
Simulated Annealing Based Algorithm for the 2D
Bin Packing Problem with Impurities

B. Beisiegel1, J. Kallrath2, Y. Kochetov3, A. Rudnev4

1B2 Software-Technik GmbH
 45472 Mülheim an der Ruhr Germany

2Am Mahlstein 8
 67273 Weisenheim am Berg Germany

3,4Sobolev Institute of Mathematics
 630090 Novosibirsk Russia

1 Introduction

In the classical 2D rectangular bin packing problem [2] we are given a set of two
dimensional rectangular items and an unlimited number of identical large rectan-
gular bins. We need to place the items into a minimal number of bins. The orienta-
tion of the items is parallel to the bounds of the bins. Overlaps of items are not al-
lowed.

In this paper we consider a more complicated real-world problem originating in
the steel industry. The bins are inhomogeneous sheets with impurities. We assume
that each impure area is rectangle. For each bin we are given a set of impurities,
size, and location of each impurity into the bin. As a consequence now the bins are
not identical anymore and the number of bins is finite. Moreover, we introduce the
linear order on the set of bins. First of all, we have to use the first bin. If we need
additional bins we use the second bin and so on. The items have the attribute
whether they can be located in the area with impurities. The goal is to find solu-
tions with a minimal number of bins.

For solving this NP-hard problem we have developed a tailored Simulated An-
nealing algorithm (SA). Feasible solutions are presented by the directed root tree

2 B. Beisiegel , J. Kallrath , Y. Kochetov , A. Rudnev

encoding scheme. It has linear decoding time if the maximal number of impurities
per bin is a constant. The initial solution is built by a greedy algorithm. It is a
polynomial time heuristic which allows us to start SA with low temperature. The
SA algorithm packs the items separately in each bin. It uses two types of neigh-
borhoods. The first one changes the structure of the directed root tree. The second
one swaps two items in the vertices of the tree. Computational experiments show
that the algorithm produces feasible solutions with small deviations from the
lower bound within a few minutes.

2 Representation of solutions

There are many encoding schemes for the 2D Rectangular Packing problems [3].
In this paper we use the oriented tree representation.

2.1 Encoding

Let us consider a feasible solution and show how to generate an oriented tree for
each bin.

Definition 1. A feasible solution is called compacted if there is no item that can be
shift left or bottom from its original position with other items fixed.

In Figure 1 we can see compacted and non-compacted feasible solutions. Further
we consider the compacted solutions only.

Definition 2. The item B is in the horizontal relation to the item A if

1. B is to the right of A.
2. The projections of A and B on the vertical axis are overlapped.
3. A and B are either adjunct or are divided by impurities only.

A

E

B
F

C
D

A

E

B
F

C
D

A

E

B
F

C
D

A

E

B
F

C
D

Fig. 1. An example of non-compacted (left) and

compacted (right) placements for a bin

Simulated Annealing Based Algorithm for the 2D Bin Packing Problem with Impurities 3

The oriented tree is built as follows. The set of nodes is the set of items in the bin
with an additional node representing the root of the tree. The root corresponds to a
dummy item placed on the left bound of the bin. The height of this item is the
height of the bin. Node A is the parent of node B if item B is in horizontal relation
to item A. If B is in horizontal relation with several items then the lowest one is the
parent for B. In Figure 2 an example of oriented tree is presented.

2.2 Decoding

For a given oriented tree we generate packing by the following way. The root
dummy rectangle is placed on the left side of the bin. According to the depth-first
rule for the tree, we place items one by one in such a way that the left side of each
item and the right side of its parent are on the same vertical line. The y-coordinate
is defined by the previous packed items. Roughly speaking, we “drop” the current
item on the right of its parent. If the item overlaps an impurity and cannot use it
we consider two new positions for the item: above and right of the impurity. In the
first case the item is shifted upwards and put on the impurity. In the second case
the item is shifted to the right and put after the impurity. In the last case the new
vertical position is defined by the previous packed items again. If the new position
is overlapped with other impurities we put the item on the impurities. So we have
two positions for the item. The lowest one is selected for packing. In Figure 3 we
illustrate the idea of this algorithm. The time complexity of the algorithm is linear
if the number of impurities per bin is a constant.

0

1 2

 Impurity

 Initial position of an
item

 Intermediate position
of an item

 Final positions of an
item

Fig. 3. Packing of the item

C

A

E

D

B
F

Fig. 2. The oriented root tree for the packing

4 B. Beisiegel , J. Kallrath , Y. Kochetov , A. Rudnev

3 Neighborhood

Let us consider an oriented root tree. Each node of the tree corresponds to an item.
The set of neighbors for the tree consists of two parts. In the first part we include
all trees, which can be obtained by moving a leaf to another position. It gives us
O(n2) neighbors, n is number of nodes. The second part of this set contains
(n – 1)(n – 2)/2 neighbors. They are obtained by swapping items for the non root
nodes. This neighborhood has the following property. We can reach an arbitrary
oriented root tree from an arbitrary starting tree in a finite number of steps by
moving from a tree to a neighboring one.

