
A Leader-Follower Hub Location Problem
Under Fixed Markups
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Abstract. Two competitors, a Leader and a Follower, are sequentially
creating their hub and spoke networks to attract customers in a market
where prices have fixed markups. Each competitor wants to maximize
his profit, rather than a market share. Demand is split according to the
logit model. The goal is to find the optimal hub and spoke topology for
the Leader. We represent this Stackelberg game as a nonlinear mixed-
integer bi-level optimisation problem and show how to reformulate the
Follower’s problem as a mixed-integer linear program. Exploiting this
reformulation, we solve instances based on a synthetic data using the
alternating heuristic as a solution approach. Computational results are
thoroughly discussed, consequently providing some managerial insights.

Keywords: Hub location · Pricing · Fixed markup · Stackelberg
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1 Introduction

Competition between firms that use hub and spoke networks has been studied
mainly from the sequential location approach. An existing firm, the Leader,
serves the demand in some region, and a new one, the Follower, wants to enter.
This topic of research is quite fresh, and the first paper on competitive hub
location is attributed to Marianov, Serra and ReVelle [1]. Their approach was
extended and followed by Eiselt and Marianov in [2], Gelareh, Nickel and Pisinger
in [3], and by many others. Sasaki and Fukushima presented a (continuous)
Stackelberg Hub Location Problem in [4], in which the incumbent competes
with several entrants for profit maximisation. For every route, only one hub
was allowed. Adler and Smilowitz introduced in [5] a framework to decide the
convenience of merging airlines or creating alliances, using a game-theory-based
approach. Later, Sasaki et al. in [6] proposed a problem in which two agents are
locating hub-arcs to maximise their respective revenues under the Stackelberg
framework, allowing more than one hub on a route.
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Here, we consider a sequential hub location and pricing problem in which two
competitors, a Leader and a Follower, compete to attract the customers and aim
to maximize their profits rather than a market share. The pricing is identified as
an important service attribute that affects the client’s choice [7–10], as expected.
Therefore, we are interested in studying its impact to the optimal hub and spoke
topology. In contrast to [11], we assume that the prices are regulated, moreover
that markups are fixed.

Regulation is a legal norm intended to shape a conduct that is a by-product
of imperfection. It may be used to prescribe or proscribe a conduct, to calibrate
incentives, or to change preferences. Common examples of regulation includes
control of market entries, prices, wages, development, approvals, pollution effects,
employment for some people in certain industries, standards of production for
some goods, the military forces and devices. For more information we refer the
reader to [12–14]. The normative economic theories conclude that the regula-
tions should encourage competition where feasible, minimize the cost of infor-
mation asymmetries, provide for price structures that improve economic effi-
ciency, establish regulatory processes that provide for regulation under the law
and independence, transparency, predictability, legitimacy and credibility of the
regulatory system (see [13,15], for example). Price regulation refers to the policy
of setting prices by a government agency, legal statute, or regulatory authority.
Under such policy, fixed, minimum and maximum prices may be set. Referring
to [15,16], a decision may be based on costs, return on investments, or even
markups.

As it was previously said, we are interested in a direct price setting as a form
of regulation, particularly, a scenario where the markups are fixed. Fixing prices
is not just a theoretical scenario. When it comes to the transportation industry,
a famous example is the IATA (International Air Transport Association) price
regulation. That is, several years ago, the price for a non-stop flight from an
origin to a destination in a given passenger class was fixed for IATA airlines.
The fact that one had or had not to change planes did not affect the price.
A passenger could, in principle, use his Lufthansa ticket on a British Airways
flight, because tickets were transferable within a fare class, as it was reported
by Grammig et al. in [17]. Moreover, Lüer-Villagra and Marianov showed in [11]
that if demand is non-elastic and logit model is used for calculating the discrete
choice probability, the optimal prices for all routes connecting a particular origin-
destination (OD) pair have the same markup.

