
A Genetic Local Search Algorithm
for the Graph Partitioning Problem

with Cardinality Constraints ?

Yu. Kochetov, A. Mikhailova, A. Plyasunov ∗

∗Novosibirsk State University, Novosibirsk, Russia
(e-mails: jkochet@math.nsc.ru, real−nastya@mail.ru,

apljas@math.nsc.ru).

Abstract:
A new genetic local search algorithm is designed for the graph partitioning problem with
cardinality constraint for each subset of the vertices. The family of local optima under the
polynomial neighborhoods is used as a population in order to systematically produce better local
optima. It is shown that the corresponding local search problems are tightly PLS-complete. So,
any local improvement algorithm takes, in the worst case, an exponential number of iterations
regardless of the tie–breaking and pivoting rules used. Nevertheless, the local search problems
are polynomially solvable if all weights of the edges are identical. For this case, computational
experiments are produced for the real–world and random test instances. We observe that this
algorithm is efficient and effective. It allows to find the high quality local optima.

Keywords: Graph partitioning problem, local search, memetic algorithm, Min-Cut problem,
PLS-completeness.

1. INTRODUCTION

In the well-known graph partitioning problem, we are
given an undirected graph G = (V, E) with an even
number of vertices and a weight we ≥ 0 for each edge
e ∈ E. We wish to find a partition of V into two subsets
V1 and V2 with |V1| = |V2| such that the sum of the weights
of the edges that have one endpoint in V1 and one endpoint
in V2 is minimal. In the real world applications, we need,
as a rule, to partition a graph into many subsets under
the cardinality constraint for each of them. Moreover,
we know nothing about the number of subsets. It is a
more complicated model (Chopra, Rao (1993); Rendl,
Wolkowicz (2005)). We face with it in our traffic flow
project for Vladivostok city, Far East of Russia.

For this NP-hard problem (Gary, Johnson (1979)), we de-
velop a genetic local search algorithm (Dreo et al. (2006))
where elements of population are local optima under the
polynomial neighborhoods. We study the corresponding
local search problems and show that these problems are
tightly PLS-complete. So, any local improvement algo-
rithm takes an exponential number of iterations in the
worst case regardless of tie–breaking and pivoting rules
used. Nevertheless, these algorithms are fast in average.
They are polynomial if all weights of the edges are the
same. A lot of test instances for this case are available by
internet. We have carried out computational experiments
for these random generated test instances and an instance
from the map of Vladivostok city. For all cases, we observe
that our genetic local search algorithm is efficient and finds
high quality local optima.
? This work was partly supported by the RFBR grant 08-07-00037,
ADTP grant 2.1.1/3235.

2. THE STATEMENT OF THE PROBLEM

Given an undirected graph G = (V, E) and a weight
we ≥ 0 for each edge e ∈ E, find a partition of V into
subsets with cardinality of each subset at most p such that
the sum of the weights of the edges that have endpoints in
different subsets is minimal (Chopra, Rao (1993); Rendl,
Wolkowicz (2005)).

Now we present this problem as a linear 0-1 program. Let
the set J = {1, . . . , m} indicates the indices of the subsets.
Introduce the following 0-1 decision variables:

xij =
{

1 if vertex i belongs to subset Vj

0, otherwise,

ye =
{

1 if edge e belongs to the cut
0, otherwise.

Using these variables, we can write the problem as follows:

min
∑

e∈E

weye

s.t. {
ye ≥ xi1j − xi2j ,
ye ≥ xi2j − xi1j ,

e = (i1, i2) ∈ E, j ∈ J,

∑

j∈J

xij = 1, i ∈ I,

∑

i∈V

xij ≤ p, j ∈ J,

ye, xij ∈ {0, 1}, e ∈ E, i ∈ V, j ∈ J.

The objective function defines the weight of the cut. The
first set of restrictions requires to include an edge into the
cut if its endpoints belong to different subsets. The second

Preprints of the 13th IFAC Symposium on
Information Control Problems in
Manufacturing, Moscow, Russia, June 3 - 5,
2009

Fr-C3.1

1991

set of restrictions guarantees that each vertex is included
into exactly one subset. The last restrictions determine the
upper bound for the cardinality of each subset.

