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Lecture 1. Facility Location Models
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The Uncapacitated Facility Location Problem

e Input

a set J of users;
a set | of potential facilities;
a fixed cost fj of opening facility I;

a production-transportation cost Cjj to service user J from facility I;

e Output:

e Goal:

a set S | of opening facilities;

minimize the total cost to open facilities and service all users

F(S) = Z fi + ZIIIIISIICU :
jed 'S

ieS
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Example

@/5%

O

| = {1,..., 8} 1s potential facility locations;
J=1{I1,..., 15} 1s set of users
Users are serviced from nearest facility
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Integer Programming Formulation

Variables:
_ {1 if facility i is open,

X .
' 10, otherwise,

~_J1 if user | isserved by facility I,
Yij = 0, otherwise,

Mathematical model:

min{Z fiXi+ > > G yij}

el el jeld
S.t. Zy” =1, JEJ,
el

Xi > VYij, 1€l jed;

Xi, Yij € {O,l} iE', jEJ.
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Theoretical results

The UFL problem is strongly NP-hard even for metric case.

An 1,463—factor approximation algorithm for the metric UFL problem
would imply P = NP (Guna, Khuller 1999; Sviridenko).

An 1,52—factor approximation algorithm for the metric UFL problem
(Mahdian, Ye, and Zhang 2002).

An g-factor approximation algorithm for any & > 0 in the special case
when facilities and users are points in the plane and service costs are

geometrical distances (Arora, Raghavan, Rao 1998; Kolliopoulos, Rao
1999).

There 1s no constant—factor approximation algorithm for general UFL
problem if P # NP.

Facility location problems. Discrete models and local search methods ® Lecture 1



Empirical Results

— Efficient branch and bound methods based on the fast heuristics for dual
problem (Lebedev, Kovalevskaya 1974; Trubin 1973; Beresnev 1974;
Bilde, Krarup 1977; Erlenkotter 1978).

— Fast randomized heuristics for large scale metric instances (Chudak,
Barahona 2000).

— Improved branch and bound method for large scale instances (Hansen,
Mladenovic 2003).

— Effective and efficient local search methods for large scale instances
(Resende, Werneck 2002, 2004; Hansen, Mladenovi¢ 1997)

— Benchmark library “Discrete Location Problems” (Kochetov, Kochetova,
Paschenko, Alexseeva, Ivanenko 2004)
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Reduction to Pseudo —-Boolean Functions

For a given vector gj, i€l, with ranking
i <0j, <...< 0, m=I]

we introduce a vector Agj, 1=0,..., M

AgO = gi1
Ag| = gi|_|_1 _gil , 1<1<m-1
A =0,

Lemma. For arbitrary vector zje{0,1}, i€l, z=(1,...,1) we have

m-1
min g; = Y 49,Z; ...Z;.
1=0

112 =0

m-1
max gj = —Zﬂgm—lzm—m---zim
112j =0 =0
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Hence, we can get a pseudo—Boolean function for UFL problem:

p(z)=) fil-z)+ ZZACU

icl jed =0

where the ranking ilJ yeees inJn is generated by column j of the matrix (Cj):

Cij SCij S...SCij,
1 2 m

jed

and for optimal solutions we have

-

xi =1-2z, iel
S* =fiel|x =1
\F(S*)=P(Z*)

/-
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Example

1=1{1,2,3}, J=1{1,2,3} and

10 0O 3 10
fi =10 | Cij =5 0 0 |
10 10 20 7

Pseudo—Boolean function:
P(z)=10(1 —z;) + 10(1 —zp) + 10(1 — z3) + (521 + 52125) + Bz, + 17212;) +
+(72,+32,23) =15+ 5(1 —2;) + 0(1 —25) + 10(1 — 23) + 22212, + 3 2,73 .

New UFL problem: I'=1, J’= {1, 2}

5 0 3
f'=| 0 ci=| 0 Of
10 22 0

-12-
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From PB Function to UFL Problem

PB Function with positive coefficients for nonlinear items:

p(z)=> fid-z)+D a | ]z

el leL ielj
where fi, 3y >0, I, I, leL.

Theorem. For given pseudo-Boolean function p(z) an equivalent instance of
UFL problem with minimal number of users can be found in polynomial time.

