
Chapter 5

COMPUTATIONALLY DIFFICULT INSTANCES
FOR THE UNCAPACITATED FACILITY
LOCATION PROBLEM

Yuri Kochetov, Dmitry Ivanenko

Sobolev Institute of Mathematics Novosibirsk, 630090, Russia

Abstract: Design and analysis of computationally difficult instances is one of the prom-
ising areas in combinatorial optimization. In this paper we present several new
classes of benchmarks for the Uncapacitated Facility Location Problem. The
first class is polynomially solvable. It has many strong local optima and large
mutual pair distances. Two other classes have exponential number of strong
local optima. Finally, three last classes have large duality gap and one of them
is the most difficult for metaheuristics and the branch and bound method.

Key words: facility location, benchmarks, PLS-complete problem, local search, branch and
bound method.

1. PROBLEM STATEMENT AND ITS PROPERTIES

In the Uncapacitated Facility Location Problem (UFLP) we are
 given a finite set of clients J, a finite set of facilities I, fixed costs of open-
ing facilities fi ≥ 0, i∈I, and matrix of transportation costs (gij), i∈ I, j∈J.

We need to find a nonempty subset of facilities S ⊆ I such that minimizes
the objective function

It is a well known combinatorial problem with wide range applications [2, 3,
9]. The p-median problem, set covering problem, minimization problem for

∑ ∑
∈ ∈ ∈

+=
Si Jj

ijSii gfSF .min)(

2

polynomials in Boolean variables are closely related to (UFLP) [7]. Notice
that it is NP-hard in strong sense.

The neighborhood Flip for S is a collection of subsets S′ ⊆I which can be
produced by dropping or adding one element to S. Standard local improve-
ment algorithm starts from initial solution S0 and moves to a better neighbor-
ing solution until it terminates at a local optimum. The running time of the
algorithm is determined by the number of iterations. The local search prob-
lem (UFLP, Flip) is to find a local optimum with respect to the neighbor-
hood.

Definition 1. [12] A local search problem Π is in class PLS (polynomial-
-time local search problems) if there are three polynomial time algorithms
AΠ , BΠ ,CΠ with the following properties:

1. Given a string x∈{0,1}*, algorithm AΠ determines whether x is an in-
stance of the problem Π, and in the case it produces a feasible solution.

2. Given an instance x and a string s, algorithm BΠ determines whether s is a
feasible solution and if so, algorithm BΠ computes the value of objective
function for the solution s.

3. Given an instance x and a feasible solution s, algorithm CΠ determines
whether s is a local optimum, and if it is not, algorithm CΠ finds a neighbor-
ing solution with strictly better value of objective function.

It is easy to verify that the local search problem Π=(UFLP, Flip) belongs
to the class PLS.

Definition 2. [12] Let Π1 and Π2 be two local search problems. A PLS-
reduction from Π1 to Π2 consists of two polynomial–time computable func-
tions h and g such that:

1. h maps instances x of Π1 to instances h(x) of Π2;

2. g maps pairs (x, solution of h(x)) to solutions of x;

3. for all instances x of Π1, if s is a local optimum for instance h(x) of Π2,
then g(x,s) is a local optimum for x.

If Π1 PLS-reduces to Π2 and if there is a polynomial–time algorithm for
finding local optima for Π2, then there is a polynomial–time algorithm for
finding local optima for Π1. Local search problem Π∈PLS is called PLS-
complete if every problem in PLS can be PLS-reduced to it [6]. A list of
PLS-complete problems can be found in [6, 12].

Proposition 1. The local search problem Π=(UFLP, Flip) is PLS-
complete.

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

3

Corollary 1. Standard local improvement algorithm takes exponential

time in the worst case for the problem Π=(UFLP, Flip) regardless of the tie-
breaking and pivoting rules used.

Proofs are in the Appendix.

