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Abstract—Under consideration is the optimization problem for the routes of heterogeneous vehicles
serving a given set of customers. It is assumed that the customers are represented by points in the
plane, whereas the number of each type of vehicles is limited. To solve the problem, we developed
a hybrid local search algorithm with coding the solutions as a sequence of customers. To decode the
sequence, the corresponding NP-hard problem is solved by the method of Lagrangian relaxation.
We propose new procedures for intensification and diversification of the search, as well as a new
neighborhood of exponential size. The results of computational experiments are presented for the
available test instances with the number of customers up to 255. For 15 instances we obtain new
record values of the objective function.
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INTRODUCTION

The vehicle routing problem is a rapidly developing field of operations research. Owing to numerous
applications, a profusion of new mathematical models appears, the original numerical methods are
developed, and some specialized international conferences are convened. In the paper, we study the
problem of finding optimal routes for heterogeneous vehicles of limited load-carrying capacity. It is
assumed that each type of vehicles has a fixed cost and specific travel cost (the cost of gasoline per
kilometer). The number of vehicles of each type is limited. All vehicles are in a garage (depot) and must
return there after servicing customers. Each customer has a specific demand for the delivery of goods
and is served by exactly one vehicle. The depot and customers are represented by points on the plane.
It is required to find the routes of vehicles delivering for goods to all customers with a minimum total
cost.

Along with this problem (Heterogeneous Fixed Fleet Vehicle Routing Problem, HFFVRP), under
consideration are the version with the unlimited vehicle fleet, the mixed version, and the version with
identical vehicles. These problems are all NP-hard and actively studied both theoretically and empirically
in order to obtain efficient algorithms. A surwey of recent results can be found, for example, in [5].

In the development of algorithms for solving the routing problems, the following subproblem often
arises: Some sequence of customers is given; we have to split it into feasible routes and assign the
vehicles to them so that the total cost of serving the customers be minimal. If we can solve this
subproblem, then the possibility appears to encode solutions in the form of a sequence of customers and
use the well-acclaimed methods for these problems, in particular, for the traveling salesman problem.
With an unlimited vehicle fleet, this subproblem can be solved in polynomial time. With a limited fleet,
it is NP-hard [20] but can be solved exactly by the method of dynamic programming.

In this paper, we use an approximation method of Lagrangian relaxation which yields some upper
and lower bounds for the optimum. This method is used in the scheme of local search with variable
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neighborhoods. Along with the well-known neighborhoods, we introduce a new neighborhood of
exponential size, which allows us to make a deep restructuring of solutions with improvement of
the objective function. Some new procedures for intensification and diversification of local search are
applied to improve the efficiency of the method. The results of computational experiments testify the
high competitiveness of the new hybrid method. For 15 test instances from the widely-used electronic
collections we improved the record values of the objective function.

In Section 1, the exact formulation of the problem is given and a brief overview of the previous
research is presented. In Section 2, we consider the problem of splitting a sequence of customers into the
vehicle routes and the method of Lagrangian relaxation to solve it. The developed local search algorithm
is described in Section 3, and the results of computational experiments are presented in Section 4. The
article is completed with a conclusion and a description of the areas of future research.

1. STATEMENT OF THE PROBLEM

Consider a complete undirected weighted graph G = (V,A) with the vertex set V = {0, 1, . . . , n} and
the arcs A = {(i, j) | i, j ∈ V, i < j}. Vertex 0 corresponds to a depot, where the vehicles are placed. The
other vertices symbolize the customers: V ′ = V \ {0}. All vertices are represented by points on the plane.
The distance dij is given between two of vertices (i, j). Each customer i ∈ V ′ has an order for the delivery
of qi units of cargo. The vehicle fleet consists of heterogeneous vehicles. Let the set of types of vehicles
be denoted by K. For each k ∈ K, the number mk of available vehicles and their limit capacity Qk are
known. The use of a vehicle entails a one-time fixed costs fk. The ride from i to j costs ck

ij = dijck, where
ck is the cost per unit distance for a vehicle of type k.

Let r be a route in G. This route is said to be feasible for a vehicle of type k if it forms a simple
circuit passing through vertex 0 and the total demand of customers does not exceed the capacity of the
vehicle. The cost of the route r is formed by the fixed cost fk of the vehicle associated with r and the
integrated cost of the arcs. The problem is to find a set of feasible routes and to assign vehicles to them
so that each customer is visited exactly once, the number of vehicles involved does not exceed the size of
the vehicle fleet, whereas the total cost of the routes is minimal.

Let us give the exact mathematical formulation of the problem. We introduce the variables:

xk
ij = 1 if a vehicle of type k travels from customer i to customer j; and xk

ij = 0 otherwise;

yij ≥ 0 is the quantity of goods in the vehicle when it goes from customer i to customer j.
Using these variables, we can state the HFFVRP problem in terms of mixed integer linear program-

ming:

min
( ∑

k∈K

fk

∑
j∈V ′

xk
0j +

∑
k∈K

∑
i,j∈V

ck
ijx

k
ij

)
, (1)

s. t.
∑
k∈K

∑
i∈V

xk
ij = 1, j ∈ V ′, (2)

∑
i∈V

xk
ij =

∑
i∈V

xk
ji, j ∈ V, k ∈ K, (3)

∑
j∈V ′

xk
0j ≤ mk, k ∈ K, (4)

