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Abstract: In this paper we consider the well known p-median problem. We study the behavior of the local improvement 
algorithm with a new large neighborhood. Computational experiments on the difficult instances show that the 
algorithm with the neighborhood is fast  and  finds feasible solutions with small relative error. 
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1. INTRODUCTION 
 
The p-median problem is one of the famous field in 
location analysis [5]. Branch and bound algorithms, 
Lagrangean relaxations, approximation algorithms, and 
meta-heuristics are developed for the problem. In this 
paper we consider the simple local improvement 
algorithm and introduce a new large neighborhood based 
on ideas of S.Lin and B.W. Kernighan for the graph 
partition problem [4]. We study the behavior of the 
algorithm with different starting points: optimal solutions 
of a Lagrangean relaxation, randomized rounding of 
optimal solution for the linear programming relaxation, 
and random starting points. Computational experiments 
on the difficult instances show us that the algorithm with 
new neighborhood is fast and finds feasible solutions with 
small relative error for all starting points. 
 

2. PROBLEM STATEMENT 
 
In the p-median problem we are given a set I={1,…, m} 
of m potential locations for p facilities, a set J={1,…, n} 
of n customers, and a n×m matrix (gij) of  transportation  
costs for servicing the customers by the facilities. We 
have to find a subset S ⊂ I, |S| =p such that minimizes the 
objective function 
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This problem is NP-hard in strong sense.  
 
For the subset S the Swap neighborhood contains all 
subsets S′ , |S′ | = p, with Hamming distance from S′  to S 
being equal to 2 
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By analogy, the k-Swap neighborhood is defined as  
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Finding the best element in the k-Swap neighborhood 
requires high efforts for large k. So, we introduce another 
neighborhood which is a part of the k-Swap 
neighborhood  and based on the greedy heuristics [1]. 

3. ADAPTIVE NEIGHBORHOOD 
 
Let us define the Lin-Kernighan neighborhood (LK) for 
the p-median problem. For the subset S it consists of k 
elements, k≤n–p, and can be described by the following 
steps. 
 
Step 1. Choose two facilities  iins∈ I \ S  and  irem∈S  
such that  F(S ∪ {iins}\{irem}) is minimal even if it 
greater than  F(S). 
Step 2. Perform exchange of   irem  and  iins.   
Step 3. Repeat steps 1, 2   k times so that a facility can 
not be chosen to be inserted in S if it has been removed 
from S in one of the previous iterations of step 1 and step 
2. 
 
The sequence kremins ii ≤τ

ττ }),({  defines k neighbors Sτ  
for the subset S. The best element in the Swap 
neighborhood can be found in O(nm) time [6]. Hence, we 
can find the best element in the LK-neighborhood in 
O(knm) time. We say that S is a local minimum with 
respect to the LK-neighborhood if F(S) ≤ F(Sτ) for all 
τ ≤ k. Any local minimum with respect to the LK-
neighborhood is a local minimum with respect to the 
Swap neighborhood and may be not a local minimum 
with respect to the k-Swap neighborhood.  



 

4. STARTING POINTS 
 
Let us rewrite the p-median problem in the following way 
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We consider a Lagrangean relaxation with multipliers uj 
which correspond to equations (2): 
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s.t.  (3), (4), (5). 
 
It is easy to find an optimal solution x(u), y(u) of the 
problem in polynomial time.  
 
The dual problem 
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can be solved by subgradient  optimization methods, for 
example, by the Volume algorithm [2]. It produces a 
sequence of Lagrangean multipliers t

ju , t =1,2,…,T, aa 
well as a sequence of  optimal solutions x(ut), y(ut) of the 
problem L(ut). Moreover, the algorithm allows us to get 
an approximation  yx,  of the optimal solution for the 
linear programming relaxation (1)–(4). In order to get 
starting points for the local improvement algorithm we 
use optimal solutions x(ut) or apply the randomized 
rounding procedure  to the fractional solution x . 
 

5. COMPUTATIONAL  EXPERIMENTS 
 
We study the behavior of the local search algorithm with 
Swap and LK neighborhoods on the test instances from  
benchmark library DISCRETE LOCATION PROBLEMS 
(http://www.math.nsc.ru/AP/benchmarks/english.html).  
For all instances n=m, and (gij) is a low density matrix.  
 
Six classes of benchmarks are considered.  
Gap A: Each feasible solution of the p-median problem 
corresponds to a minimal subset of facilities which can 
serve all customers if 
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where ξ  is a random number taken in the set {0,1,2,3,4} 
and subsets Ij ⊂ I are selected at random in such way that   
| Ij |=10 for all j∈J.  

Gap B: It is defined like in the previous case with 
transposed matrix (gij). 
Gap C: It is an intersection of the two previous cases. 
Perfect Codes: Each feasible solution of the p-median 
problem corresponds to a binary perfect code with 
distance 3.  
FPP11: Each feasible solution of the problem 
corresponds to a bundle of lines for a point of a Finite 
Projective Plane with dimension 11. 
Chess Board: Each feasible solution of the problem 
corresponds to a cover of a torus which can be obtained 
from 12×12 chess board by identification of the 
boundaries. 
 
We consider 30 test instances for each class. For all 
instances optimal solutions were found by the branch and 
bound algorithm. 
 
We study three variants of the algorithm. 
 
LR: Local improvement with starting points x(ut). 
RR: Local improvement with starting points generated by 
the randomized rounding procedure applied to the 
fractional solution x . 
Rm: Local improvement with random starting points. 
Each variant finds T local minima. The best of them is 
returned. 
 