We note that fixing markups does not mean that prices will be the same,
that is they could vary if the routes are composed of several different lines that
have different travel costs. As a matter of fact, this approach could be seen as a
transition case to a Stackelberg competition in hub location where prices are not
regulated. Nevertheless, a hub location or a route opening decision, or even an
entrance into a market, can be very dependent on the revenues that a company
can obtain using its network. Revenues, in turn, depend on the pricing structure
and competitive context, as it was observed in [11].
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Following the work of Lüer-Villagra and Marianov in [11], and because this
research is still fresh, we will assume that the demand is non-elastic and cus-
tomers patronize the route by price. Customers’ decision process is modelled
using a logit model, which is well validated in the transportation literature
(see for example [11,18,20]).

Regarding the economies of scale, we use a model in which a constant (flow-
independent) discount between hubs and no discount on spokes are considered.
In the literature, modeling of the economies of scale in this fashion is addressed
as the fundamental approach, which incidentally results in an entirely connected
inter-hub network if the objective is the cost minimisation [19]. Most of the
researchers use this method of discounting the flow between hubs [19], indepen-
dent of its magnitude, mainly because of its computational attractiveness and
the fact that the search for an entirely successful model is still open [11]. There-
fore, we take the same approach in this paper, although we do not expect that
hubs have to be completely inter-connected, as we are dealing with the profit
maximization problems.

The proposed model is applied to the air passenger industry. However, with
slight changes in the discrete choice model, they can be applied to any other
industry that benefits from a hub and spoke network structure. We will call
this problem a Leader-Follower Hub Location Problem under Fixed Markups
(LFHLPuFM).

The contributions of this paper are as follows. Section 2 describes this Stack-
elberg game. In Sect. 3 we present the mixed-integer linear reformulation of the
Follower’s problem. After that, in Sect. 4, we describe our solution approach
based on the alternating heuristic. In the end, we give some comments and man-
agerial insights.

2 A Leader-Follower Hub Location Problem Under Fixed
Markups

The problem is defined over a directed multi-graph G = G(N,A), where N is the
non-empty set of nodes and A is the set of arcs that are connecting every pair of
nodes in the graph. We assume that for every arc (i, j) ∈ A, there is an opposite
arc (j, i) ∈ A. Situations where this does not hold are quite rare and they do not
make the problem computationally more attractive. Possible location for hubs
are the nodes i ∈ N , and for each of them, there is a fixed cost fi. The hubs can
be shared. We note that the number of hubs to be located is not fixed. Its value
is to be determined by the solution of a model. For every arc (i, j) ∈ A there is
a fixed (positive) cost gij for allocating it as a spoke and a (positive) travel cost
per unit of flow cij . We assume that the travel cost is a non-decreasing function
of distance. To model the inter-hub discounts, let ℵ, α, ψ be the discount factors
due to flow consolidation in collection (origin to hub), transfer (between hubs),
and distribution (hub to destination), respectively. At most two hubs are allowed
to be on a single route. The travel cost cij/kl over a route i → k → l → j is
defined as cij/kl = ℵcik + αckl + ψclj . It is assumed that pricing is regulated,
and a form of regulation is a direct price setting, so that all markups are fixed.
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In other words, for every route i → k → l → j there is a fixed markup μij/kl.
The set of all routes is trimmed to avoid the ones which are impractical, i.e.
those routes that have the second arrival point. We define it in a similar fashion
as it was done by O’Kelly et al. in [21]

I = {(i, j, k, l) ∈ N4 | (i = l∧ l �= k∧k �= j) ∨ (j = k∧k �= l∧ l �= i) ∨ (i �= l∧k �= j)}.
On the basis of this set we define the set of valid indices for our routes as
M = {(i, j, k, l) ∈ N4 | (i, j, k, l) ∈ N4\I}. The sets of valid indices for the
possible hubs between the OD pairs (i, j) ∈ N2 are defined in a similar manner
Mij = {(k, l) ∈ N2 | (i, j, k, l) ∈ N4\I}. The demand wij for every OD pair
(i, j) ∈ N2 is assumed to be non-elastic and non-negative. The logit model has a
sensitivity parameter Θ that corresponds to the pricing. It has an already known
positive value assigned. Higher values of sensitivity parameters mean that the
customers are very sensitive to the differences in prices. In other words, they will
mostly choose the less expensive routes. Both competitors have a large amount of
resources to cover the entire market with their networks. The goal is to maximize
the profit, rather than a market share.