These properties of the local search problem Π=(UFLP, Flip) deal with
the worst case behavior only. In average case, our computational results
yield linear running time of the local improvement algorithm. We observe
the same effect for Flip+Swap neighborhood too. So, we have pessimistic
predictions for the worst case and optimistic one for the average case. In or-
der to create computationally difficult benchmarks we may try to generate
instances with the following properties:

- large number of local optima;
- large area where local optima located;
- large minimal distance for pairs of local optima;
- large basins of attractions;
- long paths from starting points to local optima and others.

Below we present several classes of benchmarks for the UFLP which are
computationally difficult for the famous metaheuristics.

2. POLYNOMIALLY SOLVABLE INSTANCES

Let us consider a finite projective plane of order k [4]. It is a collection of
n = k2 + k + 1 points x1,…, xn and lines L1,…, Ln. An incidence matrix A is an
n×n matrix defining the following: aij = 1 if xj ∈ Li and aij = 0 otherwise. The
incidence matrix A satisfying the following properties:

1. A has constant row sum k + 1;
2. A has constant column sum k + 1;
3. the inner product of any two district rows of A is 1;
4. the inner product of any two district columns of A is 1.
These matrices exist if k is a power of prime. A set of lines Bj =

{Li | xj ∈ Li} is called a bundle for the point xj. We define a class of instances
for the UFPL. Put I = J = {1,…, n} and

⎪⎩

⎪
⎨
⎧

∞+

=
=

otherwise,

,1 if , ijij
ij

a
g

ξ
 .∑∑

∈ ∈

>=
Ii Jj

iji ff ξ

We denote the class by FPPk.

4

Proposition 2. Optimal solution for FPPk corresponds to a bundle of the
plane.

Corollary 2. Optimal solution for FPPk can be found in polynomial time.
Every bundle corresponds to a strong local optimum of the UFLP with

neighborhood Flip+Swap. Hamming distance for arbitrary pair of the strong
local optima equals 2k. Hence, the diameter of area where local optima is
located is quite big. Moreover, there are no other local optima with distance
less or equal k to the bundle. Class FPPk is hard enough for the local search
methods when k is sufficiently large.

3. INSTANCES WITH EXPONENTIAL NUMBER OF
STRONG LOCAL OPTIMA

Let us consider two classes of instances where number of strong local op-
tima grows exponentially as dimension increases. The first class uses the
binary perfect codes with code distance 3. The second class is constructed
with help a chess board.

3.1 Instances based on perfect codes

Let Bk be a set of words (or vectors) of length k over an alphabet {0,1}. A
binary code of length k is an arbitrary nonempty subset of Bk. Perfect binary
code with distance 3 is a subset C ⊆ Bk, |C|=2k/(k+1) such that Hamming dis-
tance d(c1,c2) ≥ 3 for all c1, c2 ∈ C, c1 ≠ c2. These codes exist for k = 2r–1,
r > 1, integer.

Put n = 2k, I = J ={1,…, n}. Every element i ∈ I corresponds to a vertex
x(i) of the binary hyper cube k

2Z . Therefore, we may use a distance dij =
d(x(i), x(j)) for any two elements i, j ∈ I. Now we define

⎪⎩

⎪
⎨
⎧

∞+

≤
=

otherwise,

,1))(),((if , jxixd
g

ij
ij

ξ
 .∑∑

∈ ∈

>=
Ii Jj

iji ff ξ

Arbitrary perfect code C produces a partition of k
2Z into 2k/(k+1) dis-

jointed spheres of radius 1 and corresponds to a strong local optimum for the

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

5

UFLP. Number of perfect codes ℵ(k) grows exponentially as k increases.
The best known lower bound [8] is

.232)(
)1(2log

4
5

4
3)1(2log

2
1

222
+−

+−
+−

+

⋅⋅≥ℵ
kkkkk

k

The minimal distance between two perfect codes or strong local minima
is at least 2(k+1)/2. We denote the class of benchmarks by BPCk.

