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Abstract: Design and analysis of computationally difficult instances is one of the prom-
ising areas in combinatorial optimization. In this paper we present several new 
classes of benchmarks for the Uncapacitated Facility Location Problem. The 
first class is polynomially solvable. It has many strong local optima and large 
mutual pair distances. Two other classes have exponential number of strong 
local optima. Finally, three last classes have large duality gap and one of them 
is the most difficult for metaheuristics and the branch and bound method. 
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1. PROBLEM STATEMENT AND ITS PROPERTIES 

In the Uncapacitated Facility Location Problem (UFLP) we are 
 given a finite set of clients J, a finite set of facilities I,  fixed costs of open-
ing facilities fi ≥ 0, i∈I, and matrix of transportation costs (gij), i∈ I, j∈J. 

We need to find a nonempty subset of facilities S ⊆ I such that minimizes 
the objective function  

 

It is a well known combinatorial problem with wide range applications [2, 3, 
9]. The p-median problem, set covering problem, minimization  problem for 
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polynomials in Boolean variables are closely related to (UFLP) [7]. Notice 
that it is NP-hard in strong sense.  

The neighborhood Flip for S is a collection of subsets S′ ⊆I which can be 
produced by dropping or adding one element to S. Standard local improve-
ment algorithm starts from initial solution S0 and moves to a better neighbor-
ing solution until it terminates at a local optimum. The running time of the 
algorithm is determined by the number of iterations. The local search prob-
lem (UFLP, Flip) is to find a local optimum with respect to the neighbor-
hood.  

Definition 1. [12] A local search problem Π is in class PLS (polynomial-
-time local search problems) if there are three polynomial time algorithms 
AΠ , BΠ ,CΠ  with the following properties: 

1. Given a string x∈{0,1}*, algorithm AΠ  determines whether x is an in-
stance of the problem Π, and in the case it produces a feasible solution. 

2. Given an instance x and a string s, algorithm BΠ determines whether s is a 
feasible solution and if so, algorithm BΠ computes the value of objective 
function for the solution s. 

3. Given an instance x and a feasible solution s, algorithm CΠ determines 
whether s is a local optimum, and if it is not, algorithm CΠ finds a neighbor-
ing solution with strictly better value of objective function. 

It is easy to verify that the local search problem Π=(UFLP, Flip) belongs 
to the class PLS. 

Definition 2. [12] Let Π1 and Π2 be two local search problems. A PLS-
reduction from Π1 to Π2 consists of two polynomial–time computable func-
tions h and g such that: 

1. h maps instances x of Π1 to instances h(x) of Π2; 

2. g maps pairs (x, solution of  h(x)) to solutions of x; 

3. for all instances x of Π1, if s is a local optimum for instance h(x) of Π2, 
then g(x,s) is a local optimum for x. 

If Π1 PLS-reduces to Π2 and if there is a polynomial–time algorithm for 
finding local optima for Π2, then there is a polynomial–time algorithm for 
finding local optima for Π1. Local search problem Π∈PLS is called PLS-
complete if every problem in PLS can be PLS-reduced to it [6]. A list of 
PLS-complete problems can be found in [6, 12]. 

Proposition 1. The local search problem Π=(UFLP, Flip) is PLS-
complete. 
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Corollary 1. Standard local improvement algorithm takes exponential 

time in the worst case for the problem Π=(UFLP, Flip) regardless of the tie-
breaking and pivoting rules used. 

Proofs are in the Appendix. 

These properties of the local search problem Π=(UFLP, Flip) deal with 
the worst case behavior only. In average case, our computational results 
yield linear running time of the local improvement algorithm. We observe 
the same effect for Flip+Swap neighborhood too. So, we have pessimistic 
predictions for the worst case and optimistic one for the average case. In or-
der to create computationally difficult benchmarks we may try to generate 
instances with the following properties: 

- large number of local optima;  
- large area where local optima located; 
- large minimal distance for pairs of local optima; 
- large basins of attractions; 
- long paths from starting points to local optima and others. 

Below we present several classes of benchmarks for the UFLP which are 
computationally difficult for the famous metaheuristics. 

