections. The last three instances we
have by opening new facility in one of the three points j1, j2, j3.
Fig. 4. Case 3b.

Fig. 5. Case 3c.

lease cite this article as: Davydov I, et al. A local search heuristic for t
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Now let us consider all clients. The cases presented above give
us all points, intervals, and disks which describe the boundaries of
regions with constant goal function values. If we move new facility
from one point to another one inside the same region, we have the
same follower problem. The instance could change only if we
change the region. As we remember, the leader facility is preferred
in case of ties. Hence, each point on the boundary is not worse
than every point inside of region. Thus, we can exploit points of
intersections for the boundaries only and calculate the goal
function value in each of them. We have at most Oðn3Þ intervals
and disks, and at most Oðn6Þ of intersection points. Thus we get the
desired. □

5. Local search

We use the obtained results for the local search under the Swap
neighborhood. We apply the framework of the Variable Neighbor-
hood Search (VNS, [16]), where (k; l)-Swap neighborhoods are
used with different values k and l. In these neighborhoods we
move k facilities of the leader to new positions but not far than the
distance l from the current positions. The values li ¼ 50i; i¼ 2;…; imax

and k¼ 1;…; kmax are used at the shaking step and l1 ¼ 50, k¼1 at the
local improvement step of the method. Below we present the
pseudocode of the VNS algorithm for the ðrjpÞ-centroid problem.

VNS algorithm.

Initialization. Find an initial solution X of the leader and its
market share F(X); choose parameters imax; kmax, and a stopping
condition.
Repeat the following until the stopping condition is met:
(1) i←1; k←1;
(2) Repeat the following steps until i≤ imax and k≤kmax:

(a) Shaking: Generate a solution X′ from the ðk; liÞ–Swap
neighborhood at random;
(b) Local search: Apply a local improvement method with
X′ as initial solution; denote X″ the so obtained local
optimum.
(c) Move or not. if FðXÞoFðX″Þ, then X←X″; i←1; k←1, else
i←iþ 1; if i4 imax then i←1; k←kþ 1.

As the stopping condition we use the running time of the
method. The initial solution is generated by the alternating
heuristic with the clustering procedure [10]. Step 2(b) of the method
is the most time consuming. In order to reduce the running time of
this Step, we apply two ideas. First of all, we divide the (k,l)-Swap
Fig. 6. The final structure of regions.
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neighborhood into some subneighborhoods. Each subneighborhood
contains the intersections of at most two types of lines:
�

P
R

the intervals j1, j2 for j1, j2∈J;
�
 the disks Dj for j∈J;
�
 the disks D′j, D″j for j∈J;
�
 the disks Dj for j∈J;
�
 the disks D‴j for j∈J.
We investigate these subneighborhoods sequentially and apply
the first improvement rule [17] for the local search at the Step 2(b)
of the method. The second idea deals with the randomization of
the neighborhood [1]. Instead of the search through all neighbor-
ing solutions we use a randomized neighborhood which contains
each solution from the (k,l)-Swap neighborhood with a given
probability. Moreover, we compute an upper bound for the leader
market share instead of exact value for these neighboring solu-
tions. These tricks allow us to reduce the computational efforts
significantly without loss of quality for the final solution.
Fig. 8. The landscape of the ðrjXp−1 þ 1Þ-centroid problem.
6. Computational experiments

We have coded the VNS algorithm in Delphi 7.0 environment
and tested it on benchmark instances from the electronic library
Discrete Location Problems. For all instances we have n¼50, and
demand points are randomly distributed among the square 7000�
7000 uniformly. Two types of weights are considered: wj¼1 and
wj∈½1;200�. For all instances the behavior of the algorithm with
p¼ r¼ 10 is studied.

In the first computational experiment we try to see and
understand the structure of the objective function of the
ðrjXp−1 þ 1Þ-centroid problem. It is the market share of the leader.
Hence, we will see a collection of plateaus. Moreover, in some
plateaus we can discover some peaks. For example, in the case of
four clients with the same weights wj¼1 and p¼ r¼ 1, we have
the following landscape (see Fig. 7).

The leader has no clients if his facility is outside of the
parallelepiped. He has two clients if his facility is in the center
of the parallelepiped and he has only one client if his facility is
in another point between clients. In this illustrative example we
observe two plateaus and one peak.

Fig. 8 shows the objective function for the randomly generated
test instance, wj∈½1;200�. We observe a lot of peaks with different
objective function values. Figs. 9 and 10 show the same landscape
but from other points of view. Finally, Fig. 11 shows the landscape
from the top point. We can see some disks, triangles, and their
intersections. The central region is the most promising for the leader.
But finding the optimal location for new facility is not trivial.

In the second experiment we check the size of (k; l)-Swap
neighborhood for l≤6 and k¼1 and show the cardinalities of its
subneighborhoods. We consider the same instance and open nine
leader facilities according to the best known solution. Table 1 shows
the number of elements in the subneighborhoods. For points j, j′ we
use the following notations:

N1 is the number of mutual intersections for the intervals;
N2 is the number of mutual intersections for disks D′j, D″j′;
Fig. 7. An illustrative example.

lease cite this article as: Davydov I, et al. A local search heuristic for t
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N3 is the number of intersections for the intervals with disks
D′j, D″j;
N4 is the number of mutual intersections for disks D‴j;

N5 is the number of mutual intersections for disks Dj;
N6 is the number of intersections the intervals with disks D‴j;

N7 is the number of intersections the intervals with disks Dj;
N8 is the number of intersections of disks D′j, D″j with disks
D‴j′;

N9 is the number of intersections of disks D′j, D″j with disks Dj′;

N10 is the number of intersections of disks D‴j with disks Dj′.