3.2 Instance based on a chess board

Let us glue boundaries of the 3k×3k chess board so that we get a torus.
Put r = 3k. Each cell of the torus has 8 neighboring cells. For example, the
cell (1,1) has the following neighbors: (1,2), (1,r), (2,1), (2,2), (2,r), (r,1),
(r,2), (r,r). Define n = 9k2, I = J ={1,…, n} and

⎪⎩

⎪
⎨
⎧

∞+
=

otherwise,

neighbors are , cells theif , ji
g

ij
ij

ξ
 .∑∑

∈ ∈

>=
Ii Jj

iji ff ξ

The torus is divided into k2 squares by 9 cells in each of them. Every cover
of the torus by k2 squares corresponds to a strong local optimum for the

UFPL. Total number of these strong local optima is 2⋅3k+1–9. The minimal
distance between them is 2k. We denote this class of benchmarks by CBk.

4. INSTANCES WITH LARGE DUALITY GAP

As we will see later, the duality gap for described classes is quite small.
Therefore, the branch and bound algorithm finds an optimal solution and
proves the optimality quickly. It is interesting to design benchmarks which
are computationally difficult for both metaheuristics and enumeration meth-
ods.

As in previous cases, let the n×n matrix (gij) has the following property:
each row and column have the same number of non-infinite elements. We
denote this number by l. The value l/n is called the density of the matrix.
Now we present an algorithm to generate random matrices (gij) with the
fixed density.

6

Random matrix generator (l,n)

1. J ← {1,…, n}
2. Column [j] ← 0 for all j ∈ J
3. g[i,j] ← + ∞ for all i, j ∈ J
4. for i ← 1 to n
5. do l0 ← 0
6. for j ← 1 to n
7. do if n – i + 1 = l – Column [j]
8. then g[i, j] ← ξ [i,j]
9. l0 ← l0+1
10. Column [j] ← Column [j]+1
11. J ← J \ j
12. select a subset J′ ⊂ J, | J′| =l – l0 at random and
 put g[i,j] ←ξ [i,j] for j∈ J′

The array Column [j] keeps the number of small elements in j-th column
of the generating matrix. Variable l0 is used to count the columns where
small elements must be located in i-th row. These columns are detected in
advance (line 7) and removed from the set J (line 11). Note that we may get
random matrices with exactly l small elements for each row only if we re-
move lines 6–11 from the algorithm. By transposing we get random matrices
with this property for columns only. Now we introduce three classes of
benchmarks:

Gap-A: each column of g(ij) has exactly l small elements;
Gap-B: each row of g(ij) has exactly l small elements;
Gap-C: each column and row of g(ij) have exactly l small elements.

For these classes we save I = J ={1,…, n} and ∑ ∑∈ ∈
>=

Ii Jj iji ff ξ .

The instances have significant duality gap

%,100⋅
−

=
opt

LPopt

F
FF

δ

where FLP is an optimal solution for the linear programming relaxation [5].

For l = 10, n = 100 we observe that δ ∈ [21%, 29%]. The branch and
bound algorithm evaluates at least 0,5⋅109 nodes in branching tree for the
most of instances from the class Gap-C (see Table 1).

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

7

Table 1: Performance of the branch and bound algorithm in average

Benchmarks
classes N Gap

δ
Iterations

B&B
The best
iteration

Running
time

BPC7 128 0.1 374 264 371 646 00:00:15
CB4 144 0.1 138 674 136 236 00:00:06
FPP11 133 7.5 6 656 713 6 635 295 00:05:20
Gap – A 100 25.6 10 105 775 3 280 342 00:04:52
Gap – B 100 21.2 30 202 621 14 656 960 00:12:24
Gap – C 100 28.4 541 320 830 323 594 521 01:42:51
Uniform 100 4.7 9 834 2 748 00:00:00
Euclidean 100 0.1 1 084 552 00:00:00

5. COMPUTATIONAL EXPERIMENTS

To study the behavior of metaheuristics we generate 30 random test
instances for each class. The values of ξij are taken from the set
{0,1,2,3,4} at random and we set f = 3000. Optimal solutions are found
for all instances by branch and bound algorithm [1, 5]. All these instances
are available by address: http://www.math.nsc.ru/AP/benchmarks
/english.html. Table 1 shows performance of the algorithm in average.
Column Running time presents execution time on PC Pentium 1200
MHz, RAM 128 Mb. Column The best iteration shows iterations for
which optimal solutions were discovered. For comparison we include two
well known classes [11]:

Uniform: values g(ij) are selected in interval [0, 104] at random with uni-
form distribution and independently from each other.