This representation allows us to use commercial software,
for example, CPLEX, and find optimal solution. Unfor-
tunately, this partitioning problem is very hard for exact
methods. We try to solve small random test instances with
|V | = 50 and probability 0, 33 to have an edge for each pair
of vertices. After 12 hours of running time, PC Pentium
IV with RAM 512 Mb finds a solution which is strongly
worse than a solution obtained by genetic algorithm in a
few seconds. The integrality gap is quite large for these
instances, about 50 %. So, lower bounds are not tight and
the branch and bound strategy is not efficient for this case.

Note that we can rewrite the problem without ye variables.
Clearly, ye = 1−∑

j∈J xi1jxi2j , e = (i1, i2). Hence, we can
remove the first set of restrictions and present the problem
as a nonlinear one:

max
∑

e∈E

we

∑

j∈J

xi1jxi2j

s.t. ∑

j∈J

xij = 1, i ∈ I,

∑

i∈V

xij ≤ p, j ∈ J,

xij ∈ {0, 1} , i ∈ V, j ∈ J.

Now all constraints are linear, but the objective function
is quadratic. So, we can use CPLEX software again.
We reduce the dimension of the problem, remove some
constraints and variables but get bad results again. For
the same random test instances, we obtain even worse
partitions than for the linear program after 12 hours of
running time.

The main reason, we believe, why these programs are not
useful, is the existence of lots of symmetries. Arbitrary
renumbering of the set J produces a new formal represen-
tation of the same solution. In particular, we have at least
|J |! optimal solutions. This leads to a huge branching tree
and weak lower bounds. Efficient methods for removing
the symmetries are unknown. Some results in this direction
can be found in (Peinhardt (2008); Bertold (2008)). Now
heuristic methods are the most powerful for this partition-
ing problem, especially for the large scale instances.

3. GENETIC LOCAL SEARCH

The evolution strategies, the evolution programming, and
the genetic algorithms are famous approachers in combina-
torial optimization. They have went through many modi-
fications according to the variety of problems. The genetic
algorithms became extremely popular after the publica-
tion of book ”Genetic Algorithms in Search, Optimization
and Machine Learning”, by D.E. Goldberg in 1989. This
book, published world–wide, has resulted in an exponential
growth of interest to this field. Nowadays, researchers in
this area organize common international conferences and
combine their different ideas. In this paper, we study
genetic local search algorithm (GLS), which is interesting
from the theoretical and practical points of view. It is a
variant of Memetic algorithm where we apply different

greedy strategies and crossover operators. The GLS is
an iterative method. At each iteration, we have a set of
local optima under the prescribed neighborhoods. This set
constitutes a population. It evolves during a succession
of iterations until a termination criterion is satisfied. The
general framework of this metaheuristic can be presented
as follows.

Genetic Local Search

1. Generate a starting population.
2. Repeat the following steps until the termination crite-

rion is satisfied:
2.1 Select two elements from the population as parents.
2.2 Create an offspring solution for the parents.
2.3 Apply local search for the new solution and find

local optimum.
2.4 Update the population.

3. Return the best found solution.

Below we discuss this framework in detail.

3.1 Starting population

If number of iterations of the genetic algorithm is great
then the choice of starting population is not crucial for the
convergence properties of the algorithm. Nevertheless, the
good quality of starting population can reduce the running
time to get optimal or target solutions. To this end, we use
various greedy strategies and local search at Step 1 of the
framework.

Random Greedy. Given p > 0, we define the minimal
number of subsets for partition, m = d|V |/pe, and select
one vertex from V for each subset at random. Further,
we add vertices to the subsets one-by-one according to
the cardinality constraint. At each step, we pick up an
unused vertex at random and include it in a subset with
the minimal increase of the objective function.

Heavy Greedy. This algorithm is similar to the previous
one but uses another rule to select a vertex at each step.
Namely, a vertex with the maximal total weight of its edges
is selected.

Light Greedy. This algorithm is similar to the Heavy
Greedy, but uses an opposite strategy. A vertex with the
minimal total weight of its edges is selected.