∑
i∈V

yij −
∑
i∈V

yji = qj, j ∈ V ′, (5)

y0j ≤
∑
k∈K

Qkx
k
0j , j ∈ V ′, (6)

yij ≤
∑
k∈K

(Qk − qi)xk
ij, i ∈ V ′, j ∈ V, i �= j, (7)

xk
ij ∈ {0, 1}, yij ≥ 0, i, j ∈ V, k ∈ K. (8)
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Table 1. Feasible and infeasible sequences

m1 = 1, Q1 = 10, m2 = 1, Q2 = 14

r : a b c d e → feasible

q : 5 4 4 2 7

r′ : a d c e b → infeasible

q : 5 2 4 7 4

The objective function of the problem determines the total cost of engaging the vehicles and
delivering all goods to the customers. Constrains (2) and (3) ensure that each customer is visited
exactly once and a vehicle leaves the customer after visiting. Constrains (4) set an upper bound on
the number of the engaged vehicles of each type. Constrain (5) is a restriction on the commodity flow:
the difference in the quantity of goods in a vehicle before and after visiting some customer must be equal
to the customer’s demand. Moreover, this constrain excludes the cycles that are not passing through
vertex 0. Constrain (6) guarantees that the vehicle capacity is never exceeded, whereas (7) establishes
a relationship between the variables yij and xk

ij : if none of vehicles uses the edge (i, j) then the cargo
flow on it equals zero. The domain of definition of the variables is defined by (8).

The HFFVRP problem was firstly considered in [22], where the method of column generation
combined with a local search procedure and a procedure of adaptive memory control was proposed to
solve the problem. An exact method based on reducing the problem to the set partitioning problem, was
developed in [6]. This method can find the optimal solutions for instances with up to 100 customers
and, as of today, it is the best exact approach. The hybrid iterative local search method presented in [21]
is based on the same reducing. In this method, the set partitioning problem is solved many times by
an optimization software package for integer linear programming problems. The threshold algorithms
(simulated annealing, record to record travel algorithms) were investigated in [14, 23, 24]. Some variants
of tabu search with various diversification mechanisms were suggested in [7, 9, 19, 25]. The idea of
variable neighborhoods was used in [15, 16]. New neighborhoods, in particular, the neighborhoods of
exponential size, as well as their random ordering allowed us to improve the record values of the objective
function for many test instances.

The problem of splitting the sequence of customers into routes was used in several algorithms. In [20],
an exact method of dynamic programming was used for solving it. In [11–13], this method is used
for obtaining fast approximate solution. This same idea was successfully applied to the split delivery
vehicle routing problems [7] and the vehicle routing problems with time windows [10]. In [26], the general
scheme is proposed for solving the routing problems which includes a generalized partition algorithm.
This scheme was applied to 29 different types of the problem and proved the effectiveness.

In the case of limited heterogeneous vehicle fleet, the problem becomes much more complicated.
There are such sequences for which no feasible solution exists (see Table 1). As was already mentioned
in the Introduction, the problem becomes NP-hard. Therefore, in this paper we use a different approach
that is based on the Lagrangian relaxation implemented in the subgradient optimization method.

2. THE METHOD OF THE LAGRANGIAN RELAXATION
FOR SPLITTING A SEQUENCE

Let us represent the problem of splitting the sequence π = (π1, . . . , πn), πi ∈ V ′, into routes in terms
of finding the shortest path in a directed weighted multigraph. The vertex π1 is the only source, whereas
the vertex n + 1, the only sink. Given (i, j), 1 ≤ i < j ≤ n + 1, we define the set of arcs (i, j)k , k ∈ K,
corresponding to the vehicle of type k coming from the depot to customer πi, then to customer πi+1, and
so on to customer πj−1, and then returning back to the depot. The cost Lk

ij of such a path is defined as
follows:

Lk
ij =

⎧
⎪⎨
⎪⎩

fk + rk

(
d0πi +

j−2∑
t=i

dπtπt+1 + dπj−10

)
, if

j−1∑
t=i

qπt ≤ Qk,

∞, otherwise.
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Fig. 1. A multigraph for the sequence π.

An optimal sequence splitting can be obtained by finding a path of the minimum cost from source to
sink, while limiting the number of the used arcs of each type (Fig. 1).

Let us write this problem in terms of integer linear programming. Let a Boolean variable zk
ij take the

value 1 if and only if the arc (i, j)k is included into the optimal solution. Then the required path can be
obtained by solving the following problem:

min
∑
k∈K

n∑
i=1

n+1∑
j=i+1

Lk
ijz

k
ij, (9)

s. t.
∑
k∈K

n+1∑
j=i+1

zk
ij −

∑
k∈K

i−1∑
j=1

zk
ji =

⎧⎪⎨
⎪⎩

1, if i = 1,
−1, if i = n + 1,

0, if 1 < i < n + 1,

(10)

n∑
i=1

n+1∑
j=i+1

zk
ij ≤ mk, k ∈ K, (11)

zk
ij ∈ {0, 1}, k ∈ K, 1 ≤ i < j ≤ n + 1. (12)

The objective function (9) defines the total cost of the path from source to sink. Constraint (10) ensures
that the number of incoming arcs coincides with the number of outgoing arcs at each vertex which is
not the source or the sink. A single arc comes from the source, and a single arc comes to the sink.
Constraint (11) sets an upper bound for the number of vehicles of each type in use.

