Facility location problems Discrete models and local search methods

Yuri Kochetov

Sobolev Institute of Mathematics Novosibirsk Russia

e-mail: jkochet@math.nsc.ru

Lecture 1. Facility Location Models

Content

- 1. Uncapacitated facility location problem
- 2. Theoretical and empirical results
- 3. Polynomials in Boolean variables
- 4. Equivalent reformulations and the "best" one
- 5. Multi–stage facility location problems
- 6. Uncapacitated facility location problems with user preferences
- 7. Competitive facility location problems

The Uncapacitated Facility Location Problem

• Input:

- a set *J* of users;
- a set *I* of potential facilities;
- a fixed cost f_i of opening facility i;
- a production-transportation cost c_{ij} to service user j from facility i;

• Output:

a set $S \subseteq I$ of opening facilities;

• Goal:

minimize the total cost to open facilities and service all users

$$F(S) = \sum_{i \in S} f_i + \sum_{j \in J} \min_{i \in S} c_{ij}.$$

Example

 $I = \{1, ..., 8\}$ is potential facility locations;

 $J = \{1, ..., 15\}$ is set of users

Users are serviced from nearest facility

Integer Programming Formulation

Variables:

$$x_i = \begin{cases} 1 & \text{if facility } i \text{ is open,} \\ 0, & \text{otherwise,} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{if user } j \text{ is served by facility } i, \\ 0, & \text{otherwise,} \end{cases}$$

Mathematical model:

$$\min \left\{ \sum_{i \in I} f_i x_i + \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij} \right\}$$
s.t.
$$\sum_{i \in I} y_{ij} = 1, \quad j \in J;$$

$$x_i \ge y_{ij}, \quad i \in I, j \in J;$$

$$x_i, y_{ij} \in \{0,1\} \quad i \in I, j \in J.$$

Societies and conferences on Location

International Symposium on Location Decisions http://www.aloj.us.es/isolde/

INFORMS Section on Location Analysis http://www.ent.ohiou.edu/~thale/sola/sola.html

Euro Working Group on Locational Analysis http://www.vub.ac.be/EWGLA/

Books and Journals

H.A. Eiselt, C.-L. Sandblom. Decision Analysis, Location Models, and Scheduling Problems Springer. 2004.

Z. Drezner, H. Hamaher (Eds.) Facility Location.
Applications and Theory
Springer. 2004.

Z. Drezner (Ed.)
Facility Location. A Survey of Applications and Methods Springer. 1995.

P.B. Mirchandani, R.L. Francis (Eds.) Discrete Location Theory. Wiley & Sons. 1990

Studies and Locational Analysis. ISENLORE. Editor-in-Chief F.Plastria

Theoretical results

- The UFL problem is strongly NP-hard even for metric case.
- An 1,463–factor approximation algorithm for the metric UFL problem would imply P = NP (Guna, Khuller 1999; Sviridenko).
- An 1,52-factor approximation algorithm for the metric UFL problem (Mahdian, Ye, and Zhang 2002).
- An ε -factor approximation algorithm for any $\varepsilon > 0$ in the special case when facilities and users are points in the plane and service costs are geometrical distances (Arora, Raghavan, Rao 1998; Kolliopoulos, Rao 1999).
- There is no constant–factor approximation algorithm for general UFL problem if $P \neq NP$.

Empirical Results

- Efficient branch and bound methods based on the fast heuristics for dual problem (Lebedev, Kovalevskaya 1974; Trubin 1973; Beresnev 1974; Bilde, Krarup 1977; Erlenkotter 1978).
- Fast randomized heuristics for large scale metric instances (Chudak, Barahona 2000).
- Improved branch and bound method for large scale instances (Hansen, Mladenovic 2003).
- Effective and efficient local search methods for large scale instances (Resende, Werneck 2002, 2004; Hansen, Mladenović 1997)
- Benchmark library "Discrete Location Problems" (Kochetov, Kochetova,
 Paschenko, Alexseeva, Ivanenko 2004)

Reduction to Pseudo –Boolean Functions

For a given vector g_i , $i \in I$, with ranking

$$g_{i_1} \le g_{i_2} \le ... \le g_{i_m}, \ m = |I|$$

we introduce a vector Δg_i , i = 0,..., m

$$\Delta g_0 = g_{i_1}$$

$$\Delta g_l = g_{i_{l+1}} - g_{i_l}, \quad 1 \le l \le m-1$$

$$\Delta g_m = -g_{i_m}.$$

Lemma. For arbitrary vector $z_i \in \{0,1\}, i \in I, z \neq (1,...,1)$ we have

$$\min_{i|z_i=0} g_i = \sum_{l=0}^{m-1} \Delta g_l z_{i_1} ... z_{i_l}.$$

$$\max_{i|z_i=0} g_i = -\sum_{l=0}^{m-1} \Delta g_{m-l} z_{m-l+1} ... z_{i_m}$$

Hence, we can get a pseudo-Boolean function for UFL problem:

$$p(z) = \sum_{i \in I} f_i (1 - z_i) + \sum_{j \in J} \sum_{l=0}^{n-1} \Delta c_{lj} z_{i_1^j} ... z_{i_l^j},$$

where the ranking $i_1^j,...,i_m^j$ is generated by column j of the matrix (c_{ij}) :

$$c_{i_1^j} \le c_{i_2^j} \le \dots \le c_{i_m^j}, \quad j \in J$$

and for optimal solutions we have

$$\begin{cases} x_i^* = 1 - z_i^*, & i \in I \\ S^* = \{i \in I \mid x_i^* = 1\} \\ F(S^*) = p(z^*) \end{cases}$$

Example

$$I = \{1, 2, 3\}, J = \{1, 2, 3\}$$
 and

$$f_i = \begin{pmatrix} 10\\10\\10 \end{pmatrix}; \quad c_{ij} = \begin{pmatrix} 0 & 3 & 10\\5 & 0 & 0\\10 & 20 & 7 \end{pmatrix}.$$

Pseudo-Boolean function:

$$p(z) = 10(1 - z_1) + 10(1 - z_2) + 10(1 - z_3) + (5z_1 + 5z_1z_2) + (3z_2 + 17z_1z_2) +$$

$$+ (7z_2 + 3z_2z_3) = 15 + 5(1 - z_1) + 0(1 - z_2) + 10(1 - z_3) + 22z_1z_2 + 3z_2z_3.$$

New UFL problem: I'=I, $J'=\{1,2\}$

$$f_i' = \begin{pmatrix} 5 \\ 0 \\ 10 \end{pmatrix}; \quad c_{ij}' = \begin{pmatrix} 0 & 3 \\ 0 & 0 \\ 22 & 0 \end{pmatrix}.$$

From PB Function to UFL Problem

PB Function with positive coefficients for nonlinear items:

$$p(z) = \sum_{i \in I} f_i (1 - z_i) + \sum_{l \in L} a_l \prod_{i \in I_l} z_i$$

where f_i , $a_l > 0$, $I_l \subset I$, $l \in L$.

Theorem. For given pseudo-Boolean function p(z) an equivalent instance of UFL problem with minimal number of users can be found in polynomial time.

Proof. The family I_l , $l \in L$ with relation $I_{l_1} < I_{l_2} \Leftrightarrow I_{l_1} \subset I_{l_2}$ is partially ordered set (poset). Chain in poset is a sequence $I_{l_1} < I_{l_2} ... < I_{l_k}$. Each chain generates an element of the set J. We need to partition the family I_l , $l \in L$ into the minimal number of chains. It can be done in polynomial time (see Dilworth Theorem).

Multi Stage Facility Location Problem

• Input:

- a set *J* of users;
- a set I of potential facilities;
- a set P of potential facility paths;
- a (0,1)-matrix (q_{pi}) of inclusions facilities into paths;
- a fixed cost f_i of opening facility i;
- a production-transportation cost c_{pj} to service user j from facility path p;
- Output:

a set $P' \subseteq P$ of facility paths;

• Goal:

minimize the total cost to open facilities and service all users

$$\min_{P'\subseteq P} \left\{ \sum_{i\in I} \max_{p\in P'} f_i q_{p_i} + \sum_{j\in J} \min_{p\in P'} c_{pj} \right\}.$$

Integer Programming Formulation

Variables:

$$x_i = \begin{cases} 1 & \text{if facility } i \text{ is open,} \\ 0, & \text{otherwise,} \end{cases}$$

$$y_{pj} = \begin{cases} 1 & \text{if user } j \text{ is serviced by facility path } p, \\ 0, & \text{otherwise.} \end{cases}$$

Mathematical model:
$$\min \left\{ \sum_{i \in I} f_i x_i + \sum_{p \in P} \sum_{j \in J} c_{pj} y_{pj} \right\}$$
 s.t.
$$\sum_{p \in P} y_{pj} = 1, \quad j \in J;$$

$$x_i \geq \sum_{p \in P} q_{pi} y_{pj}, \quad j \in J, i \in I;$$

$$x_i, y_{pi} \in \{0,1\}, \quad i \in I, j \in J, p \in P.$$

UFL Problem with User Preferences (UFLPUP)

 $I = \{1, ..., 8\}$ is potential facility locations;

 $J = \{1, ..., 15\}$ is set of users

User is serviced by the most desirable facility.

• Input:

- a set *J* of users;
- a set *I* of potential facilities;
- a fixed cost f_i of opening facility i;
- a production-transportation cost c_{ij} to service user j from facility i;
- a user preferences d_{ij} : facility i_1 is more desirable then i_2 for user j if $d_{i_1j} < d_{i_2j}$.