Unfortunately, these algorithms, as many others, produce
solutions with a large relative error. For example, the best
known solution for a graph with 2395 vertices, 7462 edges,
and we ≡ 1 has objective value 596 for p = 1198. However,
Random Greedy produces 3730 on the average, Heavy
Greedy produces 1928, and Light Greedy produces 1923.
Similar deviations are observed for other graphs and other
greedy strategies.

In order to improve greedy solutions, we may use multi-
start approach and return the best found solution. Further
improvement can be obtained by local search under poly-
nomially searchable neighborhoods. Algorithms based on
this idea are called Greedy Randomized Adaptive Search
Procedures (GRASP (Festa, Resende (2002))). We apply
them to create the starting population of local optima. The
performance of the GRASP algorithms strongly depends
on the neighborhoods used in the local search. Large

1992

neighborhoods lead to high–quality solutions but spend
a lot of time. Small neighborhoods often produce poor
local optima. Finding an optimal balance is a non-trivial
task. So, we will apply small and large neighborhoods with
different greedy strategies.

3.2 Local search

Let us consider the following neighborhoods, which will be
used at Steps 1 and 2.3 of the GLS framework.

MS neighborhood (Move or Swap). This neighborhood
consists of feasible solutions which can be obtained from
the given solution by moving a vertex to another subset
(may be empty one) or by choosing two vertices in different
subsets and swapping the vertices. Note that we can
change the power of subsets of this neighborhood. The
size of the neighborhood is O(|V |2).
KL–neighborhood (Kernighan, Lin (1970)). Elements of
this neighborhood are obtained by the following iterative
procedure.

Step 1. Find the best element in the MS–neighborhood
for the current solution. This element may be better or
worse than the current solution.
Step 2. Move from the current solution to the best MS–
solution.
Step 3. Repeat Steps 1 and 2 where a vertex cannot be
chosen if it has been used in one of the previous iterations
of Steps 1 and 2.

The fulfilment of the iterations defines a sequence of
feasible solutions. They compose the KL–neighborhood
of the current solution. The size of the neighborhood is
O(|V ||J |).
KL1–neighborhood. This neighborhood consists of one
element only. It is obtained by the first iteration of the
previous procedure. By definition, a KL1–neighborhood is
a part of the MS–neighborhood.

FM–neighborhood (Fiduccia, Mattheyses (1982)). This
neighborhood is defined like the KL–neighborhood. The
only difference is in the rule of the choice of two vertices
for swapping. Now this step is divided into two stages. At
the first stage, we select the first vertex and a subset of the
partition where this vertex will be. At the second stage,
we select the second vertex from the subset for swapping
with the first vertex. At each stage, we try to minimize the
objective function value. Recall that the objective value
may decrease or increase at each iteration.

FM1–neighborhood. It consists of one element only. This
element is determined at the first iteration of the procedure
which defines FM–neighborhood.

Similar neighborhoods were used for graph bipartition
problem (Fiduccia, Mattheyses (1982)), the p–median
problem (Kochetov et al. (2005)), the timetabling problem
(Kochetov et al. (2008)), and others. From the theoretical
point of view, it is interesting to understand the compu-
tational complexity of the local search problems for these
neighborhoods (Kochetov (2008); Yannakakis (1997)).
For we = 1, e ∈ E these problems are polynomially
solvable. But it is an open question for arbitrary positive
weights. We claim that the local search problem for each

of these neighborhoods is tightly PLS–complete for this
general case. As a result, we have the following.

Theorem. For the graph partitioning problem with cardi-
nality constraints, the local improvement algorithm under
each of the neighborhoods MS, KL, KL1, FM, FM1 takes,
in the worst case, an exponential number of iterations
regardless of the tie–breaking and pivoting rules used.

3.3 Selection and identification

As a rule, the capability of an element of population to be
selected for reproduction depends on its objective value.
The most popular selection operators are proportional
and tournament selections (Dreo et al. (2006)). The main
idea of the operators is to give a preference for ”good”
solutions. In the GLS algorithm, population consists of
local optima only. All solutions are not so bad. So, we
select parents from the population at random with the
uniform distribution.