Problem (9)–(12) is NP-hard; however, the removal of (11) makes it polynomially solvable. We
introduce the nonnegative Lagrange multipliers λk for each of the inequalities (11) and add the term

∑
k∈K

λk

(
n∑

i=1

n+1∑
j=i+1

zk
ij − mk

)

into the objective function (9). Collecting similar terms, we obtain the relaxed problem:

LR(λk) = min
∑
k∈K

n∑
i=1

n∑
j=i

(
Lk

ij + λk

)
zk
ij −

∑
k∈K

λkmk

subject to (10) and (12).
Note that this problem is the shortest path problem in the multigraph for the sequence π (see Fig. 1)

with the arcs of weights

L
k
ij = Lk

ij + λk.

It can be easily and exactly solved by dynamic programming and gives a lower bound of the objective
function (9). The search for the best of these estimates over the Lagrange multipliers leads to the dual
problem:

D = max
λk≥0

LR(λk).
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To solve it, we use the methods of subgradient optimization. Take some initial vector λ0 (for example,
the zero) and, at the next iteration t, change the multipliers λt according to the rule

λt+1 := max

{
0, λt + ht

(
n∑

i=1

n+1∑
j=i+1

zk
ij(λ

t) − mk

)}
,

where zk
ij(λ

t) is an optimal solution of problem LR(λt) and ht is the step-size in the subgradient
direction

Δt
k =

n∑
i=1

n+1∑
j=i+1

zk
ij(λ

t) − mk, k ∈ K,

of the objective function of the dual problem at λ = λt. If ht → 0 and
∑∞

t=0 ht → ∞ then LR(λt) → D
[17]. The application of such divergent series leads to large computational cost and slow convergence to
the optimum. In practice, other rules are applied that ensure rapid convergence, but do not guarantee
optimality. Following [4], we move not along subgradient, but along the difference of two successive
subgradients:

λt+1 := max
{
0, λt + αhtΔt − (1 − α)ht−1Δt−1

}
,

where α is chosen in the interval from 0 to 1. The step-size ht is calculated from the subgradient Δt, the
value of the upper bound of the optimum UB, and the parameter Θt:

ht := Θt(UB − LR(λt))/‖Δt‖2.

The factor Θt is firstly taken as a positive constant not greater than 2 and then divided by a quantity
exceeding 1 (after a given number of iterations which depends on the problem dimension).

If at some iteration the subgradient turns out to be nonpositive, Δt ≤ 0, then the solution zk
ij(λ

t)
is feasible, and the value of the objective function (9) on this solution provides an upper bound for the
optimum UB. Moreover, if

∑
k∈K

λt
kΔ

t
k = 0

then the values of the upper and lower bounds coincide, and the solution zk
ij(λ

t) is optimal. The duality
gap in this case is absent, which is observed rather rarely. Nevertheless, this approach rapidly yields the
approximate solutions with a small relative error, whereas, with nonrigid restrictions on the number of
the vehicles involved, it often finds the exact solution of the problem. At that, the equality

∑
k∈K

λt
kΔ

t
k = 0

may fail to hold.

3. LOCAL SEARCH

To find the best customers sequence, we will use the metaheuristics that have proven efficiency
in solving the problems of this type [13, 20, 26]. One of these metaheuristics is the local search with
variable neighborhoods [2, 8]. The successful implementation of this scheme requires a set of various
neighborhoods. They will contain only feasible solutions.

Let π be a permutation, let R(π) = (r1, . . . , r|R|) be a set of routes, and let some type of vehicle be
assigned to each of them. Given R(π), the solution of the problem (1)–(8) is reconstructed uniquely.

Consider five interroute neighborhoods in which at most two customers are moved between two
routes [15]:

Shift(1, 0). One customer is moved to the best position in another route.
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Swap(1, 1). Two customers from different routes swap their routes and occupy the best positions
there.

Shift(2, 0). Two adjacent customers are transferred from one route to another and inserted there into
the best position, possibly changing the order.

Swap(2, 1). Two adjacent customers from one route are transferred to another and are placed into the
best position after removal of one of the customers of this route. The removed customer is transferred to
the original route and is placed there in the best position. As in the previous neighborhood, for the pair of
the moved customers, the two options of their placement are considered: according to the original and
the reverse order.

Swap(2, 2). Two adjacent customers from one route are replaced by two neighboring customers from
another. The four variants of the order of these pairs are checked, and for each option the best position is
selected for insertion into the route.

Analogous intraroute neighborhoods for the customers in the case of a single route will be denoted
by Shift1(1, 0), Swap1(1, 1), Shift1(2, 0), and Swap1(2, 1).

The following neighborhood changes the structure of two routes by breaking them into four seg-
ments:

Cross. We select two routes. Each of them is divided into two nonempty ordered sets of customers,
which are then concatenated to form two new routes. All variants of such concatenation are considered.

Finally, the last neighborhood concerns only one route and is widely applied to the traveling salesman
problem:

2-opt. The route is represented as a cycle from which two nonadjacent arcs are removed and two
other arcs are added so that a cycle is again formed.

While defining the neighborhoods, we assumed that the vehicle type does not change in restructuring
the routes, which can lead to infeasible solutions or solutions with too high cost. Optimization of the
vehicle fleet can improve this shortcoming, but this requires to solve problem (9)–(12). This results
in a very time-consuming procedure. In order to reduce the complexity, the neighboring solutions are
first considered without optimization of the vehicle fleet. If there are solutions with a smaller value
of the objective function then the exploration of the neighborhood stops (the first improvement rule).
Otherwise, we check the neighboring solutions again, but this time with the fleet reassignment.

