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Abstract

We develop the VNS algorithm for the two dimensional rectangular packing
problem. Our approach is based on a Transitive Closure Graphs representation
for feasible packing. The VNS uses three neighborhoods to modify these graphs
and two empirical methods to improve the packing. Computational results for test
instances from the benchmark library GSRC are discussed.

1 Introduction

In this paper we consider the following orthogonal packing problem on two dimensional
plane. Let I = {1, . . . , n} be a finite set of rectangular items whose width and height
are denoted by wi > 0, hi > 0, i ∈ I. Let (xi, yi) denote Cartesian coordinates of the
bottom-left corner of item i ∈ I. Packing P of items on the plane is feasible if side of
each item is parallel to a coordinate axis and there are no two items overlap. Rotations
of items by 90◦ are not allowed. We wish to find a feasible packing with minimal area of
bounding rectangle, i.e. minimize

F (P ) = max
i∈I

(xi + wi) max
i∈I

(yi + hi).

It is NP -hard combinatorial problem [1] which arises in VLSI design.
To solve this problem we use idea of the Variable Neighborhood Search algorithm

(VNS) [2]. Our approach is based on a Transitive Closure Graphs representation (TCG)
for feasible packing [4]. The VNS uses three neighborhoods to modify these graphs and
two empirical methods to improve the packing. The first method deals with mirror re-
flections of packing with respect to one or two axes. It can produce a packing with better
value of the objective function and open new directions for local descent algorithm. The
second method uses an auxiliary objective function to overcome the plateaus of the search
landscape. This auxiliary function indicates the length of touching for the current packing
and bounding rectangle. Our computational results for test instances from the benchmark
library GSRC [6] show that VNS finds near optimal solutions with small relative deviation
from the primitive lower bound.
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2 Representation of packing by TCG

The TCG representation describes geometrical relations among items by two directed
acyclic graphs [4]: horizontal transitive closure graph Ch and vertical transitive closure
graphs Cv. For this representation, solution space is finite and the best solution corre-
sponds to an optimal packing.

2.1 Encoding

Let us show how feasible packing P is encoded by graphs Ch and Cv.

Definition 1 For two non-overlapping items i and j, the item i is said to be hori-
zontally related to item j and denoted by i → j if i is on the left side of j and their
projections on the y axis overlap.

Definition 2 For two non-overlapping items i and j, the item i is said to be vertically
related to item j and denoted by i ↑ j if i is on the bottom side of j and their projections
on the x axis overlap.

Definition 3 For two non-overlapping items i and j, the item i is said to be diagonally
related to the item j if i is on the left side of j and their projections on the both axes do
not overlap.

We treat a diagonal relation between i and j as a horizontal one unless there exist
a chain of vertical relations from i to j. Otherwise we treat the diagonal relation as a
vertical relation. Hence, we have a vertical or a horizontal relation for each pair of items
in the feasible packing.

Graphs Ch and Cv are defined as follows. The set of vertices in both graphs is the
set of items. The weight of vertex i is wi for Ch and hi for Cv. If i → j we include arc
(i, j) into the arc set for graph Ch. Similarly, we include arc (i, j) into the arc set for Cv

if i ↑ j. Note that for each pair of items there exist exactly one arc either in Ch or in Cv.

2.2 Decoding

Let us add two additional vertices, source s and sink t with zero weights into the both
graphs Ch and Cv. Let E+(i) be a set of incoming arcs and E−(i) be a set of outgoing arcs
for vertex i. We construct arc (s, i) for graphs Ch and Cv for each vertex i with E+(i) = ∅.
Similarly, we add arc (i, t) for each vertex i with E−(i) = ∅. Now the coordinate (xi, yi)
of the bottom-left corner of item i can be found by the longest path algorithm. More
exactly, xi = Lh(i), yi = Lv(i) where

Lh(i) =

{
0, i = s;

max
j∈E+

h (i)
(Lh(j) + wj), i 6= s

Lv(i) =

{
0, i = s;

max
j∈E+

v (i)
(Lv(j) + hj), i 6= s

The area of packing is given by Lh(t)Lv(t).
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3 Neighborhoods

Let us consider three neighborhoods for feasible packing P [3, 4].

Definition 4. An arc (i, j) is called the reduction arc, if there is no path from i to j
except the arc (i, j) itself.

Definition 5. Feasible packing P ′ is called neighboring solution for P if its TCG
representation (C ′

h, C
′
v) can be obtained from (Ch, Cv) by one of the following operations:

— Reverse a reduction arc in Ch or Cv.
— Move a reduction arc from one graph to another.
— Swap two vertices with their weights in graphs Ch and Cv simultaneously.

The set of neighboring solutions generated by the Reverse operator we denote by
Nr(P ). Similarly, Nm(P ) is the set of neighbors generated by the Move operator and
Ns(P ) is the set of neighbors generated by the Swap operator.

The Reverse and Move operators correspond to changing the geometrical relations of
the two touching items in the packing.

To reverse a reduction arc (i, j) in the transitive closure graph we should:

— delete arc (i, j) from the graph;
— add reverse arc (j, i) to the graph;
— for each pair of vertices k ∈ E+(j) ∪ {j} and l ∈ E−(i) ∪ {i}, we check whether arc
(k, l) exists. If it is not, we add this arc and delete it from another graph.