Let A,B be two elements of the population. We will
represent each solution by a string with length n = |V |
where the bit i shows the subset for vertex i. As we
mentioned above, the representation of solution admits a
lot of symmetries. So, we may get identical partitions of
set V for different A and B. Moreover, if A and B are
different, we can select a numbering of subsets for B that
minimizes the difference (distance) between A and B. If
the distance equals zero, then A and B coincide.

Let mij denote the number of vertices which either belong
to subset i of A and not belong to subset j of B or vice
versa. Now we introduce the auxiliary variables

zij =
{

1 if subset i is assigned to subset j
0, otherwise.

The distance between A and B can be defined as the opti-
mal value of the following assignment problem (Moraglio
et al. (2007)):

min
∑

i∈J

∑

j∈J

mijzij

s.t. ∑

i∈J

zij = 1, j ∈ J,

∑

j∈J

zij = 1, i ∈ J,

zij ∈ {0, 1}, i, j ∈ J.

This problem is polynomially solvable and produces the
best numbering of the subsets for solution B. Below we
assume that solution B has been renumbered according to
the optimal solution of the assignment problem.

3.4 Generating the local optima

During the evolution process, we need systematically gen-
erate new local optima. To this end, a crossover operator is
applied to parent solutions (Step 2.2) and the local search
algorithm is used (Step 2.3). The crossover operator is
usually stochastic. The repeated crossover of the same
couple of distinct parents gives different offspring. The
operator generally respects the following properties (Dreo
et al. (2006)):
1) the crossover of two identical parents will produce

1993

offspring identical to the parents;
2) two parents which are close in the search space will
generate offspring close to them.

These properties are satisfied by the ”classical” k-point
crossover and by the others described below.

Classical k-point crossover. It is a well–known operator,
which was applied for many optimization problems (Dreo
et al. (2006)). It is simple and intuitive. For solutions A
and B, we select k different positions i1, . . . , ik from 1
to n. New solution C will get the first positions 1, . . . , i1
from A, the next positions i1 +1, . . . , i2 are taken from B,
positions i2 + 1, . . . , i3 are taken from A again, and so on.
Solution C will inherit some properties of its parents. But
this string C may be infeasible. To repair it, we remove
some vertices from the overfilled subsets and distribute
them among other subsets by greedy algorithms. In our
computational experiments, we use this operator for k = 5.

Proportional crossover. This operator is quite simple and
natural for the problem. If solutions A,B indicate the same
subset for vertex i, then solution C saves it. Otherwise, C
inherits one of them: subset j(A) from A with probability
PA or subset j(B) from B with probability PB . These
probabilities are defined as follows:

PA =
SA

SA + SB
, PB =

SB

SA + SB
,

where SA(SB) is the total weight of the edges which
connect the vertex with its subset in solution A(B). We
use this rule according to the cardinality constraint. If one
of the subsets j(A) or j(B) is full, the vertex is included
to another subset.

Crossover Laszewski. We select some subsets in solution
A and save them for C. These subsets will never change,
and some properties of A are transmitted to C. Now we
remove the vertices of these subsets from solution B and
save the other subsets for solution C. In order to get a
feasible solution from C, we apply greedy algorithms again.
Similar crossover operator is used in (Laszewski (1991))
for the k-way partitioning problem.

Cycle crossover. The crossover of Laszevski tries to keep
the following properties of the parents: some vertices of the
graph must be at the same subsets. In the cycle crossover,
the most attention is attracted to another property: some
vertices of graph must be in different subsets.

Let us place string A under the string B and get a
permutation with repetitions. We wish to decompose the
permutation into cycles and paths. For this goal, we select
an arbitrary position in string A and mark it. In this
position, we have an index of a subset, say j0. If the string
B has the same index at the same position, then we have
got a cycle. Otherwise, the string B has another index, say
j 6= j0. Now we select an arbitrary unmarked position of
string A with index j and mark it. The process is repeated
until either j = j0 or the string A has no unmarked
position with index j. In the first case, we have got a
cycle; otherwise, we have got a path. Thus, we decompose
strings A and B into the cycles and paths. Now to each
cycle and path, we assign a label A or B. The offspring
C is obtained by picking up an index of subset according

to the label for each position. Similar crossover operator
is studied in (Moraglio et al. (2007)).

