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1 Introduction 

In the classical 2D rectangular bin packing problem [2] we are given a set of two 
dimensional rectangular items and an unlimited number of identical large rectan-
gular bins. We need to place the items into a minimal number of bins. The orienta-
tion of the items is parallel to the bounds of the bins. Overlaps of items are not al-
lowed.  
 
In this paper we consider a more complicated real-world problem originating in 
the steel industry. The bins are inhomogeneous sheets with impurities. We assume 
that each impure area is rectangle. For each bin we are given a set of impurities, 
size, and location of each impurity into the bin. As a consequence now the bins are 
not identical anymore and the number of bins is finite. Moreover, we introduce the 
linear order on the set of bins. First of all, we have to use the first bin. If we need 
additional bins we use the second bin and so on. The items have the attribute 
whether they can be located in the area with impurities. The goal is to find solu-
tions with a minimal number of bins.  
 
For solving this NP-hard problem we have developed a tailored Simulated An-
nealing algorithm (SA). Feasible solutions are presented by the directed root tree 
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encoding scheme. It has linear decoding time if the maximal number of impurities 
per bin is a constant. The initial solution is built by a greedy algorithm. It is a 
polynomial time heuristic which allows us to start SA with low temperature. The 
SA algorithm packs the items separately in each bin. It uses two types of neigh-
borhoods. The first one changes the structure of the directed root tree. The second 
one swaps two items in the vertices of the tree. Computational experiments show 
that the algorithm produces feasible solutions with small deviations from the 
lower bound within a few minutes. 
 

2 Representation of solutions 

There are many encoding schemes for the 2D Rectangular Packing problems [3]. 
In this paper we use the oriented tree representation. 

2.1  Encoding 

Let us consider a feasible solution and show how to generate an oriented tree for 
each bin. 
 
Definition 1. A feasible solution is called compacted if there is no item that can be 
shift left or bottom from its original position with other items fixed.  
 
In Figure 1 we can see compacted and non-compacted feasible solutions. Further 
we consider the compacted solutions only. 

 
Definition 2. The item B is in the horizontal relation to the item A if 
 

1. B is to the right of A. 
2. The projections of A and B on the vertical axis are overlapped. 
3. A and B are either adjunct or are divided by impurities only. 
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Fig. 1. An example of non-compacted (left) and  

compacted (right) placements for a bin 
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The oriented tree is built as follows. The set of nodes is the set of items in the bin 
with an additional node representing the root of the tree. The root corresponds to a 
dummy item placed on the left bound of the bin. The height of this item is the 
height of the bin. Node A is the parent of node B if item B is in horizontal relation 
to item A. If B is in horizontal relation with several items then the lowest one is the 
parent for B. In Figure 2 an example of oriented tree is presented. 

2.2 Decoding 

For a given oriented tree we generate packing by the following way. The root 
dummy rectangle is placed on the left side of the bin. According to the depth-first 
rule for the tree, we place items one by one in such a way that the left side of each 
item and the right side of its parent are on the same vertical line. The y-coordinate 
is defined by the previous packed items. Roughly speaking, we “drop” the current 
item on the right of its parent. If the item overlaps an impurity and cannot use it 
we consider two new positions for the item: above and right of the impurity. In the 
first case the item is shifted upwards and put on the impurity. In the second case 
the item is shifted to the right and put after the impurity. In the last case the new 
vertical position is defined by the previous packed items again. If the new position 
is overlapped with other impurities we put the item on the impurities. So we have 
two positions for the item. The lowest one is selected for packing. In Figure 3 we 
illustrate the idea of this algorithm. The time complexity of the algorithm is linear 
if the number of impurities per bin is a constant. 
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Fig. 3. Packing of the item 
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Fig. 2. The oriented root tree for the packing
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3 Neighborhood 

Let us consider an oriented root tree. Each node of the tree corresponds to an item. 
The set of neighbors for the tree consists of two parts. In the first part we include 
all trees, which can be obtained by moving a leaf to another position. It gives us 
O(n2) neighbors, n is number of nodes. The second part of this set contains         
(n – 1)(n – 2)/2 neighbors. They are obtained by swapping items for the non root 
nodes. This neighborhood has the following property. We can reach an arbitrary 
oriented root tree from an arbitrary starting tree in a finite number of steps by 
moving from a tree to a neighboring one. 