Proof. The family |I;, leL with relation ||1 < ||2 S ||1 - ||2 is partially
ordered set (poset). Chain in poset is a sequence ||1 < 5 < ||k . Each chain

generates an element of the set J. We need to partition the family I}, €L into
the minimal number of chains. It can be done in polynomial time

(see Dilworth Theorem). m

-13-
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Multi Stage Facility Location Problem

Facilities Users

® O

@ O
®@ O

1 stage 2 stage . K stage
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e Input:

a set J of users;

a set | of potential facilities;

a set P of potential facility paths;

a (0,1)-matrix (qpi) of inclusions facilities into paths;
a fixed cost f; of opening facility I;

a production-transportation cost Cpj to service user | from facility path p;

e Qutput:

a set P’ P of facility paths;

e Goal:

minimize the total cost to open facilities and service all users

min max f;q,. + Y minCy;

-15-
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Integer Programming Formulation

Variables:
1 if facility 1 is open,
Xi = .
0, otherwise,
~_J1 if user jis serviced by facility path p,
Vi = 0, otherwise.

Mathematical model: min{z fix; + Z Zcpj ij}

el peP jed
S.t. Zypjzl, JEJ,
peP
X; = qulypja J EJai < Ia
peP

Xi, Ypj € 10,1}, l1el,jed, peP.
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UFL Problem with User Preferences (UFLPUP)

O O
O/Q/Z)\@

/ O

| = {1,..., 8} 1s potential facility locations;
J={1,..., 15} 1s set of users
User 1s serviced by the most desirable facility.
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— asetJ of users;

— aset | of potential facilities;

— a fixed cost fj of opening facility I;

— aproduction-transportation cost Cjj to service user ] from facility I;

— auser preferences djj: facility I; is more desirable then I, for user |

if d; j <d;

2]
e Qutput:
a set S | of opening facilities;

e Goal:

minimize the total cost to open facilities and service all users

F(S)= Zf +Z:mmcl(S yj» Where I(S; )—argmlnd
€S je el !

ij > Jeld.
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Integer Programming Formulation

Variables:

1 if facility 1 is open, 1 if user ] isserved by facility I,
Xj = . ij = .

0, otherwise, 0, otherwise,

Mathematical model:

Company: mln{z fi X; +Z ZCIJ y,J(x)} s.t. Xje {0,1} liel;

el el jel

where y{’j (X) is optimal solution of the user problem:

Users: mln szlj Yij

jeliel
S.t. Zyijzl, JEJ,
icl

Vi < Xi, Xi, Yij€ 10,1} 1€l Jed.
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Reduction to Pseudo —-Boolean Functions

Let the ranking for user jeJ be

di1j<di2j<"'<dimj9 m=|||
Sij = {kel | dij <dijj
and VCin ICin,...,VCin ZCin _Cil—lj’ <1< m;

We get the equivalent minimization problem for Pseudo—Boolean function

P()=) fi—z)+ > > VCi | | %

icl jediel keSij
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From PB Function to UFPUP Problem

We are given

P()=> a]]z

leL el

with arbitrary coefficients a;, leL.

Theorem 2. For PB Function P(z) the correspondence UFLP Problem with
minimal number of us will minimal cardinality of the set J can be found in

polynomial time.

Proof. (similar to previous statement).

-21-
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Competitive Facility Location Problem

e Input

a set J of users;

a set | of potential facilities;

a demand d; of user J;

a distance function € : IxJ > R;

a number of facilities py to open by Leader;

a number of facilities p; to open by Follower;

e Output:

e Goal:

aset Scl,|S|=pyof opening facilities by Leader;

maximize the total number of users which are served by Leader.

-22-
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The Leader variables:

S 1 if facility I is open by Leader

' 710, otherwise;

~_J1if the demound of user J is satisfied by Leader
Yi= 0, otherwise;

The Follower variables:

~_J1 if facility I is open by Follower
' 10, otherwise;

o _ |1 1f the demound of user ] is satisfied by Follower
J 10, otherwise;

The set of appropriate point for Follower

|j(Z) = {iel | Cij < min (ij | zx=1)}

-23-
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Mathematical model

Leader: max Z d.

.. yj <1-x, ieli(2),jed;

Zzi < Po>

=

where X; is optimal solution of the problem:

Follower: max Zd-y-
J7)
y,Xe{0,1} jed
S.t. ng in, JEJ,
iclj(2)
in < Prs
el

-24- Facility location problems. Discrete models and local search methods ® Lecture 1



Mathematical model for K Followers
Leader: max Zd.y

S.t. ijI—Xi*k, iEIj(Z),jEJ,kEK;

Zzi < Po>
el

where Xi>x< k 18 optimal solution of the problem:

Follower k: max diVi;
y,Xe{O,l}% 1]

S.t. Yk < D Xk, Jed;
iel jk—1(z,x)

D Xik < Py
el
k-1
L + in*k' + Xik Sl, 1el.
k'=1 k
The set of appropriate point for Follower k: | (z,X) ={l € | [¢;; <min(cy; | Z + le*k' > 0)}
k'=l1
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