Path relinking. The idea of this operator is suggested in
(Glover, Laguna (1997)) and used in many applications.
We construct a shortest path from solution A to B and
choose an offspring solution C into this path. We create
the path by MS-neighborhood. So, each element of the
path inherits some properties of the parents. We may get
arbitrary internal element as the offspring. In practice, we
define it as equidistant element from A and B, i.e. we
give equal rights to the parents. Note that there are many
shortest pathes from A to B. We use greedy strategy to
create one of them.

4. COMPUTATIONAL EXPERIMENTS

The GLS algorithm is coded in PASCAL (Delphi 6.0)
and tested both on randomly generated and on the real
world instances. In particular, we consider the graph of
the traffic roads of Soviet district of Vladivostok city, Far
East of Russia. The graph has 217 vertices and 258 edges,
we = 1, e ∈ E. Our interest to this graph is due to an
industrial project on the optimization of traffic flows in
this city (Nurminski (2008)). The decomposition approach
used in the project requires near optimal solutions for
partitioning problem. Table 1 shows computational results
for this graph, with various values of parameter p. We test
the GLS algorithm with population size 20 and terminate
calculations if the population does not change during
20 iterations. The crossover operator is selected at each
iteration at random from the list of operators described in
the previous section.

Table 1. Results for the graph of roads

p 150 110 100 90 80 60 50 40

Iterations 208 265 450 402 316 293 723 356

GLS 4 5 7 8 10 11 15 16

Table 2. Results for graph with |V | = 2851,
|E| = 15093

p 1426 1497 713 746

Iterations 647 713 1377 889

Best known values 189 181 429 378

GLS 189 181 399 363

After crossover, we apply local improvement algorithm
with MS-neighborhood. To the local optimum obtained,
we again apply local improvement algorithm with KL-
neighborhood. As we can see from the Table 1, the number
of cutting edges is quite small. So, the deviation from
optimal values cannot be large. Unfortunately, we have
not got the optimal values. In order to understand the
capabilities of the GLS algorithm, we do as follows. For
p = 50, we enlarge the size of population from 20 to 50
and terminate the algorithm after 1500 iterations. As a
result, we get a better solution, with 13 cutting edges
instead of 15. Hence, the GLS algorithm can improve its
own partitioning if it gives more possibilities for search.
Moreover, the global optimality is not very important in

1994

the decomposition approach: here, we need near optimal
solutions quickly.

The tested graph is planar. So, it is interesting to study
more complicated cases; for example, random graph from
the Graph Partitioning Archive (http://staffweb.cms.gre.
ac.uk/∼c.walshaw/partition). For all instances from this
archive, the best found solutions are available by internet.
Actually, these results are obtained for the case when the
number of subsets is given. So, we have to modify our
model and introduce one additional restriction for parti-
tion. The instances from the archive have large dimension.
Hence, the large neighborhoods like KL and Swap are
very time–consuming. We use FM and FM1 neighborhoods
only. Moreover, to apply these neighborhoods efficiently,
we modify the data structure from (Fiduccia, Mattheyses
(1982)) to accelerate the local search. Table 2 presents
computational results for a graph with 2851 vertices and
15093 edges.

The case p = 1426 is very close to the classical graph
bipartitioning problem. We need to divide the set V into
two subsets, V = V1 ∪ V2, and the cardinalities of V1, V2

differ at most 1 only. In this case, the GLS algorithm finds
the best known solution. In the case p = 1497, we need
to divide V into two subsets again but now there is more
freedom. Each feasible solution for p = 1426 is feasible for
p = 1497. So, the optimal value for p = 1497 is at most
that for p = 1426. We observe the same in Table 2. We find
the best known solution again and cannot improve it by
enlarging the population from 50 to 150 and increasing the
number of iterations substantially. We believe that these
are the optimal values for p = 1497 and p = 1426. The
cases p = 713 and p = 746 are more interesting. We have
to divide the set V into four subsets, and the assignment
problem from Subsection 3.3 is crucial here. For these
cases, the GLS-algorithm finds new solutions with better
values than the best known solutions. The population size
is 50 in all these experiments.