 

2. POLYNOMIALLY SOLVABLE INSTANCES 

Let us consider a finite projective plane of order k [4]. It is a collection of 
n = k2 + k + 1 points x1,…, xn and lines L1,…, Ln. An incidence matrix A is an 
n×n matrix defining the following: aij = 1 if xj ∈ Li and aij = 0 otherwise. The 
incidence matrix A satisfying the following properties:  

1. A has constant row sum k + 1;  
2. A has constant column sum k + 1; 
3. the inner product of any two district rows of A is 1; 
4. the inner product of any two district columns of A is 1. 
These matrices exist if k is a power of prime. A set of lines Bj =  

{Li | xj ∈ Li} is called a bundle for the point xj. We define a class of instances 
for the UFPL. Put I = J = {1,…, n} and  
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We denote the class by FPPk. 
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Proposition 2. Optimal solution for FPPk corresponds to a bundle of the 
plane. 

Corollary 2. Optimal solution for FPPk can be found in polynomial time. 
Every bundle corresponds to a strong local optimum of the UFLP with 

neighborhood Flip+Swap. Hamming distance for arbitrary pair of the strong 
local optima equals 2k. Hence, the diameter of area where local optima is 
located is quite big. Moreover, there are no other local optima with distance  
less or equal k to the bundle. Class FPPk is hard enough for the local search 
methods when k is sufficiently large. 

3. INSTANCES WITH EXPONENTIAL NUMBER OF 
STRONG LOCAL OPTIMA 

 
 

Let us consider two classes of instances where number of strong local op-
tima grows exponentially as dimension increases. The first class uses the 
binary perfect codes with code distance 3. The second class is constructed 
with help a chess board. 

 

3.1 Instances based on perfect codes 

 
 

Let Bk be a set of words (or vectors) of length k over an alphabet {0,1}. A 
binary code of length k is an arbitrary nonempty subset of Bk. Perfect binary 
code with distance 3 is a subset C ⊆ Bk, |C|=2k/(k+1) such that Hamming dis-
tance d(c1,c2) ≥ 3 for all c1, c2 ∈ C, c1 ≠ c2. These codes exist for k = 2r–1,  
r > 1, integer. 

Put n = 2k, I = J ={1,…, n}. Every element i ∈ I corresponds to a vertex 
x(i) of the binary hyper cube k

2Z . Therefore, we may use a distance dij = 
d(x(i), x(j)) for any two elements i, j ∈ I. Now we define 
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Arbitrary perfect code C produces a partition of k
2Z  into 2k/(k+1) dis-

jointed spheres of radius 1 and corresponds to a strong local optimum for the 
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UFLP. Number of perfect codes ℵ(k) grows exponentially as k increases. 
The best known lower bound [8] is  
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The minimal distance between two perfect codes or strong local minima 
is at least 2(k+1)/2. We denote the class of benchmarks by BPCk. 

 

3.2 Instance based on a chess board 
 

Let us glue boundaries of the 3k×3k chess board so that we get a torus. 
Put r = 3k. Each cell of the torus has 8 neighboring cells. For example, the 
cell (1,1) has the following neighbors: (1,2), (1,r), (2,1), (2,2), (2,r), (r,1), 
(r,2), (r,r). Define n = 9k2, I = J ={1,…, n} and 
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The torus is divided into k2 squares by 9 cells in each of them. Every cover 
of the torus by k2 squares corresponds to a strong local optimum for the 

UFPL. Total number of these strong local optima is 2⋅3k+1–9. The minimal 
distance between them is 2k. We denote this class of benchmarks by CBk. 

 

4. INSTANCES  WITH  LARGE  DUALITY  GAP 

As we will see later, the duality gap for described classes is quite small. 
Therefore, the branch and bound algorithm finds an optimal solution and 
proves the optimality quickly. It is interesting to design benchmarks which 
are computationally difficult for both metaheuristics and enumeration meth-
ods. 