The above-presented neighborhoods are used in the hybrid local search algorithm (HLS) whose main
elements are: randomized variable neighborhood descent (RVND), the procedures of intensification
(Intensify), diversification of the search (Perturb), and post-optimization (Postoptimize). This is an
algorithm for obtaining local optima over the neighborhoods. However, we search these local optimum
not at arbitrary locations in the feasible search domain, but next to the best obtained solution [2]. In the
search diversification procedure, this solution is slightly modified in order to find a good start solution for
a new local search. In the post-optimization procedure, an attempt is made to improve the obtained local
optimum by using the neighborhoods of exponential size [1, 18]. A general scheme of the algorithm is
shown below. The best local optimum found is denoted by π∗, whereas the smallest value of the objective
function, by f∗. In the algorithm, the start solution π0 is selected I times, and the RVND procedure is
applied ILS times.

Hybrid local search algorithm (HLS)
1. f∗ ← ∞
2. Cycle over i := 1, . . . , I
3. π ← π0; j ← 0;
4. while j ≤ ILS

5. π′ ← RVND(π)
6. If f(π) < f(π′) and j > ILS/2 then
7. π′ ← Intensify(π′);
8. If f∗ > f(π′) then f∗ ← f(π′), π∗ ← π′;
9. π ← Perturb(π′); j = j + 1;
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10. π∗ ← Postoptimize(π∗);
11. Return π∗ and f∗.

We construct the initial solution π0 (line 3) using the following randomized procedure [15]: For each
vehicle, we generate a route and insert a single customer to it. This customer is selected randomly with
uniform distribution. Different routes get different customers. Next we select one of the two rules to
insert the remaining customers into the routes and one of the two strategies, sequential or parallel.
In the sequential strategy, one of the routes is randomly selected and is filled with customers, until it is
allowed by the load-carrying capacity of the vehicle. In the parallel strategy, all routes are considered
simultaneously, and the insertion of customers is performed into the route with minimal additional costs.
To select the next customer j, the following two rules of the cost estimation are considered: either the
lowest cost of traveling to the customer from the customers already included in the route (i.e., min

i
ck
ij)

or

min
i

[(
ck
ij + ck

ji′ − ck
ii′

)
− γ

(
ck
0j + ck

j0

)]
.

In the last expression, we estimate the costs relative to the cost of the new route with the only customer j.
The parameter γ for each customer is randomly selected from the interval [0, 1.7].

The local search over the above interroute neighborhoods is performed by the RVND procedure.
At each iteration of this procedure, a local optimum is obtained over the neighborhoods Shift1(1, 0),
Swap1(1, 1), Shift1(2, 0), Swap1(2, 1), and 2-opt. The remaining neighborhoods are used to restructure
these optima and obtain the starting point for the next iteration. The order of using these neighborhoods
is random.

The general scheme of RVND is as follows:
Let N = {N1, . . . , Nl} be a set of neighborhoods for restructuring the routes, and let π be some

feasible solution of the problem. At each iteration, we randomly select one of the neighborhoods and find
there the best solution π′ among the neighbors of π. If π has turned out to be a local optimum (i.e., π′ is
not better than the original π) then we remove this neighborhood from N . Otherwise, we apply to π′ the
local improvement algorithm over the intra-route neighborhoods Shift1(1, 0), Swap1(1, 1), Shift1(2, 0),
Swap1(2, 1), and 2-opt to improve the modified routes and find a new local optimum. Note that, at each
iteration, either a new local optimum is found or the collection of neighborhoods is reduced.

In the process of intensification of the search over the set of routes R, we construct a customer
sequence π for problem (9)–(12). The sequence is constructed as follows: The first route is selected
randomly and added as a term into the sequence. Then the next route is selected, whose one of the
extreme customers is closest to the last customer in the sequence. All customers from this route are
added to the sequence. This process continues until all routes are used.

In the diversification procedure, we use the same method to construct a sequence of customers. Then
L times we randomly select two elements of the sequence and reverse the order of elements between them
(an analog of the 2-opt neighborhood moves). we solve problem (9)–(12) for the so-obtained sequence.
If the solution to the problem is not feasible then we apply an alternative diversification procedure: we do
L random neighborhood moves with Swap(1, 1), Shift(1, 0), or Shift(2, 0) neighborhoods. A similar
procedure was used in [15, 16].

The final local optimum is subjected to the post-optimization procedure (line 10). Here the neighbor-
hoods of exponential size are used. Below we give description of two such neighborhoods based on the
idea of ejection chains. The first neighborhood was previously used in [18], and the second is new.

As before, let R(π) = (r1, . . . , r|R|) be a set of routes. Consider two elements πi and πi′ from different
routes r and r′. By the ejection move we understand the removal of πi from r, the removal of πi′

from r′, and its insertion of πi at the best position in r′ without πi′ . Let w(πi, πi′) define the cost of
this restructuring of the routes r and r′; i.e.,

w(πi, πi′) =
(
cπi−1 πi+1 − cπi−1 πi − cπi πi+1

)

+
(
cπi′−1 πi′+1 − cπi′−1 πi′ − cπi′ πi′+1

)
+

(
cπl πi + cπi πl+1

− cπl πl+1

)

if πi is inserted in r′ between πl and πl+1 (Fig. 2).
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Fig. 2. Extraction for πi ∈ r and πi′ ∈ r′.

Fig. 3. Layered graph.