Table 3 shows computational results for a graph with |V | =
2395 and |E| = 7462. We study five cases: p = 1256, 1198,
628, 599, 300. For p = 1198 and p = 300, we obtain slightly
worse results than in the Graph Partitioning Archive. But
for the other cases, p = 1256, p = 628, and p = 599, we
find better values again. So, we may conclude that our
GLS algorithm is efficient and effective for this NP-hard
problem and can be used in real–world applications.

Table 3. Results for graph with |V | = 2395,
|E| = 7462

p 1256 1198 599 628 300

Iterations 763 1054 1000 1000 1216

Best known values 551 596 1203 1184 1758

GLS 541 599 1174 1130 1761

5. CONCLUSIONS

We consider the graph partitioning problem with cardi-
nality constraints for the subsets of vertices. For this NP-
hard problem, we design an iterative genetic local search
algorithm. This algorithm deals with local optima with

respect to some polynomial neighborhoods. We show that
the general problem of finding a local optimum is tightly
PLS-complete. So, any local improvement algorithm takes,
in the worst case, an exponential number of iterations
regardless of tie–breaking and pivoting rules used. But for
the case of identical weights of the edges, we get local
optima in polynomial time. For this case, we carry out
computational experiments for the real–world and random
test instances. We observe that the GLS algorithm is
efficient and finds near optimal solutions quickly.

REFERENCES

Bertold T. (2008) Automatic detection of orbitopal sym-
metries. Abstracts of International Conference Opera-
tions Research 2008, September 3–5, 2008, Augsburg,
Germany, 198–198.

Chopra S., Rao M. R. (1993) The partition problem
Mathematical Programming, 59, 87–115.

Dreo J., Petrowski A., Siarry P., Taillard E. (2006) Meta-
heuristics for Hard Optimization, Springer.

Festa P., Resende M. G. C. (2002) GRASP: An annotated
bibliography. In: C. C. Ribeiro, P. Hansen (Eds.)
Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, 325–368.

Fiduccia C. M., Mattheyses R. M. (1982) A linear-time
heuristic for improving network partitions Proc. of the
19-th Design Automation Conference, Los Alamitos, CA
IEEE Comput. Soc. Press, 175–181.

Gary M. R., Johnson D. S. (1979) Computers
and Intractability: A Guide to the Theory of NP–
Completeness. New York: Freeman.

Glover F., Laguna M. (1997) Tabu Search. Boston: Kluwer
Acad. Publ.

Kernighan B. W., Lin S. (1970) An effective heuristic
procedure for partitioning graphs Bell System Techn J.,
49, 291–307.

Kochetov Yu., Alekseeva E., Levanova T., Loresh M.(2005)
Large neighborhood local search for the p-median prob-
lem Yugoslav Journal of Oper. Res., 15(1), 53–63.

Kochetov Yu., Kononova P., Paschenko M. (2008) For-
mulation space search approach for the teacher/class
timetabling problem Yugoslav Journal of Oper. Res.,
18(1), 1–11.

Kochetov Yu. (2008) Computational capabilities of local
search in combinatorial optimization. Computational
Mathematics and Mathematical Physics, 48(5), 747–763.

Laszewski G. (1991) Intelligent structural operators for
the k-way graph partitioning problem. Proceedings of
Fourth International Conference on Genetic Algorithms,
San Diego, CA, USA, 45–52.

Moraglio A., Kim Y.-H., Yoon Y., Moon B.-R. (2007)
Geometric crossovers for multiway graph partitioning,
Evolutionary Computation, 15(4), 445–474.

Nurminski E.A. (2008) Decomposition and parallel
computations via Fejer processes with small distur-
bances. Proceedings of XIV Baikal International
School–Seminar Optimization Methods and Their Ap-
plications, 1, 128–135.

Peinhardt M. (2008) Breaking model symmetry for graph
partitioning. Abstracts of International Conference Op-
erations Research 2008, September 3–5, 2008, Augsburg,
Germany, 198–198.

1995

Rendl F., Wolkowicz H. (2005) A projection technique for
partitioning the nodes of a graph. Annals of Operations
Research, 58(3),155–179.

Yannakakis M. (1997) Computational complexity. In:
E. Aarts, J. K. Lenstra (Eds.) Local Search in Com-
binatorial Optimization, Chichester: Wiley, 19–55.

1996