4 Simulated annealing

We apply the Simulated Annealing algorithm [4] for each bin in parallel. The al-
gorithm is shown in Figure 4. The initial solution, i.e. initial set of trees, can be
selected at random but we develop a polynomial time heuristic to get near optimal
solutions. It allows us to start SA with low temperature. The objective function
F(T) which we wish to minimize is the used part of the bin with penalties. We ap-
ply the penalties for infeasible solutions when some items go out from the bin. For
fixed temperature t > 0 we apply the random search during prescribed number of
iterations for all bins (Step 3.1) and decrease the temperature (Step 3.2, r < 1). If
the current solution is feasible we apply the Unload algorithm to change the set of
items into the bins. This algorithm tries to unload the last bins by moving or
swapping “large” items.

1. Find initial tree for every bin
2. Set initial temperature t > 0
3. Repeat until stopping criteria is true

3.1. Repeat loop given number of times for every bin
3.1.1. Chose random tree T' from neighborhood N(T)
3.1.2. Set ∆ = F(T') – F(T)
3.1.3. If ∆ ≤ 0, then T = T'
3.1.4. If ∆ > 0, then T = T' with probability e–∆ /t

3.2. Set t = rt
3.3. Execute Unload algorithm

4. Return set of trees

Fig. 4. Simulated annealing

Simulated Annealing Based Algorithm for the 2D Bin Packing Problem with Impurities 5

5 The initial solution

Let us remove all impurities of the bins and compute the lower bound NLB for the
minimal number of bins [1]. Put the items in decreasing order of their areas and
declare all bins are closed. Open the first NLB bins. We place the items into the
bins one by one: the first item into the first bin, the second item into the second
bin and so on. At the (NLB + 1) step we put the current item into the NLB bin, the
next one we put into the (NLB – 1) bin and so on. We try to distribute “large” items
through the NLB bins. If we spend all items then we have an optimal solution. Oth-
erwise we repeat this approach for the unpacked items. In Figure 5 we show the
idea of this algorithm. It is polynomial time heuristic where we generate oriented
root trees for all bins step by step.

6 Unload algorithm

This algorithm is used in our SA after decreasing the temperature in Step 3.3. It
tries to select small items for the last bins and next to unload them. The algorithm
uses two operations:

1. Swap operation. It swaps “small” items in the current bin by “large” items in
the last bins without violation of feasibility.

2. Move operation. It moves the items from the current bin into the previous

bins.

The algorithm consists of two stages. At the first stage we use swap operation for
every bin starting from the end of the bin list. At the second stage we use move
operation starting from the beginning of the list. The time complexity of the algo-
rithm is O(n3).

1. Sort items list L by non-increasing area
2. Close all bins to use
3. Find the lower bound NLB of optimal bins number for list L
4. Open NLB empty bins to use
5. Place items from L into the open bins in prescribed order
6. Remove placed items from list L
7. If L is empty then stop
8. If set of closed bins is not empty, then go to step 3, else place remained items

in additional infinitely large bin

Fig. 5. Heuristic for initial solution

6 B. Beisiegel , J. Kallrath , Y. Kochetov , A. Rudnev

7 Experimental results

The developed algorithm is coded in DELPHI environment and tested on real
world and random generated instances. Our real world instances have small di-
mension, n ≤ 30. The algorithm finds optimal solutions for all of them. To study
the algorithm for large dimension we generate identical bins 200×300 and cut
them to get the set of items. So, we have optimal solution if the impurities are ab-
sent, otherwise we have a lower bound only. The impurities are generated at ran-
dom for every bin. The total number of impurities is n/5. The sizes of impurities
are generated at random as items. Number of items, which can use the impurities,
is selected as n/5. Computational results for three classes of instances are pre-
sented in Table 1. In class Dl every bin contains l items in average. For n = 100
the lower bound NLB is quite far from the optimal solution and relative errors are
large. For large scale instances the heuristic solutions is not too far from the lower
bound and the relative errors are small.

Table 1. Deviation from the lower bound, %

 n = 100 n = 150 n = 200 n = 300 n = 500 n = 700 n = 1000

D3 24 24 25 12 8.4 6.8 4

D5 35 30 27 13 8 6.4 6

D10 30 26 30 13 10 5.7 8

References

[1] Boschetti M. A., Mingozzi A. (2003) The two-dimensional finite bin packing problem.
Part I: New lower bounds for the oriented case. 4OR, vol 1, 1, pp 27–42.

[2] Dyckhoff H. (1990) A typology of cutting and packing problems. European J. Oper.
Res. vol 44, 2, pp 145–159.

 [3] Guo P.–N., Cheng C.–K., Yoshimura T. (1999) An O-tree representation of non-slicing
floorplan and its applications. Proc. DAC, pp. 268–273.

[4] Johnson D. S., Aragon C. R., McGeoch L. A., Schevon C. (1989) Optimization by
simulated annealing: An experimental evaluation, part I (graph partitioning). Opera-
tions Research, vol 37, 6, pp 865–892.