This Stackelberg game can be represented as a non-linear mix-integer bi-level
mathematical program, where we have that:

– uij/kl is the fraction of the flow going from i ∈ N to j ∈ N through the
Leader’s hubs located at k, l ∈ N

– vij/kl is the fraction of the flow going from i ∈ N to j ∈ N through the
Follower’s hubs located at k, l ∈ N

– xk = 1 if the Leader locates a hub at node k ∈ N and 0 otherwise
– yk = 1 if the Follower locates a hub at node k ∈ N , and 0 otherwise
– λij = 1 if the Leader establishes a direct connection between the nodes i, j ∈

N , where (i, j) ∈ A, and 0 otherwise
– ζij = 1 if the Follower establishes a direct connection between the nodes

i, j ∈ N , where (i, j) ∈ A, and 0 otherwise

Denote x = (xi)i∈N , y = (yi)i∈N , λ = (λij)i,j∈N , ζ = (ζij)i,j∈N , for short.
We propose the following model for the Leader;

max
∑

(i,j,k,l)∈M

μij/klwijuij/kl −
∑

i∈N

fixi −
∑

(i,j)∈A

gijλij (1)

uij/kl =
xkxlλikλklλlje

−Θ(cij/kl+μij/kl)

∑
(s,t)∈Mij

xsxtλisλstλtje
−Θ(cij/st+μij/st) + γ∗

ij

, ∀(i, j, k, l) ∈ M

(2)

γ∗
ij =

∑

(k,l)∈Mij

y∗
ky∗

l ζ∗
ikζ∗

klζ
∗
lje

−Θ(cij/kl+μij/kl), ∀i, j ∈ N (3)

(y∗, ζ∗) ∈ F ∗(x, λ) (4)
xi ∈ {0, 1}, ∀i ∈ N (5)
λij ∈ {0, 1}, ∀(i, j) ∈ A. (6)
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Here, y∗
i , ζ∗

ij (i, j ∈ N) are composing the optimal solution for the Follower’s
problem, for which we propose the subsequent model;

max
∑

(i,j,k,l)∈M

μij/klwijvij/kl −
∑

i∈N

fiyi −
∑

(i,j)∈A

gijζij (7)

vij/kl =
ykylζikζklζlje

−Θ(cij/kl+μij/kl)

∑
(s,t)∈Mij

ysytζisζstζtje
−Θ(cij/st+μij/st) + ηij

, ∀(i, j, k, l) ∈ M (8)

ηij =
∑

(k,l)∈Mij

xkxlλikλklλlje
−Θ(cij/kl+μij/kl), ∀i, j ∈ N (9)

yi ∈ {0, 1}, ∀i ∈ N (10)
ζij ∈ {0, 1}, ∀(i, j) ∈ A. (11)

The objective functions (1) and (7) are representing the profits, which are
calculated as a difference between the net income and the network installation
costs. Feasible solutions are the tuples (x, λ, y∗, ζ∗) satisfying the constraints
(2)–(6). Constraints (2) and (8) are representing the probabilities of choosing
the respective routes, according to the logit model. The Eq. (3) represent the
impact of the Follower on the Leader’s market share. The Leader’s impact on
the Follower’s market share is represented by the Eq. (9). Next, (4) indicates
that the Follower chooses the optimal solution for any of the Leader’s choice of
hubs, where F ∗(x, λ) represents the set of the Follower’s optimal solutions. The
rest of the constraint sets are defining the variables’ domains.

We note that the Follower’s problem may have several optimal solutions, all
feasible for a given (x, λ). As a result, the Leader’s problem could be ill-posed.
Thus, we distinguish two extreme cases:

– cooperative Follower’s behaviour (altruistic Follower). In case of multiple opti-
mal solutions, the Follower always selects the one providing the best objective
function value for the Leader. We call it the cooperative optimal solution to
the Follower’s problem.