Euclidean: values g(ij) are Euclidean distances between points i and j.
The points are selected in square 7000×7000 at random with uniform dis-
tribution and independently from each other.

For these classes f = 3000. The interval and size of the square are
taken in such a way that optimal solutions have the same cardinality as in
previous classes. Table 1 comfirms that classes Gap-A, Gap-B, Gap-C
have large duality gap and they are the most difficult for the branch and
bound algorithm. The classes BPC7, CB4, Euclidean have small duality
gap. Nevertheless, the classes BPC7, CB4 are more difficult than Euclid-
ean class. This effect has simple explanation. Classes BPC7, CB4 have
many strong local optima with small waste over the global optimum.

8

In order to understand the difference between classes from the point
of view the local optima allocation, we produce the following computa-
tional experiment. For 9000 random starting points we apply standard lo-
cal improvement algorithm with Flip+Swap neighborhood and get a set
of local optima. Some of them are identical. Impressive difference be-
tween benchmark classes deals with the cardinality of the local optima
set. Classes Uniform and Euclidean have pathological small cardinalities
of local optima sets and as we will see later these classes are very easy
for metaheuristics. In Table 2 the column N shows the cardinalities for
typical instances in each class. The column Diameter yields lower bound
for diameter of area where local optima are located. This value equals to
maximal mutual Hamming distance over all pairs of local optima.

Figures 1–8 plot the costs of local optima against their distances from
global optimum. For every local optimum we draw a sphere. The center
of sphere has coordinates (x,y), where x is the distance, and y is the value
of objective function. The radius of the sphere is a number of local op-
tima which are located near the given local optimum. More exactly, the
Hamming distance d less or equals to 10. In Table 2 columns min, ave,
and max show the minimal, average, and maximal radiuses for the corre-
sponding sets of local optima. The class FPP11 has extremely small
maximal and average value of the radiuses. Hence, the basins of attrac-
tion for the local optima are quite large. So, we may predict that Tabu
search and other metaheuristics face some difficultes to solve the in-
stances [10]. Column R* gives the radius of the sphere for the global op-
timum. Column R100 shows the minimal radius for 100 biggest spheres.
This column indicates that the classes Gap-A, Gap-B, Gap-C have many
large spheres. The average radiuses are quite large too. It seems that the
classes are simple for metaheuristics. Table 3 disproves the prediction.
Class Gap-C is the most difficult for metaheuristics and branch and
bound method.

Table 2: Attributes of the local optima allocation

Radius Benchmarks
classes N Dia-

meter min Ave max
R100 R*

BPC7 8868 55 1 3 357 24 52
CB4 8009 50 1 13 178 78 53
FPP11 8987 51 1 2 8 3 1
Gap – A 6022 36 1 53 291 199 7
Gap – B 8131 42 1 18 164 98 16
Gap – C 8465 41 1 14 229 134 21
Uniform 1018 33 1 31 101 61 1
Euclidean 40 21 11 13 18 10

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

9

Table 3 shows the frequency of finding optimal solution by the following

metaheuristics: Probabilistic Tabu Search (PTS), Genetic Algorithm (GA)
and Greedy Randomizes Adaptive Search Procedure with Local Improve-
ment (GRASP+LI). Stopping criteria for the algorithms is the maximal num-
ber of steps by the neighborhood Flip+Swap. We use number 104 as the cri-
teria. Genetic algorithm uses local improvements for each offspring during
the evolution. Classes Euclidean and Uniform are easy. Average number of
steps to get optimal solution is less than 103 for these classes.