As in previous cases, let the n×n matrix (gij) has the following property: 
each row and column have the same number of non-infinite elements. We 
denote this number by l. The value l/n is called the density of the matrix. 
Now we present an algorithm to generate random matrices (gij) with the 
fixed density. 
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Random matrix generator (l,n) 

1. J  ← {1,…, n} 
2. Column [j] ← 0 for all j ∈ J 
3. g[i,j] ← + ∞ for all i, j ∈ J  
4. for i ← 1  to  n 
5.        do l0 ← 0 
6.          for j ← 1 to  n 
7.                  do if  n – i + 1 = l – Column [j] 
8.                           then g[i, j] ← ξ [i,j] 
9.                                    l0 ← l0+1 
10.                                  Column [j] ← Column [j]+1 
11.                                  J ← J \ j 
12.       select a subset J′ ⊂ J,  | J′| =l – l0 at random and  
            put g[i,j] ←ξ [i,j] for j∈ J′ 

 

The array Column [j] keeps the number of small elements in j-th column 
of the generating matrix. Variable l0 is used to count the columns where 
small elements must be located in i-th row. These columns are detected in 
advance (line 7) and removed from the set J (line 11). Note that we may get 
random matrices with exactly l small elements for each row only if we re-
move lines 6–11 from the algorithm. By transposing we get random matrices 
with this property for columns only. Now we introduce three classes of 
benchmarks: 

Gap-A: each column of g(ij) has exactly l small elements;  
Gap-B: each row of g(ij) has exactly l small elements; 
Gap-C: each column and row of g(ij) have exactly l small elements. 

For these classes we save I = J ={1,…, n} and ∑ ∑∈ ∈
>=

Ii Jj iji ff ξ . 

The instances have significant duality gap 
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where FLP is an optimal solution for the linear programming relaxation [5]. 

For l = 10, n = 100 we observe that δ ∈ [21%, 29%]. The branch and 
bound algorithm evaluates at least 0,5⋅109 nodes in branching tree for the 
most of instances from the class Gap-C (see Table 1). 
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Table 1: Performance of the branch and bound algorithm in average 

Benchmarks 
classes N Gap 

δ 
Iterations 

B&B 
The best 
iteration 

Running 
time 

BPC7 128 0.1 374 264 371 646 00:00:15 
CB4 144 0.1 138 674 136 236 00:00:06 
FPP11 133 7.5 6 656 713 6 635 295 00:05:20 
Gap – A 100 25.6 10 105 775 3 280 342 00:04:52 
Gap – B 100 21.2 30 202 621 14 656 960 00:12:24 
Gap – C 100 28.4 541 320 830 323 594 521 01:42:51 
Uniform 100 4.7 9 834 2 748 00:00:00 
Euclidean 100 0.1 1 084 552 00:00:00 

5. COMPUTATIONAL EXPERIMENTS 

To study the behavior of metaheuristics we generate 30 random test 
instances for each class. The values of ξij are taken from the set 
{0,1,2,3,4} at random and we set f = 3000. Optimal solutions are found 
for all instances by branch and bound algorithm [1, 5]. All these instances 
are available by address: http://www.math.nsc.ru/AP/benchmarks 
/english.html. Table 1 shows performance of the algorithm in average. 
Column Running time presents execution time on PC Pentium 1200 
MHz, RAM 128 Mb. Column The best iteration shows iterations for 
which optimal solutions were discovered. For comparison we include two 
well known classes [11]: 

Uniform: values g(ij) are selected in interval [0, 104] at random with uni-
form distribution and independently from each other.  

Euclidean: values g(ij) are Euclidean distances between points i and j. 
The points are selected in square 7000×7000 at random with uniform dis-
tribution and independently from each other. 

For these classes f = 3000. The interval and size of the square are 
taken in such a way that optimal solutions have the same cardinality as in 
previous classes. Table 1 comfirms that classes Gap-A, Gap-B, Gap-C 
have large duality gap and they are the most difficult for the branch and 
bound algorithm. The classes BPC7, CB4, Euclidean have small duality 
gap. Nevertheless, the classes BPC7, CB4 are more difficult than Euclid-
ean class. This effect has simple explanation. Classes BPC7, CB4 have 
many strong local optima with small waste over the global optimum. 
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In order to understand the difference between classes from the point 
of view the local optima allocation, we produce the following computa-
tional experiment. For 9000 random starting points we apply standard lo-
cal improvement algorithm with Flip+Swap neighborhood and get a set 
of local optima. Some of them are identical. Impressive difference be-
tween benchmark classes deals with the cardinality of the local optima 
set. Classes Uniform and Euclidean have pathological small cardinalities 
of local optima sets and as we will see later these classes are very easy 
for metaheuristics. In Table 2 the column N shows the cardinalities for 
typical instances in each class. The column Diameter yields lower bound 
for diameter of area where local optima are located. This value equals to 
maximal mutual Hamming distance over all pairs of local optima.  