– non-cooperative Follower’s behaviour (selfish Follower). In this case, the Fol-
lower always selects the solution that provides the worst objective function
value for the Leader. We call it the non-cooperative optimal solution to the
Follower’s problem.

One can easily observe that the sum of objective functions in our bi-level
program is not a constant. Therefore, the Follower’s behaviour should be defined
properly, i.e. an auxiliary optimization problem should be defined, as described
in [22–24]. The corresponding optimal cooperative solution can be found using
a two-stage algorithm.

At Stage 1, for a fixed solution (x, λ), we solve the Follower’s problem and
calculate the optimal value of its objective function F (x, λ).
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At Stage 2, for a fixed solution (x, λ), we solve the following auxiliary problem

max
∑

(i,j,k,l)∈M

μij/klwijuij/kl (12)

uij/kl =
xkxlλikλklλlje

−Θ(cij/kl+μij/kl)

∑
(s,t)∈Mij

ysytζisζstζtje
−Θ(cij/st+μij/st) + ηij

, ∀(i, j, k, l) ∈ M

(13)
∑

(i,j,k,l)∈M

μij/klwijvij/kl −
∑

i∈N

fiyi −
∑

(i,j)∈A

gijζij ≥ F (x, λ) (14)

vij/kl =
ykylζikζklζlje

−Θ(cij/kl+μij/kl)

∑
(s,t)∈Mij

ysytζisζstζtje
−Θ(cij/st+μij/st) + ηij

, ∀(i, j, k, l) ∈ M (15)

ηij =
∑

(k,l)∈Mij

xsxtλikλklλlje
−Θ(cij/kl+μij/kl), ∀i, j ∈ N (16)

yi ∈ {0, 1}, ∀i ∈ N (17)
ζij ∈ {0, 1}, ∀(i, j) ∈ A (18)

The corresponding optimal non-cooperative solution can be found using the same
two-stage process, except we should solve the minimization problem, instead of the
maximization. For a thorough understanding of this topic and the used terminol-
ogy, we suggest the reader to examine the classic textbook of Dempe [25].

3 Mixed-Integer Linear Reformulation of the Follower’s
Problem

Suppose that theLeader hasmadehis decision.To estimate his profit (and amarket
share)we need theFollower’s optimal solution. Fortunately, theFollower’s problem
can be linearised to find the respective optimal solution by a solver.

Introducing a new variable Rijkl (for (i, j, k, l) ∈ M), we can substitute the
product ykylζikζklζlj in the constraint set (8). This substitution requires the
additional sets of constraints

Rij/kl − 1
5
(yk + yl + ζik + ζkl + ζlj) ≤ 0, ∀(i, j, k, l) ∈ M (19)

Rij/kl − yk − yl − ζik − ζkl − ζlj + 4 ≥ 0, ∀(i, j, k, l) ∈ M (20)
Rij/kl ∈ {0, 1}, ∀(i, j, k, l) ∈ M (21)

where yi, ζij have the same meaning as in (7)–(11).
Now, only the constraints from (8) have non-linear terms. The literature

knows several techniques for reformulating the logit-term, which are presented
in [26–29]. Recently, Haase and Müller compared those approaches in [20] and
their computational study, based on synthetic data, showed that the approach
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from [27] seems to be promising for solving larger problems. From (8), we directly
obtain that the following holds:

vij/kl − e−Θ(cij/kl+μij/kl)

ηij + e−Θ(cij/kl+μij/kl)
Rij/kl ≤ 0, ∀(i, j, k, l) ∈ M, (22)

vij/kl ≥ 0, ∀(i, j, k, l) ∈ M. (23)

The inequalities (22) are just tighter bounds on vijkl, than the obvious vijkl ≤
Rijkl. Basically, they state that a customer can only choose an established route.
The domain of variables vijkl is specified in (23).