The insertion move is the operation of removing πi from r and adding πi at the best position in r′

without forcing any ejection from it. For this operation, we define w(πi, r
′) as the cost increase of the

route r′ together with the saving that resulted by the removal of πi from r, i.e.,

w(πi, r
′) =

(
cπi−1 πi+1 − cπi−1 πi

)
+

(
cπi′−1 πi′+1

− cπi′−1 πi − cπi′ πi′+1

)

+
(
cπl πi + cπi πl+1

− cπl πl+1

)
.

Note that w(πi, πi′) and w(πi, r
′) may be negative.

Based on these moves, we define an ejection-insertion graph whose vertices correspond to the
routes and customers, and the arcs, to the transitions of ejection and insertion moves. This graph has
a layered structure (Fig. 3). The layer contains a dummy vertex (sink) corresponding to the route itself
and one vertex for each customer on the route.

Each interlayer arc has one of the two types in dependence on the move: the ejection arc (πi, πi′) with
weight w(πi, πi′) and the insertion arc (πi, r

′) with weight w(πi, r
′). The endvertices of the insertion

arcs are dummy. In the case when the restrictions on the vehicle capacity are violated in these moves,
the weight of the arc is assumed to be a sufficiently large number. If there is a cycle in this graph or
a path from some vertex to the dummy vertex which passes through each layer at most once and has
negative weight then the current solution can be rebuilt with some decrease in cost. Note that in the
case of finding a path, the dummy vertex can be only at its end.

The problem of finding such a path or cycle is NP-hard. An approximate solution can be obtained
by a modification of the Floyd–Warshall algorithm [18]. The modification consists in the following extra
check: Assume that there are two paths: from vertex πi to pik and from πk to πj . A path from πi to πj

via πk is feasible only if the paths from πi to πk and from πk to πj have no vertices from the same layer.
The second neighborhood used in the post-optimization process, involves splitting the routes into

two parts and concatenating the parts of different routes. The difference between these neighborhoods is
shown in Fig. 4.

Again, we construct a layered graph. Each layer corresponds to one route, but now it does not contain
dummy vertices. Let the first layer correspond to the route r1 = (u1, u2, . . . , ur1). Since the route can be
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Fig. 4. Two large size neighborhoods.

Fig. 5. Splitting and concatenation of some routes.

traversed both in the forward and backward direction; therefore, for every vertex ui, we introduce its
“double” u′

i and (for the illustrative purpose) represent the vertices in the layer first in the direct and then
in the reverse order.

Let ui ∈ r and vj ∈ r. Now the interlayer arcs will be of the four types: (ui, vj), (ui, v
′
j), (u′

i, vj), and
(u′

i, v
′
j).

◦ Arc (ui, vj) means the construction of the route (u1, . . . , ui, vj+1, . . . , vr), its weight w(ui, vj)
equals cuivj+1 − cuiui+1 .

◦ Arc (ui, v
′
j) corresponds to the creation of the route (u1, . . . , ui, vj , . . . , v1), its weight w(ui, v

′
j) is

equal to cuivj − cuiui+1 .

◦ Arc (u′
i, vj) signifies making of the route (ur, . . . , ui+1, vj+1, . . . , vr), its weight w(u′

i, vj) equals
cui+1vj+1 − cuiui+1 .

◦ Arc (u′
i, v

′
j) means the creation of the route (ur, . . . , ui+1, vj , . . . , v1), its weight w(u′

i, v
′
j) is equal

to cui+1vj − cuiui+1 .

If the construction of a new route leads to exceeding the vehicle capacity then we set the weight of the
arc equal to a sufficiently large number. The presence of a cycle in this graph that passes through each
layer at most once and has negative weight indicates the possibility of restructuring the solution with
decrease of the objective function value. The search for such a cycle is implemented in the same way as
in the previous case.

In Fig. 5 the cycle in bold corresponds to restructuring of the three routes: the first, second, and last.
The beginning of the first route is concatenated to the start of the second; the end of the second route,
to the end of the last; and the beginning of the last, to the end of the first route. Some variant of such
a concatenation is shown in Fig. 4.

4. COMPUTATIONAL EXPERIMENTS

The above-developed algorithms are implemented in Java language and tested on the PC with the
processor Intel c©CoreTM i7, 2.20 GHz, 8 GB of RAM. In the first experiment, we tested the effectiveness
of the subgradient optimization method to solve problem (9)–(12) for a given sequence of customers. For
this purpose, the test instances were used from [12] where the number of customers varied from 19 to 255.
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Table 2. The results for the given sequences

n < 100 100–150 150–200 > 200 19–255

Number of instances 15 38 31 12 96

Iteravg 4 8 18 8 11

Erravg 0.06 0.43 0.33 0.33 0.33

LbEavg 0.12 0.5 0.68 0.33 0.48

tavg 1.24 4.45 13.74 20.83 8.99

T 186 1690 4259 2500 8635

No solutions found 0 0 0 0 0

Table 3. The results for mixing inside the routes

n < 100 100–150 150–200 > 200 19–255

Number of instances 15 38 31 12 96

Iteravg 31 68 110 37 72

Erravg −4.39 −3.89 −5.69 −5.92 −4.8

LbEavg 1.73 2.89 2.47 1.87 2.45

tavg 3.25 16.03 58.56 50.7 32.1

T 488 6093 18155 6084 308204

No solutions found 1 3 6 0 10

The same paper contains the record solutions for those instances. These solutions can be represented as
a sequence of customers just as it is done in the intensification process. For the subgradient optimization
method the following parameters were used:

α = 0.74, Θ0 = 1.8, UB = 1.3LR(λt).