Note that we ignore all disks Dj, j∈J. Without loss of generality,
we may drop intersections of the disks with other disks and
Fig. 9. The same landscape from the right.
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intervals. Table 1 indicates that the total number of neighboring
solutions is 1 363 931 (i¼500), but we have only 469 neighbors
for i¼1 and 1720 neighbors for i¼2. Thus, we can use local
improvement by the (1,1)-Swap neighborhood and have to apply
randomization for i; k41. It is interesting to note that intervals
Fig. 11. The same landscape from the top.

Fig. 10. The same landscape from the left.

Table 1
Size of subneighborhoods.

i N1 N2 N3 N4 N5

1 164 0 0 18 160
2 328 1 0 42 657
3 528 3 1 89 1468
4 772 9 2 142 2642
5 876 17 5 173 3964
6 1096 46 24 218 5964

500 44 081 1988 67 055 46 876 354 942

Please cite this article as: Davydov I, et al. A local search heuristic for t
Research (2013), http://dx.doi.org/10.1016/j.cor.2013.05.003i
generate a small part of neighboring solutions. In [10] the intervals
are used for improvement only. Hence, the local search is more
powerful approach and can improve the leader solution consider-
ably. We guess that some subneighborhoods can be reduced but
this is a line for further research.

In the third computational experiment we test the VNS algo-
rithm. We conducted the experiments in the PC Intel Xeon X5675,
3 GHz, RAM 96 GB, running under the Windows Server 2008
operating system. Table 2 shows the computational results for 10
instances and wj∈½1;200�. For each instance we run the algorithm
with time limit 3 h. The second column of the Table 2 presents the
market share of the leader according to the alternating heuristic
from [7]. In brackets these values are shown as percentages. The
third column shows computational results for alternating heuristic
with clustering [10]. The last column presents the leader market
share for the VNS algorithm. Table 3 presents computational
results for identical client demands, wj¼1 for all j. As we can
see, the local search approach based on the discretization result for
the ðrjXp−1 þ 1Þ-centroid problem is useful and can improve the
leader market share.

In [1] we can find computational results for the discrete
ðrjpÞ-centroid problem with the same demands of the clients. As
we can see, the leader market share exceeds the half of the market
in discrete case. For the plane we have got 34–42% only. As it
N6 N7 N8 N9 N10

22 10 0 22 73
112 116 19 127 318
178 192 51 237 737
230 330 143 428 1154
332 562 230 656 1633
466 824 550 975 2366

62 360 171744 107 728 215 270 291887

Table 2
Market share of the leader, wj∈½1;200�.

Instance code Alternating heuristic Procedure of clustering VNS algorithm

111 1404 (31%) 1671 (37%) 1925 (42%)
211 1591 (28%) 1992 (35%) 2270 (40%)
311 1379 (29%) 1756 (37%) 1977 (41%)
411 1541 (29%) 1917 (36%) 2164 (41%)
511 1418 (31%) 1668 (37%) 1996 (40%)
611 1234 (27%) 1735 (38%) 1874 (42%)
711 1512 (27%) 1918 (34%) 2246 (41%)
811 1318 (26%) 1803 (36%) 1971 (40%)
911 1375 (27%) 1868 (35%) 2222 (42%)

1011 1467 (29%) 1875 (37%) 2125 (42%)

Table 3
Market share of the leader, wj¼1.

Instance code Alternating heuristic Procedure of clustering VNS algorithm

111 14 (28%) 16 (32%) 18 (36%)
211 13 (26%) 17 (34%) 18 (36%)
311 13 (26%) 16 (32%) 18 (36%)
411 12 (24%) 16 (32%) 18 (36%)
511 14 (28%) 17 (34%) 19 (38%)
611 15 (30%) 17 (34%) 17 (34%)
711 15 (30%) 16 (32%) 18 (36%)
811 13 (26%) 17 (34%) 18 (36%)
911 15 (30%) 17 (34%) 19 (38%)

1011 14 (28%) 16 (32%) 19 (38%)
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is mentioned in [5], the continuous location problems as a rule
are harder than discrete ones. Table 1 confirms this observation.
Moreover, in the plane the follower has more opportunities to
attack the leader facilities. As a result, the leader market share is
small enough. Nevertheless, we guess that our computational
results can be further improved and the leader can increase own
market share.
7. Conclusions

We have considered the ðrjpÞ-centroid problem on the Eucli-
dean plane and developed the local search algorithm based on the
VNS framework. It is known that the problem is ΣP

2-hard and we
have to solve the NP-hard follower problem in order to calculate
the objective function value for a given solution of the leader. Our
main theoretical result deals with the swap neighborhood for
the leader solutions. We have shown that the best neighboring
solution can be found in polynomial time for fixed r. Computa-
tional results for small test instances indicate that the problem is
difficult indeed. The landscape of the ðrjXp−1 þ 1Þ-centroid sub-
problem is sophisticated. Finding the best neighboring solution is
time consuming procedure. For future research it is interesting
to find a way for accelerating the search process. Moreover, it is
interesting to get an upper bound for the global maximum and
design an exact method.
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