The ratio of the choice probabilities of the two alternatives is independent
from other alternatives, i.e. we have that for some vij/kl and vij/st, for which we
know that Rij/st = 1, the following identity holds

vij/kl

vij/st
=

e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
. (24)

This property is called an Independence of Irrelevant Alternatives (IIA). From
the previous equations, we conclude that the following constraints are valid

vij/kl ≤ e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
vij/st +1−Rij/st, ∀(k, l), (s, t) ∈ Mij , ∀i, j ∈ N. (25)

These inequalities are valid even if the impractical routes are included because
their corresponding values for the choice probabilities vijkl and establishing the
route Rijkl could be both set to zero. It is easy to see that (24) is valid even if we
use uij/kl instead of vij/kl. Thus, we obtain an additional two sets of inequalities
that are connecting the choice probabilities of the Follower’s routes with the
choice probabilities of the Leader’s routes and describe the relation between the
Leader’s routes alone (as in (25) for the Follower). In other words, we have the
following constraint sets to be valid for all OD pairs

uij/kl ≤ e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
vij/st + 1 − Rij/st, ∀(k, l), (s, t) ∈ Mij , ∀i, j ∈ N (26)

Tij/stuij/kl ≤ Tij/kl
e−Θ(cij/kl+μij/kl)

e−Θ(cij/st+μij/st)
uij/st, ∀(k, l), (s, t) ∈ Mij , ∀i, j ∈ N (27)

uij/kl ≥ 0, ∀i, j, k, l ∈ N (28)

where Tij/st = xsxtλisλstλtj , for all i, j, s, t ∈ N . Note that the value of uij/kl

is not known until the Follower makes his move, which is not the case with the
product Tij/st. Now, for all OD pairs we have that sum of choice probabilities
for both competitors is equal to one, that is

∑

(k,l)∈Mij

uij/kl +
∑

(k,l)∈Mij

vij/kl = 1, ∀i, j ∈ N. (29)

We can introduce a new variable qij (i, j ∈ N) to denote the cumulative choice
probabilities of the Leader. Furthermore, we can derive new sets of constraints
with fewer variables
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∑

(k,l)∈Mij

vij/kl + qij ≤ 1, ∀i, j ∈ N (30)

qij ≥ 0, ∀i, j ∈ N (31)

where (31) defines the new variables’ domains. As a matter of fact, (8) can be
expressed solely in terms of vijkl and qij as a linear constraint

vij/kl − e−Θ(cij/kl+μij/kl)

ηij
qij ≤ 0, ∀(i, j, k, l) ∈ M. (32)

One could notice that Rijkl is omitted in the second term from the left-hand
side. We do not need that binary variable because we already have that (22)
must hold.

Now, taking all this into the account, we proved the following proposition.

Proposition 1. The Follower’s Problem (7)–(11) can be reformulated as a mix-
integer linear program with the objective function

max
∑

(i,j,k,l)∈M

wijμij/klvij/kl −
∑

i∈N

fiyi −
∑

(i,j)∈A

gijζij (33)

subject to (9)–(11), (19)–(23), and (30)–(32).

Although this technique could be used to reformulate the problem of the
Leader, there is a question of its usefulness, because the Leader is anticipating
the move of the Follower. Nevertheless, it can be easily seen that the same
approach will give us the reformulation of the auxiliary problem.

Proposition 2. The auxiliary problem (12)–(18) can be reformulated as a mix-
integer linear program with the objective function

max
∑

(i,j,k,l)∈M

μij/klwijuij/kl (34)

subject to (14), (16)–(18), (19)–(23), (25)–(29).

The drawback of these reformulations is that they produce a large number
of new constraints. The fact that we do not have a constraint on the number of
hubs suggest that our models could still be difficult to solve by a solver even for
smaller instances.

4 Computational Experiments

The central idea of the matheuristic we used is given in [30,31]. This is an
alternating method, where for the solution of the Leader, we compute the best-
possible solution for the Follower. Once this has been done, the Leader assumes
the role of the Follower and re-optimizes his decision by solving the corresponding
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problem for the given solution. This process is then repeated until one of the Nash
equilibria is discovered or the previously visited solution has been detected. The
best what we have found for the Leader is returned as the result of the method.
In the beginning, the Leader ignores the Follower.