The value Θi was divided by 1.1 after every four iterations. Each instance was solved 10 times. The
method stopped in the case of finding a first feasible solution or after exhausting the maximum number of
iterations. We calculated the average number of iterations for obtaining the first feasible solution Iteravg,
the average error (in percentage terms) relative to the lower estimate LbEavg, the average running time
tavg, and the total running time T of the algorithm in milliseconds. The maximum number of iterations
did not exceed 2000.

Table 2 presents the results of calculations in five columns: the examples with

n < 100, 100 ≤ n < 150, 150 ≤ n < 200, n ≥ 200,

together with the summarizing column for all examples with 19 ≤ n ≤ 255. The line Erravg shows the
average error (in percentage terms) of the obtained solution relative to the record one.

In this experiment, for 4 examples out of 96 we improved the record solution. In 54 cases the algorithm
found a record solution. In other cases it lost, but the average error turned out to be small, only 0.33%.
Since the comparison was performed for certain well-known test cases, where many algorithms were
tested, the application of the subgradient optimization methods can be considered as reasonable.
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Table 4. The results for random sequences

n < 100 100–150 150–200 > 200 19–255

Number of instances 15 38 31 12 96

Iteravg 134 218 249 138 205

LbEavg 6.94 3.82 3.08 2.77 3.94

tavg 8.37 40.15 91.42 110.79 60.57

T 1256 15258 28340 13295 58149

No solutions found 6 15 16 2 39

As it was noted above, in case of an unlucky choice of sequence the algorithm may fail to find
an feasible solution. The problem can just have no solutions. Therefore, the experiment was performed
for other sequences for the same examples. In the first case, a randomly ordered sequence of customers
was selected for each route. In the second case, an random sequence among all customers was taken.
Note that, in the first case, a feasible solution always exists.

Tables 3 and 4 present the results of this experiment. The value of Erravg in Table 3 demonstrates
the average relative error of the final solution in comparison with the initial one. In the first case, in only
10 tests out of 960 we failed to find a feasible solution. For random sequence, this number turned out
to be large, but was equal only to 39; i.e., about 4% of the total number of tests. The average error
did not exceed 4%, although, for small number of customers, it was almost two times higher, more
precisely, 6.94%. We can conclude that for these examples we rarely fail to find a feasible solution of the
problem. Thus, restrictions (4) are not rigid.

In the second experiment, we tested the effectiveness of the hybrid algorithm HLS. For these
purposes, we used the same test instances. The algorithm parameters were I = 100 and ILS = n.
In Perturb procedure, the move to the next neighboring solution was performed �3I/ILS times.

The developed algorithm was compared with the two heuristics that are the most effective among
the availables: GRASP-ELS, an adaptive greedy heuristic with evolutionary local search [12], and
MS-ILS-SFR, a hybrid scheme of iterative local search with multistart and Simple fleet reassignment
procedure [16]. The first heuristic was tested on the PC with the Opteron processor, 2.1 GHz; the second
heuristic, on the PC with the processor Intel c©CoreTM i7 2.9 GHz, 8GB RAM. All experiments were
performed using a single processor core.

The results of numerical experiments are presented in Tables 5–8. The first column “Code” gives the
name of the example by which we can easily reconstruct the characteristics of engaged vehicles. The
second column contains the dimension n of the problem.

For the HLS algorithm there are specified the minimum and average values zmin and zavg, standard
deviation σ, and the average computation time t in seconds for 10 runs of the algorithm. For other
algorithms, we present the value of the objective function z and the computation time t in seconds.
The penultimate column contains the value z∗ of the objective function of the best known solution; and
the last column, the relative error g (in percentage terms) of the mean value zavg against the available
record. The new records that are obtained by the hybrid algorithm HLS are highlighted in bold.

As a whole, the combination of the methods of subgradient optimization, local search, and new
procedures for intensification and diversification has demonstrated its effectiveness. For fifteen test
instances we improved the record values of the objective function. The average relative error over all
test cases was 0.65%.
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Table 5. The results of computational experiments for n < 150