 Table 1 presents the average relative error for these three 
variants of algorithm with the Swap neighborhood. For 
comparison, let us consider two additional famous test 
classes Uniform and Euclidean. For the first of them, the 
elements gij are taken in interval [0,104] at random with 
uniform distribution. For the second case, the elements gij 
are Euclidean distances for points on the two dimensional 
plane. These points are selected in square 7000×7000 at 
random with uniform distribution. Table 1 shows that the 
Gap C is the most difficult case and Euclidean case is 
quite easy. 

 
Table 1. Average relative error for the local improvement 

algorithm with Swap neighborhood 
 

Benchmarks n, p RR LR Rm 
Gap A 100, 12 1.31 1.34 1.12 
Gap B 100, 15 4.79 4.48 5.45 
Gap C 100, 14 6.53 5.19 8.65 
FPP 11 133, 12 0.09 0.07 0.15 
Perfect Codes 128, 12 0.07 0.05 3.49 
Chess Board 144, 12 1.32 1.32 0.96 
Uniform 100, 12 0.11 0.05 0.01 
Euclidean 100, 12 0.00 0.00 0.00 

 
Table 2 presents the average relative error for the 
algorithm with the LK neighborhood. Notice that relative 
error decreases for all classes with one exception for the 
last case. The differences between the variants are 
smoothed out. We conclude that the algorithm with the 



 

LK neighborhood is robust. It finds good solutions for all 
starting points. 

Table 2.  Average relative error for the local 
improvement algorithm with LK neighborhood, k=15 

 
Benchmarks n, p  RR LR Rm 
Gap A 100, 12 0.33 0.51 0.20 
Gap B 100, 15 1.08 1.16 0.97 
Gap C 100, 14 1.69 1.44 1.61 
FPP 11 133, 12 0.09 0.07 0.09 
Perfect Codes 128, 12 0.05 0.04 2.35 
Chess Board 144, 12 0.13 0.09 0.00 
Uniform 100, 12 0.00 0.00 0.00 
Euclidean 100, 12 0.00 0.00 0.00 

 
The last experiment deals with the number of iterations 
from the random starting points to a local optimum with 
respect to Swap neighborhood. We believe that  the p-
median problem with Swap and LK neighborhoods is PLS 
complete [7]. In other words, it is the most difficult local 
search problem in PLS. Nevertheless, our computational 
results for Uniform and Euclidean instances show that 
the average number of iterations in order to reach Swap 
local minimum from random starting points grows as 
linear function (see Figure 1 for Uniform case). So, we 
hope the following statement holds. 
 
Conjecture. For the p-median problem  average number 
of iterations of local improvement algorithm with Swap 
or LK neighborhoods is bounded by a linear function as 
dimension increases. 
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Figure 1.  Average number of iterations from random 

subset S to a local minimum, n=m, p=n/2. 
 

6. CONCLUSIONS 
 
In this paper we have introduced a new promising 
neighborhood for the p-median problem. It contains at 
most n–p elements and allows the local improvement 
algorithm to find good solutions for difficult test 

instances. We hope this new neighborhood will be useful 
for more powerful meta-heuristics. We plan to 
incorporate the LK neighborhood into the variable 
neighborhood search [3] and test the approach on the 
large scale instances. 
Another interesting direction for research is 
computational complexity of the local search procedure 
with Swap and LK neighborhoods for the p-median 
problem. It seems plausible that the problem is PLS 
complete from the point of view of the worst case 
analysis, but polynomially solvable in average case.   
  
ACKNOWLEDGMENT  
 
This research was supported by the Russian Foundation 
for Basic Research, grant 03-01-00455. 
 
REFERENCES 

[1] Ahuja, R.K., James, O.E., Orlin, B., and Punnen, 
A.P., "A survey of very large-scale neighborhood 
search techniques", Discrete Applied Mathematics, 
123 (2002), 75–102. 

[2] Barahona, F., Anbil, R., "The volume algorithm: 
producing primal solutions with a subgradien 
method", Mathematical Programming, Ser.A, 87 
(2000) 385–399. 

[3] Hansen, P., Mladenović, N., "An introduction to 
variable neighborhood search", in: S.Voss et al. 
(eds.), Metaheuristics, Advances and Trends in Local 
Search Paradigms for Optimization. Dorchester: 
Kluwer, 1998, 433–458. 

[4] Kernighan, B. W., Lin, S., "An effective heuristic 
procedure for partitioning graphs", Bell System 
Technical Journal, 49 (1970) 291–307. 

[5] Mirchandani, P.B., Francis, R.L. (eds.), Discrete 
Location Theory. Wiley-Interscience, 1990. 

[6] Resende, M.G.C., Werneck, R.F., "On the 
implementation of a swap-based local search 
procedure for the p-median problem", 
http://www.optimization-online.org/archive_digest/ 

[7] Yannakakis, M., "Computational complexity", in: 
E.H.L.Aarts, and. J.K. Lenstra (eds.), Local Search in 
Combinatorial Optimization, Chichester: Wiley, 
1997, 19–56. 

 

Contact address: 
 

Sobolev Institute of Mathematics, pr. Koptyuga 4, 
Novosibirsk, 630090, Russia; tel. (+7 3832) 332086, 
fax (+7 3832) 332598, Email: jkochet@math.nsc.ru 
http://www.math.nsc.ru/LBRT/k5/kochetov.html 

n