We conducted the computational experiments to test the method using an
artificially generated data. The Cartesian coordinates for the nodes i ∈ N
are randomly generated by a uniform distribution in the interval [0, 100]. The
demand is also randomly generated using a (truncated) log-normal distribution
on an interval [1, 100], where numbers represent the flow in thousands. The log-
normal distribution better corresponds to the real-world data then the uniform
distribution when it comes to the passenger flows [32], air traffic demands [33],
or airline business [34]. Next, following the work presented in [11,35,36], we took
the hub location cost to be the same for all nodes. We could say that the cost
of the hub location is proportional to the number of the passengers that will
go through the hub. On the other hand, the hub location cost is inversely pro-
portional to the number of hubs (because of competition and load shedding).
Therefore, we have a range of cases, where only one hub exists in the market to
the case with |N | hubs (a point-to-point network as a trivial hub and spoke topol-
ogy). Taking that into account, we took the following expression for hub location
costs in our experiments fi = f = β

H|N|
|N |

∑
i,j,k,l∈N wij . The sum represents the

total amount of the passengers. In the average, that amount is distributed to
the H|N |/|N | hubs, where Hn is the n-th harmonic number. As for β > 0, it is a
coefficient that represents an operating cost per passenger. Considering the run-
ning time, we observed in our preliminary investigation that β = 0.06 happened
to be a good choice. Also, we note that this is just a temporary solution for the
hub location cost model. The cost of spoke allocation between the pair of nodes
i and j was calculated using the expression ζij = f

cij/wij

max
(k,l)∈A

ckl/wkl
, as in [11,35].

The travel cost is taken to be cij = dij/maxi,j∈N dij , where dij is the Euclidean
distance between pair of nodes i and j. This way, normalizing the travel cost, the
interval from which we “harvested” the node coordinates becomes irrelevant. In
our testing the discount cost values on consolidation and distribution links were
ℵ = ψ = 1. The experiments were conducted on randomly generated graphs of
5, 6, 7, 8, 9 and 10 nodes. Three values α ∈ {0.1, 0.5, 1.0} are considered for the
inter-hub discount factor, and three values, too, for the sensitivity parameter
Θ ∈ {0.25, 1.0, 4.0}. For a particular OD pair (i, j) ∈ N2 all markups were taken
to be equal, i.e. μij/kl = μij/st for all k, l, s, t ∈ N . This approach is justified by
the results presented in [11]. The markup for a particular OD pair is calculated
as percentage of the travel cost of the corresponding non-stop flight. The per-
centages took values from the set {10, 25, 50}. For graphs of size 9 and 10 nodes,
we used only the smallest and the biggest values of the parameters. In total,
we tested 124 different instances. The alternating heuristic was implemented in
Python 2.7 using Gurobi 6.5 as the solver, on a 64-bit Windows 8.1 Pro with
two 2.00 GHz Six-Core AMD Opteron(tm) processors and 32 GiB of RAM.
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It is worth noting that preliminary computational experiments on a model
that included the impractical routes showed that they can be a cause for numer-
ical instability, which could lead to wrong solutions and unreasonably long run-
ning times.

The Leader’s Network Structure. In almost half of the instances tested,
the best-reported solution for the Leader was the so-called Entry Deterrence.
Slightly less than one-third of the cases had the Nash equilibrium as a solution.
We observed from our testing sample that for stronger Leader’s positions (lower
markups or better developed networks), the harder it was for the Follower to
obtain any profit at all. Something quite similar we observed for the running
time of the algorithm. For stronger Leader’s positions, Gurobi needed more time
to find the exact solution and in some cases it even lasted the entire day.