HLS MS-ILS-SFR GRASPxELS

Code n zmin zavg σ t z t z t z∗ g

H-75 19 452.85 452.85 0.00 1 452.85 1 452.85 0 452.85 0.00

H-92 34 564.39 564.39 0.00 29 564.39 21 564.39 21 564.39 0.00

H-93 39 1036.99 1036.99 0.00 19 1036.99 17 1036.99 27 1036.99 0.00

H-94 46 1378.25 1378.25 0.00 45 1378.25 27 1378.66 16 1378.25 0.00

H-55 55 10256.16 10264.37 10.20 46 10244.34 28 10247.86 191 10244.34 0.20

H-52 58 4035.59 4035.59 0.00 61 4027.27 63 4029.42 40 4027.27 0.21

H-10 68 2108.10 2108.32 0.50 185 2107.55 119 2107.55 25 2107.55 0.04

H-39 76 2926.59 2928.99 2.88 202 2921.36 171 2934.55 182 2921.36 0.26

H-70 77 6689.61 6729.87 19.77 201 6684.56 125 6689.61 121 6684.56 0.68

H-82 78 4769.35 4772.58 1.87 180 4766.74 108 4774.26 145 4766.74 0.12

H-08 83 4596.52 4597.65 1.14 254 4591.75 93 4598.49 305 4591.75 0.13

H-36 84 5709.31 5738.34 24.22 358 5684.62 267 5759.34 104 5684.61 0.95

H-43 85 8737.13 8749.47 9.08 496 8707.94 178 8764.75 220 8707.94 0.48

H-01 91 9180.45 9187.28 5.93 387 9210.14 269 9210.14 52 9210.14 -0.25

H-11 94 3367.41 3372.57 2.86 430 3367.41 244 3370.47 265 3367.41 0.15

H-90 101 2350.68 2358.22 3.55 454 2347.50 332 2360.83 15 2346.13 0.52

H-17 104 5381.19 5403.10 15.82 439 5369.31 248 5370.05 173 5362.83 0.75

H-84 104 7228.38 7244.86 12.77 677 7236.49 344 7269.55 206 7227.88 0.23

H-81 105 10675.92 10690.71 9.57 546 10689.77 385 10715.28 84 10689.77 0.01

H-2B 106 8577.50 8601.68 17.30 859 8482.79 538 8537.31 303 8464.69 1.62

H-07 107 8074.64 8135.00 27.90 562 8089.21 245 8130.50 306 8089.21 0.57

CONCLUSION

We considered the vehicle routing problem in the case of heterogeneous limited vehicle fleet. To solve
the problem, we applied an approach in which we split the problem into two subproblems: the search for
the best sequence of customers and the optimal distribution of the vehicle fleet for a given sequence of
customers. For the first subproblem we applied the method of local search with variable neighborhoods;
and for the second subproblem, the subgradient optimization method.

We incorporated the new procedures of intensification and diversification into the scheme of local
search, as well as the procedure of post-optimization based on the neighborhoods of exponential size.

The computational experiments demonstrated the effectiveness of the proposed approach. For 15 test
instances we improved the record values of the objective function.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 9 No. 4 2015



A HYBRID ALGORITHM OF LOCAL SEARCH 515

Table 6. The results of computational experiments for n < 150 (continuation of Table 5)

HLS MS-ILS-SFR GRASPxELS

Code n zmin zavg σ t z t z t z∗ g

H-87 107 3753.87 3757.12 4.60 511 3753.87 432 3753.87 104 3753.87 0.09

H-47 110 16291.49 16332.46 32.13 598 16175.22 391 16222.94 334 16175.22 0.97

H-48 110 21316.55 21444.07 58.62 663 21330.75 520 21413.92 371 21318.04 0.59

H-61 110 7308.84 7320.97 6.46 559 7292.03 519 7300.10 108 7292.03 0.40

H-12 111 3543.99 3545.82 1.87 632 3543.99 536 3543.99 71 3543.99 0.05

H-30 111 6329.09 6361.97 13.81 550 6322.39 425 6321.69 201 6313.39 0.77

H-2A 112 7820.37 7862.82 27.45 1200 7793.16 448 7885.93 299 7793.16 0.89

H-53 114 6483.51 6497.73 12.37 663 6434.83 511 6470.49 418 6434.83 0.98

H-05 115 10896.35 10937.73 31.76 898 10896.33 267 10963.62 489 10896.33 0.38

H-13 118 6709.28 6728.61 11.94 854 6696.43 368 6713.14 303 6696.43 0.48

H-06 120 11760.08 11783.45 15.76 1453 11711.35 389 11792.94 368 11692.85 0.77

H-03 123 10727.36 10747.53 14.35 1433 10730.10 673 11320.58 512 10730.10 0.16

H-83 123 10041.06 10050.45 7.75 1339 10029.60 635 10019.83 332 10019.15 0.31

H-74 124 11598.92 11634.25 27.60 1247 11592.72 536 11732.54 247 11586.87 0.41

H-21 125 5160.03 5175,71 13.23 835 5139.84 408 5154.38 330 5139.84 0.70

H-26 125 6393.47 6433.33 22.57 1071 6423.70 1045 6481.93 351 6423.70 0.15

H-88 126 12406.93 12452.74 17.95 1236 12448.38 410 12443.41 632 12402.85 0.40

H-16 128 4156.97 4160.43 2.26 1081 4156.97 799 4161.61 181 4156.97 0.08

H-31 130 4105.67 4130.97 15.92 2052 4091.81 1174 4103.88 308 4091.52 0.96

H-40 131 11156.86 11184.18 14.16 1401 11122.32 808 11172.98 615 11122.32 0.56

H-89 133 7099.68 7120.97 14.34 1331 7105.47 682 7135.36 246 7105.47 0.22

H-41 134 7606.16 7643.93 17.54 1915 7572.07 969 7679.32 326 7572.07 0.95

H-34 135 5784.25 5799.40 9.19 1565 5786.98 784 5800.12 406 5758.09 0.72

H-60 136 17073.80 17106.54 17.25 1262 17037.23 647 17067.85 444 17037.23 0.41

H-73 136 10195.13 10215.26 10.05 1636 10196.04 536 10243.66 598 10195.33 0.20

H-28 140 5538.45 5550.86 6.67 1560 5533.01 525 5542.76 343 5531.06 0.36

H-25 142 7209.61 7218.87 6.12 2438 7217.26 1722 7228.54 518 7206.64 0.17

H-85 145 8812.03 8842.44 16.86 2257 8797.92 787 8874.31 383 8779.76 0.71

H-79 146 7266.75 7310.23 16.36 1687 7274.18 1138 7314.89 474 7259.54 0.70

H-66 149 12790.56 12862.79 49.36 1978 12828.34 1316 13319.73 443 12828.34 0.27
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Table 7. The results of computational experiments for 150 ≤ n < 200