To move a reduction arc (i, j) from the one transitive closure graph G to other G′, we
should:

— delete arc (i, j) from the graph G;
— add arc (i, j) to the graph G′;
— for each pair of vertices k ∈ E+(i) ∪ {i} and l ∈ E−(j) ∪ {j}, we check whether arc
(k, l) exists in the graph G′. If it is not, we add this arc to G′ and delete it from G.

The Swap operator does not change the topology of TCG. Note that TCG is closed
under the Reverse, Move, and Swap operators.

Theorem For arbitrary feasible packings P1 and P2 and their TCG representations
(Ch, Cv) and (C ′

h, C
′
v), we can reach (Ch, Cv) from (C ′

h, C
′
v) by at most O(n2) steps using

the Reverse, Move, and Swap operators.
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4 Local descent algorithm

Standard local descent algorithm starts from a feasible solution. It moves iteratively from
one solution to a better neighboring solution and terminates at a local optimum. The
number of steps of the algorithm and value of the local optimum are determined by the
starting point, neighborhood, and pivoting rules. One of the open question in this field
is the running time of the algorithm. Is the number of steps polynomially bounded? It
is clear that our local search problem belongs to the class PLS [5]. Is it PLS-complete?
Can we find an example of the packing problem when the standard local descent algorithm
spends exponential number of steps to reach local optimum?

Another interesting question is the quality of local optimum or average relative devi-
ation from the lower bound. According to idea of VNS we study two strategies to use the
neighborhoods Nr, Nm, Ns:

— find local optimum for the first neighborhood, use it as a starting point for local
descent and find local optimum for the second neighborhood, and then apply local descent
for the third neighborhood; repeat this stage until we get local optimum with respect to
all neighborhoods;

— change neighborhood after k steps of the local descent.

We compare these strategies for different k ≥ 1 on random test instances and observe
that the first strategy is better. We use it in our VNS algorithm.

Two pivoting rules are the most popular in the local search heuristics: the best im-
provement rule and the first improvement rule. Our computational study shows that the
first improvement rule produces better local optimum from random starting points, spend
less efforts per step, but require more steps than the best improvement rule for the neigh-
borhoods Ns, Nm. For neighborhood Nr the best improvement rule is better. Further we
use the first improvement for Ns, Nm and the best improvement for Nr neighborhood.

Figure 1. Change the orientation of Ch and Cv
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4.1 Change of orientation

To find better local optimum we apply two empirical methods. The first one changes
the orientation of all arcs in graph Ch or Cv. This procedure corresponds to rotation of
the packing by 180◦ and compressing it to the bottom-left corner. We can reduce the
packing area by this procedure and discover better neighboring solutions for the same
neighborhoods. In Figure 1 we illustrate these rotations. Graph C−1 = (V, E−1) is
obtained from graph C = (V, E) by changing the orientation of every arc (i, j) ∈ E.

4.2 Auxiliary objective function

For feasible packing P let us consider two sets

Bx = {i ∈ I | xi + wi = max
j∈I

(xj + wj)},

By = {i ∈ I | yi + hi = max
j∈I

(yj + hj)}.

These sets contain the items which define the width and height of the packing.

Figure 2. Auxiliary objective function

The auxiliary objective function is defined as follows

f(P ) =
∑
i∈Bx

hi +
∑
i∈By

wi.

Function f(P ) indicates the length of touching for the packing and the bounding
rectangle without axes x and y, see Figure 2.

For this example, |Bx| > 1, |By| > 1. So, we can not improve the packing by moving
one item only. But we can improve the value of auxiliary objective function and reduce the
packing area after several steps. Now local descent algorithm uses two objective functions.
First of all, it tries to find a neighboring solution with smaller packing area. If it does
not exist, algorithm tries to find a neighbor with better value of the auxiliary objective
function. It stops in local optimum with respect to both objective functions.

In Figure 3 we present the influence of these two empirical methods. Deviation from
the lower bound which is area of all items, grows rapidly for the standard local descent al-
gorithm. Changing the orientation of the digraph Ch and Cv gives us some improvements.
But the most effect we get by combining two methods. Average deviation decreases for
such combination. We denote the improved variant of local descent algorithm by ILD.
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5 Variable Neighborhood search

Let Nk(P ) be a set of feasible solutions which are derived from solution P by applying k
times one of operators Reverse, Move, or Swap. Basic scheme of VNS can be present as
follows.

Figure 3. Influence of empirical methods

Basic VNS
1. Select an initial solution P and stoping condition.
2. Repeat until the stopping condition met:

2.1 Set k := 1;
2.2 Repeat the following steps until k = kmax:

(a) Select P1 ∈ Nk(P ) at random;
(b) Apply ILD algorithm and get local optimum P2;
(c) If F (P2) < F (P ), then P := P2, k := 1, else k := k + 1.

We randomly select initial solution and use kmax = 15.

6 Computational experiments

The developed VNS algorithm is coded in Pascal for Delphi environment and tested on
examples from GSRC Floorplan Benchmark Suite[6]. The instances have dimensions
n = 100 and 200. Typical behavior of ILD algorithm is presented in Figure 4. Notice
that the algorithm faces with plateaus (horizontal lines) and overcomes them quickly.
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Figure 4. Behavior of the ILD algorithm.

The final packing is shown in Figure 5, for n = 100. For all instances we observe average
relative deviation from 4.5% to 5.7% if we call the ILD algorithm 15 times. For large
instances, n = 200, we have got the best known packing with deviation 5.74% against
5.825% [6].

Figure 5. Final solution, n=100.
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