Figures 1–8 plot the costs of local optima against their distances from 
global optimum. For every local optimum we draw a sphere. The center 
of sphere has coordinates (x,y), where x is the distance, and y is the value 
of objective function. The radius of the sphere is a number of local op-
tima which are located near the given local optimum. More exactly, the 
Hamming distance d less or equals to 10. In Table 2 columns min, ave, 
and max show the minimal, average, and maximal radiuses for the corre-
sponding sets of local optima. The class FPP11 has extremely small 
maximal and average value of the radiuses. Hence, the basins of attrac-
tion for the local optima are quite large. So, we may predict that Tabu 
search and other metaheuristics face some difficultes to solve the in-
stances [10]. Column R* gives the radius of the sphere for the global op-
timum. Column R100 shows the minimal radius for 100 biggest spheres. 
This column indicates that the classes Gap-A, Gap-B, Gap-C have many 
large spheres. The average radiuses are quite large too. It seems that the 
classes are simple for metaheuristics. Table 3 disproves the prediction. 
Class Gap-C is the most difficult for metaheuristics and branch and 
bound method. 

Table 2: Attributes of the local optima allocation 

Radius Benchmarks 
classes N Dia- 

meter min Ave max 
R100 R* 

BPC7 8868 55 1 3 357 24 52 
CB4 8009 50 1 13 178 78 53 
FPP11 8987 51 1 2 8 3 1 
Gap – A 6022 36 1 53 291 199 7 
Gap – B 8131 42 1 18 164 98 16 
Gap – C 8465 41 1 14 229 134 21 
Uniform 1018 33 1 31 101 61 1 
Euclidean 40 21 11 13 18  10 
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Table 3 shows the frequency of finding optimal solution by the following 

metaheuristics: Probabilistic Tabu Search (PTS), Genetic Algorithm (GA) 
and Greedy Randomizes Adaptive Search Procedure with Local Improve-
ment (GRASP+LI). Stopping criteria for the algorithms is the maximal num-
ber of steps by the neighborhood Flip+Swap. We use number 104 as the cri-
teria. Genetic algorithm uses local improvements for each offspring during 
the evolution. Classes Euclidean and Uniform are easy. Average number of 
steps to get optimal solution is less than 103 for these classes.  

Figure 9 shows the average radius Rave as a function of d. For every class 
the function has three typical intervals: flat, slanting, and flat again. The first 
interval corresponds to the distances d where the spheres overlap rarely. At 
the last interval the value of d is closed to diameter of area where local op-
tima are located. The transition point from the second interval to the third 
one conforms to the diameter of area which covers the most part of local op-
tima. For the class Gap-C this point approximately equals to 33. For the 
classes FPP11, BPS7, CB4 this value is near 42. Hence, the area of local op-
tima is bigger for the classes FPP11, BPS7, CB4 than for the class Gap-C. The 
column Diameter in Table 2 gives us the same conclusion. Nevertheless, the 
class Gap-C is the most difficult. It has the same density but random struc-
ture of the matrix (gij). It looks like that this property is very important for 
generation difficult instances for (UFLP). 