Figure 9 shows the average radius Rave as a function of d. For every class
the function has three typical intervals: flat, slanting, and flat again. The first
interval corresponds to the distances d where the spheres overlap rarely. At
the last interval the value of d is closed to diameter of area where local op-
tima are located. The transition point from the second interval to the third
one conforms to the diameter of area which covers the most part of local op-
tima. For the class Gap-C this point approximately equals to 33. For the
classes FPP11, BPS7, CB4 this value is near 42. Hence, the area of local op-
tima is bigger for the classes FPP11, BPS7, CB4 than for the class Gap-C. The
column Diameter in Table 2 gives us the same conclusion. Nevertheless, the
class Gap-C is the most difficult. It has the same density but random struc-
ture of the matrix (gij). It looks like that this property is very important for
generation difficult instances for (UFLP).

Table 3: Frequency of obtaining optimal solutions by metaheuristics

Benchmarks
Classes Dimension PTS GA GRASP+LI

BPC7 128 0.93 0.90 0.99
CB4 144 0.99 0.88 9.68
FPP11 133 0.67 0.46 0.99
Gap – A 100 0.85 0.76 0.87
Gap – B 100 0.59 0.44 0.49
Gap – C 100 0.53 0.32 0.42
Uniform 100 1.0 1.0 1.0
Euclidean 100 1.0 1.0 1.0

10

Figure 1. Analysis of local optima for the class BPC7

Figure 2. Analysis of local optima for the class CB4

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

11

Figure 3. Analysis of local optima for the class FPP11

Figure 4. Analysis of local optima for the class Gap-A

12

Figure 5. Analysis of local optima for the class Gap-B

Figure 6. Analysis of local optima for the class Gap-C

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

13

Figure 7. Analysis of local optima for the class Uniform

Figure 8. Analysis of local optima for the class Euclidean

14

Figure 9. Average radius of spheres as a function of d

CONCLUSIONS

In this paper we present six new classes of random instances for the Un-
capacitated Facility Location Problem. Class FPPk is polynomially solvable
and has many strong local optima with large mutual pair distances. Classes
BPCk, CBk have exponential number of strong local optima. Finally, classes
Gap-A, Gap-B, Gap-C have large duality gap. Class Gap-C is the most diffi-
cult for both metaheuristics and branch and bound method. For comparison,
we consider two famous classes Euclidean and Uniform. Density for these
classes is 1. They are quite easy. We believe that density is a crucial parame-
ter for the Uncapacitated Facility Location Problem. In order to get difficult
instances we need to use small values of the density. Classes BPCk, CBk,
FPPk have the small density but regular structure of the matrix (gij). The
most hard instances belong to the class Gap-C. They have random structure
of the matrix and the same small density for all columns and rows.

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

15

ACKNOWLEDGEMENT

This research was supported by the Russian Foundation for Basic Re-
search, grant No. 03-01-00455.

APPENDIX

Proof of the Proposition 1. Let us consider the MAX-2SAT problem. Denote by

yi, i=1,…, n the boolean variables. A literal is either variable or its negation. A
clause is a disjunction of literals. In the MAX-2SAT problem we are given a set of
clauses Cj, j=1,…, m. Each clause has a positive weight wj and has at most two liter-
als. We should find an assignment of variables in such a way that to maximize the
total weight of satisfied clauses. The local search problem (MAX-2SAT, Flip) is PLS-
complete [12]. Below we reduce this problem to (UFLP, Flip).

Let us present MAX-2SAT problem as a 0-1 linear program:

∑
=∈

m

j
jjyz

zw
ij 1}1,0{,

max

s.t. ∑∑
−+ ∈∈

≥−+
jj Ci

ji
Ci

i zyy)1(, ,,...,1 mj =

where the clause)(−+
jj CC contains all variables)(ii yy of the clause Cj. The vari-

able zj shows is the clause Cj satisfied or not. We have

∏∏
−+ ∈∈

−−=
jj Ci

i
Ci

ij yyz)1(1 , ,,...,1 mj =

and MAX-2SAT problem can be written as unconstrained minimization problem P:

.)1(min
1}1,0{ ∏∏∑

−+ ∈∈=∈
−

jj
i Ci

i
Ci

i

m

j
jy

yyw

It can be rewritten in the following way:

.const)1(min
21

}1,0{
+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+ ∏∑∏∑
′∈∈′∈∈∈
jj

i Ci
i

Jj
j

Ci
i

Jj
jy

ywyw

with appropriate sets J1, J2 and clauses jC′ . Let us apply substitution

16

∏
′∈

−=
jCi

ij yx 1 , 2Jj∈

and add the following item

∑ ∑
∈ ′∈

−−
2

)1)(1(
Jj Ci

ij
j

yxW

with large constant ∑ =
>

m

j jwW
1

 to the objective function. We get a problem P′:

.)1)(1(min
221 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−+ ∑∑∑∏∑
′∈∈∈∈∈ jj Ci

ij
JjJj

jj
Ci

i
Jj

j yxWxwyw

If (yi) is an optimal solution of P and

∏
′∈

−=
jCi

ij yx 1 , 2Jj∈

then (x,y) is an optimal solution of P′. In order to verify this property it is suffi-
ciently to note that

∑∑
∈ ′∈

=−−
2

0)1)(1(
Jj Ci

ij
j

yx

if and only if

∏
′∈

−=
jCi

ij yx 1 , 2Jj∈ .

Moreover, if (yi) is a local optimum for P with respect to Flip neighborhood, then
(x,y) is a local optimum for P′ too. Now we rewrite P′ as UFPL. For this purpose we
present P′ as follows

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++−+− ∑∑∏∑∑∑
′∈∈∈∈∈∈ jj Ci

i
Jj

jj
Ci

i
Jj

j
Jj

jj
Ii

ii yxwywxwyw
222

)1()1(min

for appropriate weights w . It is minimization problem for polynomial in boolean
variables with positive weights for nonlinear items. It is known [1] that this problem
is equivalent to UFPL.

Proof of the Corollary 1. The statement is true for (MAX-2SAT, Flip) [12]. The

reduction from MAX-2SAT to UFPL in the proof of Proposition 1 introduces new
variables xj, j ∈ J2. Nevertheless, the equality

∏
′∈

−=
jCi

ij yx 1 , 2Jj∈

guarantees that the value of objective function does not change under this reduction.
Hence, the standard local improvement algorithm produces the same steps for both
local search problems regardless of the tie-breaking and pivoting rules used.

5. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem

17

REFERENCES

1. V. Beresnev, E. Gimadi, and V. Dement’ev. Extremal standardization problems.
Nauka, 1978, (in Russian).

2. M. Daskin. Network and Discrete Location Problem: Models, Algorithms, and
Applications. John Wiley & Sons, Inc., 1995.

3. Z. Drezner (Ed.) Facility Location: A survey of Applications and Methods.
 Springer Series in Operations Research, Springer, 1995.

4. M. Hall Jr. Combinatorial Theory. Blaisdell. Waltham. MA, 1967.
5. D. Erlenkotter. A dual-based procedure for uncapacitated facility location, Op-

erations Research, 26: 992–1009, 1978.
6. D. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local search?

Journal of Computer and System Sciences, 37: 79–100. 1988.
7. J. Krarup and P. M. Pruzan. The simple plant location problem: survey and syn-

thesis. European Journal of Operational Research, 12: 36–81, 1983.
8. D. Krotov. Lower bounds for number of m-quasi groups of order 4 and number

of perfect binary codes. Discrete Analysis and Operations Research, 7: 47–53,
2000. (in Russian).

9. P. Mirchandani and R. Francis (Eds.) Discrete Location Theory. John Wilew &
Sons, 1990.

10. M. Resende and R. Werneck. A hybrid multistart heuristic for the uncapacitated
facility location problem, Manuscript, http://www.research.att.com/mgcr/doc/
guflp.pdf.

11. D. Schilling, K. Rosing, and C. ReVelle. Network distance characteristics that
affect computational effort in p-median location problems. European Journal of
Operational Research, 127: 525–536, 2000.

12. M. Yannakakis. Computational complexity. E.Aarts and J.K. Lenstra
(Eds.) Local Search in Combinatorial Optimization, pages 19–55, Chichester:
Wiley, 1997.