4 Simulated annealing 

We apply the Simulated Annealing algorithm [4] for each bin in parallel. The al-
gorithm is shown in Figure 4. The initial solution, i.e. initial set of trees, can be 
selected at random but we develop a polynomial time heuristic to get near optimal 
solutions. It allows us to start SA with low temperature. The objective function 
F(T) which we wish to minimize is the used part of the bin with penalties. We ap-
ply the penalties for infeasible solutions when some items go out from the bin. For 
fixed temperature t > 0 we apply the random search during prescribed number of 
iterations for all bins (Step 3.1) and decrease the temperature (Step 3.2, r < 1). If 
the current solution is feasible we apply the Unload algorithm to change the set of 
items into the bins. This algorithm tries to unload the last bins by moving or 
swapping “large” items. 

 
 

1. Find initial tree for every bin 
2. Set initial temperature t > 0 
3. Repeat until stopping criteria is true 

3.1. Repeat loop given number of times for every bin 
3.1.1. Chose random tree T' from neighborhood N(T) 
3.1.2. Set ∆ = F(T') – F(T)  
3.1.3. If ∆ ≤ 0, then T = T' 
3.1.4. If ∆ > 0, then T = T' with probability e–∆ /t  

3.2. Set t = rt   
3.3. Execute Unload algorithm 

4. Return set of trees 

Fig. 4. Simulated annealing
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5 The initial solution 

Let us remove all impurities of the bins and compute the lower bound NLB for the 
minimal number of bins [1]. Put the items in decreasing order of their areas and 
declare all bins are closed. Open the first NLB bins. We place the items into the 
bins one by one: the first item into the first bin, the second item into the second 
bin and so on. At the (NLB + 1) step we put the current item into the NLB bin, the 
next one we put into the (NLB – 1) bin and so on. We try to distribute “large” items 
through the NLB bins. If we spend all items then we have an optimal solution. Oth-
erwise we repeat this approach for the unpacked items. In Figure 5 we show the 
idea of this algorithm. It is polynomial time heuristic where we generate oriented 
root trees for all bins step by step. 

 
 

6 Unload algorithm 

This algorithm is used in our SA after decreasing the temperature in Step 3.3. It 
tries to select small items for the last bins and next to unload them. The algorithm 
uses two operations: 
 

1. Swap operation. It swaps “small” items in the current bin by “large” items in 
the last bins without violation of feasibility. 

 
2. Move operation. It moves the items from the current bin into the previous 

bins. 
 
The algorithm consists of two stages. At the first stage we use swap operation for 
every bin starting from the end of the bin list. At the second stage we use move 
operation starting from the beginning of the list. The time complexity of the algo-
rithm is O(n3). 

1. Sort items list L by non-increasing area 
2. Close all bins to use 
3. Find the lower bound NLB of optimal bins number for list L 
4. Open NLB empty bins to use 
5. Place items from L into the open bins in prescribed order  
6. Remove placed items from list L 
7. If L is empty then stop 
8. If set of closed bins is not empty, then go to step 3, else place remained items 

in additional infinitely large bin  

Fig. 5. Heuristic for initial solution 
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7 Experimental results 

The developed algorithm is coded in DELPHI environment and tested on real 
world and random generated instances. Our real world instances have small di-
mension, n ≤ 30. The algorithm finds optimal solutions for all of them. To study 
the algorithm for large dimension we generate identical bins 200×300 and cut 
them to get the set of items. So, we have optimal solution if the impurities are ab-
sent, otherwise we have a lower bound only. The impurities are generated at ran-
dom for every bin. The total number of impurities is n/5. The sizes of impurities 
are generated at random as items. Number of items, which can use the impurities, 
is selected as n/5. Computational results for three classes of instances are pre-
sented in Table 1. In class Dl every bin contains l items in average. For n = 100 
the lower bound NLB is quite far from the optimal solution and relative errors are 
large. For large scale instances the heuristic solutions is not too far from the lower 
bound and the relative errors are small. 
 

Table 1. Deviation from the lower bound, % 

 n = 100 n = 150 n = 200 n = 300 n = 500 n = 700 n = 1000 

D3 24 24 25 12 8.4 6.8 4 

D5 35 30 27 13 8 6.4 6 

D10 30 26 30 13 10 5.7 8 
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