 

Table 3: Frequency of obtaining optimal solutions by metaheuristics 

Benchmarks 
Classes Dimension PTS GA GRASP+LI 

BPC7 128 0.93 0.90 0.99 
CB4 144 0.99 0.88 9.68 
FPP11 133 0.67 0.46 0.99 
Gap – A 100 0.85 0.76 0.87 
Gap – B 100 0.59 0.44 0.49 
Gap – C 100 0.53 0.32 0.42 
Uniform 100 1.0 1.0 1.0 
Euclidean 100 1.0 1.0 1.0 
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Figure 1. Analysis of local optima for the class BPC7 

 

Figure 2. Analysis of local optima for the class CB4 

 



5. Computationally Difficult Instances for the Uncapacitated Facility 
Location Problem 

11

 

 

 

Figure 3. Analysis of local optima for the class FPP11 

 

 

       
 

Figure 4.  Analysis of local optima for the class Gap-A 
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Figure 5.   Analysis of local optima for the class Gap-B 

 

 
Figure 6.   Analysis of local optima for the class Gap-C 
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Figure 7.   Analysis of local optima for the class Uniform 

 
 

 
 

Figure 8. Analysis of local optima for the class Euclidean 
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Figure 9. Average radius of spheres as a function of d 
 
 

CONCLUSIONS 
 

In this paper we present six new classes of random instances for the Un-
capacitated Facility Location Problem. Class FPPk is polynomially solvable 
and has many strong local optima with large mutual pair distances. Classes 
BPCk, CBk have exponential number of strong local optima. Finally, classes 
Gap-A, Gap-B, Gap-C have large duality gap. Class Gap-C is the most diffi-
cult for both metaheuristics and branch and bound method. For comparison, 
we consider two famous classes Euclidean and Uniform. Density for these 
classes is 1. They are quite easy. We believe that density is a crucial parame-
ter for the Uncapacitated Facility Location Problem. In order to get difficult 
instances we need to use small values of the density. Classes BPCk, CBk, 
FPPk have the small density but regular structure of the matrix (gij). The 
most hard instances belong to the class Gap-C. They have random structure 
of the matrix and the same small density for all columns and rows. 
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APPENDIX 

 
Proof of the Proposition 1. Let us consider the MAX-2SAT problem. Denote by 

yi, i=1,…, n the boolean variables. A literal is either variable or its negation. A 
clause is a disjunction of literals. In the MAX-2SAT problem we are given a set of 
clauses Cj, j=1,…, m. Each clause has a positive weight wj and has at most two liter-
als. We should find an assignment of variables in such a way that to maximize the 
total weight of satisfied clauses. The local search problem (MAX-2SAT, Flip) is PLS-
complete [12]. Below we reduce this problem to (UFLP, Flip). 

Let us present MAX-2SAT problem as a 0-1 linear program: 

∑
=∈

m

j
jjyz

zw
ij 1}1,0{,

max  

s.t.                                       ∑∑
−+ ∈∈

≥−+
jj Ci

ji
Ci

i zyy )1(  , ,,...,1 mj =  

where the clause )( −+
jj CC  contains all variables )( ii yy  of the clause Cj. The vari-

able zj shows is the clause Cj satisfied or not. We have  
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and MAX-2SAT problem can be written as unconstrained minimization problem P: 
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It can be rewritten in the following way: 
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with appropriate sets J1, J2 and clauses jC′ . Let us apply substitution 
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 to the objective function. We get a problem P′: 
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If (yi) is an optimal solution of P and  

∏
′∈

−=
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then (x,y) is an optimal solution of P′. In order to verify this property it is suffi-
ciently to note that  
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Moreover, if (yi) is a local optimum for P with respect to Flip neighborhood, then 
(x,y) is a local optimum for P′ too. Now we rewrite P′ as UFPL. For this purpose we 
present P′ as follows 

⎪⎭
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)1()1(min  

for appropriate weights w . It is minimization problem for polynomial in boolean 
variables with positive weights for nonlinear items. It is known [1] that this problem  
is equivalent to UFPL. 

 
Proof of the Corollary 1. The statement is true for (MAX-2SAT, Flip) [12]. The 

reduction from MAX-2SAT to UFPL in the proof of Proposition 1 introduces new 
variables xj,   j ∈ J2. Nevertheless, the equality 

∏
′∈

−=
jCi

ij yx 1 , 2Jj∈  

guarantees that the value of objective function does not change under this reduction. 
Hence, the standard local improvement algorithm produces the same steps for both 
local search problems regardless of the tie-breaking and pivoting rules used. 
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