HLS MS-ILS-SFR GRASPxELS

Code n zmin zavg σ t z t z t z∗ g

H-69 151 9222.25 9270.15 32.43 2130 9167.18 940 9276.93 509 9162.78 1.17

H-76 151 12007.57 12036.84 20.71 4265 12018.22 1241 12098.66 686 12018.22 0.15

H-56 152 31236.61 31286.03 42.21 2254 31090.53 1136 31292.81 394 31090.53 0.63

H-86 152 9056.31 9085.76 15.13 2512 9053.41 908 9076.63 383 9030.68 0.61

H-37 160 6894.98 6915.59 18.16 2468 6870.11 1553 6921.19 384 6858.23 0.84

H-64 160 17157.37 17180.65 21.47 1984 17135.16 792 17157.37 512 17135.16 0.27

H-24 162 9145.18 9178.51 23.99 3357 9118.01 1722 9183.78 610 9101.47 0.85

H-57 162 43378.37 43581.83 112.20 2883 44850.05 1361 45152.42 639 44818.18 -2.76

H-29 163 9151.41 9182.21 16.88 2207 9142.86 1363 9147.39 425 9142.86 0.43

H-09 166 7671.00 7700.14 20.40 3126 7651.33 877 7647.59 450 7619.19 1.06

H-35 167 9605.62 9640.89 26.18 3274 9592.43 1163 9640.80 459 9574.71 0.69

H-45 169 10664.81 10719.12 38.93 2518 10496.88 2118 10519.25 451 10484.23 2.24

H-80 170 6833.02 6844.95 9.06 2864 6825.46 1530 6839.96 230 6816.89 0.41

H-44 171 12549.34 12604.56 32.95 2863 12237.42 1852 12418.00 447 12197.46 3.34

H-54 171 10433.38 10477.30 37.21 3380 10370.09 2725 11511.62 364 10370.09 1.03

H-67 171 10971.29 11024.31 36.86 3547 10915.60 1495 11854.61 337 10915.60 1.00

H-63 173 20154.56 20262.46 55.19 3686 19994.01 984 20241.72 694 19951.76 1.56

H-14 175 5680.64 5705.25 14.04 3138 5667.82 2498 5679.80 449 5644.92 1.07

H-42 177 10940.03 11012.21 38.18 5513 10855.73 3696 11713.90 317 10855.73 1.44

H-02 180 11797.23 11839.34 16.63 4987 11718.86 1693 12102.01 326 11718.86 1.03

H-04 182 10861.29 10892.04 20.09 4237 10787.03 1709 11276.45 726 10787.03 0.97

H-95 183 6223.54 6255.38 22.29 1877 6175.62 907 6244.13 322 6175.62 1.29

H-71 185 9976.24 9988.03 11.32 3417 9891.50 1294 9960.84 640 9870.22 1.19

H-72 185 5950.67 5977.67 17.57 3647 5883.33 2238 5976.54 197 5883.33 1.60

H-50 186 12466.27 12482.40 15.01 5488 12385.32 4092 12508.77 647 12374.04 0.88

H-15 187 8255.95 8273.64 10.00 5706 8268.18 2224 8301.63 521 8236.40 0.45

H-33 188 9419.00 9452.46 25.23 6089 9437.30 2277 9543.17 603 9421.01 0.33

H-77 189 6943.61 7036.46 35.32 3852 6929.67 2804 6991.59 636 6929.67 1.54

H-78 189 7101.20 7162.22 22.33 4247 7039.90 1937 7069.82 471 7035.01 1.81

H-59 192 14299.28 14324.68 18.66 5405 14309.48 2974 14367.14 676 14282.59 0.29

H-91 195 6374.01 6398.88 16.00 4918 6381.13 3235 6437.14 544 6377.48 0.34
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Table 8. The results of computational experiments for n > 200

HLS MS-ILS-SFR GRASPxELS

Code n zmin zavg σ t z t z t z∗ g

H-23 202 7769.33 7793.84 14.89 5154 7760.62 2657 7809.20 802 7750.27 0.56

H-38 204 11224.72 11271.90 24.97 6177 11217.53 2613 11439.58 422 11217.53 0.48

H-27 219 8417.62 8444.78 21.38 7536 8436.55 3424 8520.74 996 8436.55 0.10

H-58 219 23480.52 23543.71 40.30 8724 23504.15 2640 23530.10 1028 23397.76 0.62

H-65 222 13036.33 13102.95 28.69 8043 13013.89 4348 13077.63 636 13013.89 0.68

H-19 223 11760.02 11819.28 28.73 6831 11702.98 2588 11805.34 1010 11702.77 1.00

H-62 224 23035.91 23094.21 49.26 8710 22952.06 3220 23434.56 829 22952.06 0.62

H-22 238 13240.93 13270.10 15.43 8341 13103.51 2424 13162.90 836 13068.03 1.55

H-32 243 9378.30 9418.40 22.65 16911 9412.56 5771 9537.48 1131 9412.56 0.06

H-49 245 16282.44 16368.02 54.37 18026 16219.41 8694 16417.30 990 16219.41 0.92

H-46 249 24697.34 24832.07 84.31 11514 24428.54 7371 24805.27 1475 24428.54 1.65

H-18 255 9676.56 9703.47 17.31 13305 9668.17 6127 9797.61 1216 9668.17 0.37
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