The Role of Inter-hub Economies of Scale. Our computational investi-
gation suggests that the inter-hub economies of scale have a minor impact on
the Leader’s profit. Unfortunately, we could not observe any solid pattern. It
seems that greater values of the price sensitivity parameter combined with big-
ger markups can boost a little bit the role of the inter-hub economies of scale. For
smaller values of markups and sensitivity parameter, the profit becomes more
and more locked to one specific value. Also, the results of the computational
tests suggest that economies of scale could have an effect to some extent on
the Leader’s networks solution. In our testing, we did not observe a significant
difference in location of hubs for different values of the discount factor, but the
resulting hub and spoke topologies were usually less developed for smaller values
of the discount factor. We note that sometimes there was no difference at all,
or it was the opposite. We could not observe that different values of α had any
influence on the cycle length of the alternating heuristics.

The Effect of the Sensitivity Factor. It turns out that the sensitivity to the
price differences could have a more significant role when it comes to the profit of
the competitors. In most of the cases when the Nash equilibrium occurred as a
solution the bigger sensitivity led to the greater profit for the Leader, although
not always. The same could be said for the Entry Deterrence type of solution.
When it comes to the resulting hub and spoke topologies, in most of the cases hub
and spoke networks were the same for different values of Θ, especially for smaller
markups. When they were not, the small values of the sensitivity factor usually
corresponded to more developed (less translucent) networks. Also, it seems that
the chance for the entry deterrence to occur as a solution is greater when Θ takes
the smaller values. In contrast to that, the bigger values of Θ corresponded more
often to the Nash equilibrium solutions. As in the previous analysis, we can not
say that the cycle length is under the influence of the sensitivity factor.
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The Role of the Fixed Markups. It is more likely that the Nash equilibrium
as a solution will occur when the markups are bigger. For smaller markups, the
Entry Deterrence appeared more often as a solution. It was not always the case
that the bigger markup led to the greater profit, especially if the solution types
were different, but for the same types the bigger markup corresponded to the
higher obtained profit. We observed that for the smallest markups considered the
alternating heuristic had the minimal number of steps, but for the considerably
larger markups we could not observe a regular pattern.

5 Conclusion and Future Research

We present a novel approach to analyse a situation in which two companies
compete in a transportation market in a sequential fashion. Here, the goal for
the both companies is to maximize their profit by creating the optimal hub and
spoke networks. It is assumed that the market is regulated. Because this research
is quite fresh, the form of regulation is chosen to be the direct price setting. To
be more precise, we assumed that all routes have fixed markups. We have to say
that up to our knowledge no one has investigated the effects of regulations to
the optimal hub location in a competitive environment. Next, we took that the
customers’ choice of provider and route depends solely on price and therefore it
is possible to predict it by a simple logit model (although including other factors
would be very easy). Upon that, we formulated a non-linear mixed integer bi-
level program to model this Stackelberg competition. The choice of the solution
approach was the alternating heuristic based on the Follower’s best response.

The computational investigation showed that discount factor by itself has a
relative impact to the solution and a not so sharp-cut role, as it was difficult to
observe any regularity. It looks like the sensitivity factor plays a more significant
role, but again it is hard to draw any specific conclusions. The markup has a
significant effect, as expected. For smaller markups, there is a tendency towards
the entry deterrence. Likewise, the bigger markups provided “more space” for the
Nash equilibrium to occur. Loosely speaking, if the passengers in the market are
less sensitive to the price differences and markups are quite small, than it could
be expected that the first-to-enter company will be the only one providing the
services. On the other hand, the price sensitive markets with bigger markups
set are more “prone” to allow multiple competitors to operate. Colloquially
speaking, both of these outcomes could be used as arguments in cooperative
games.

From the purely computational point of view, we observed that it might
be beneficial to derive a new model that would serve only to find the entry
deterrence solution. Long running times confirmed our worries that this problem
will not be easily solved for bigger instances by a commercial solver. Therefore,
for a more thorough investigation, we have to find a better way to compute the
exact solution for the Follower’s problem. We intend to put our efforts in finding
tighter reformulations of the Follower’s model and designing a branch and bound
based method that would utilize the structure of the program itself.
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Recently, some new interesting results have been obtained by relating the
bi-level programs with polynomial and approximation hierarchies [37–42]. The
investigation of these relationships is an important area of research. Therefore,
we plan to determine the position of our problem in each of them, too. Another
direction of the research is oriented towards the other forms of regulation.
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