• Output:

a set $S \subseteq I$ of opening facilities;

• Goal:

minimize the total cost to open facilities and service all users

$$F(S) = \sum_{i \in S} f_i + \sum_{j \in J} \min_{i \in S} c_{i(s_j)j}, \text{ where } i(s_j) = \arg\min_{i \in S} d_{ij}, j \in J.$$

Integer Programming Formulation

Variables:

$$x_i = \begin{cases} 1 & \text{if facility } i \text{ is open,} \\ 0, & \text{otherwise,} \end{cases} \quad y_{ij} = \begin{cases} 1 & \text{if user } j \text{ is served by facility } i, \\ 0, & \text{otherwise,} \end{cases}$$

Mathematical model:

Company:
$$\min_{x} \left\{ \sum_{i \in I} f_{i} x_{i} + \sum_{i \in I} \sum_{j \in J} c_{ij} y_{ij}^{*}(x) \right\}$$
 s.t. $x_{i} \in \{0,1\}$ $i \in I$;

where $y_{ij}^*(x)$ is optimal solution of the user problem:

Users:
$$\min_{y} \sum_{j \in J} \sum_{i \in I} d_{ij} y_{ij}$$
 s.t.
$$\sum_{i \in I} y_{ij} = 1, \quad j \in J;$$

$$y_{ij} \leq x_i, \quad x_i, y_{ij} \in \{0,1\} \quad i \in I, j \in J.$$

Reduction to Pseudo -Boolean Functions

Let the ranking for user $j \in J$ be

$$d_{i_1j} < d_{i_2j} < ... < d_{i_mj}, \quad m = \mid I \mid$$

$$S_{ij} = \{k \in I \mid d_{kj} < d_{ij}\}$$
 and $\nabla C_{i_1j} = C_{i_1j}, ..., \nabla C_{i_lj} = C_{i_lj} - C_{i_{l-1}j}, \quad 1 < l \le m;$

We get the equivalent minimization problem for Pseudo-Boolean function

$$P(z) = \sum_{i \in I} f_i (1 - z_i) + \sum_{j \in J} \sum_{i \in I} \nabla C_{ij} \prod_{k \in S_{ij}} z_{kj}$$

From PB Function to UFPUP Problem

We are given

$$P(z) = \sum_{l \in L} a_l \prod_{i \in I_l} z_i$$

with arbitrary coefficients a_l , $l \in L$.

Theorem 2. For PB Function P(z) the correspondence UFLP Problem with minimal number of us will minimal cardinality of the set J can be found in polynomial time.

Proof. (similar to previous statement).

Competitive Facility Location Problem

• Input:

- a set *J* of users;
- a set I of potential facilities;
- a demand d_i of user j;
- a distance function $c: I \times J \rightarrow R$;
- a number of facilities p_0 to open by Leader;
- a number of facilities p_1 to open by Follower;

• Output:

a set $S \subset I$, $|S| = p_0$ of opening facilities by Leader;

• Goal:

maximize the total number of users which are served by Leader.

The Leader variables:

$$z_i = \begin{cases} 1 & \text{if facility } i \text{ is open by Leader} \\ 0, & \text{otherwise;} \end{cases}$$

$$y_j = \begin{cases} 1 & \text{if the demound of user } j \text{ is satisfied by Leader} \\ 0, & \text{otherwise;} \end{cases}$$

The Follower variables:

$$x_i = \begin{cases} 1 & \text{if facility } i \text{ is open by Follower} \\ 0, & \text{otherwise;} \end{cases}$$

$$\overline{y}_j = \begin{cases} 1 & \text{if the demound of user } j \text{ is satisfied by Follower} \\ 0, & \text{otherwise;} \end{cases}$$

The set of appropriate point for Follower

$$I_j(z) = \{i \in I \mid c_{ij} < \min(c_{kj} \mid z_k = 1)\}$$

Mathematical model

Leader:
$$\max_{y,z\in\{0,1\}}\sum_{j\in J}d_jy_j$$
 s.t.
$$y_j\leq 1-x_i^*,\ i\in I_j(z), j\in J;$$

$$\sum_{i\in I}z_i\leq p_0,$$

where x_i^* is optimal solution of the problem:

Follower:
$$\max_{\overline{y}, x \in \{0,1\}} \sum_{j \in J} d_j \overline{y}_j$$
 s.t.
$$\overline{y}_j \leq \sum_{i \in I_j(z)} x_i, \quad j \in J;$$

$$\sum_{i \in I} x_i \leq p_1;$$

$$z_i + x_i \leq 1, \quad i \in I.$$

Mathematical model for *K* **Followers**

Leader:
$$\max_{\substack{y,z\in\{0,1\}\\y,z\in\{0,1\}\\j\in J}}\sum_{j\in J}d_{j}y_{j};$$
 s.t.
$$y_{j}\leq 1-x_{ik}^{*},\ i\in I_{j}(z), j\in J, k\in K;$$

$$\sum_{i\in J}z_{i}\leq p_{0},$$

where x_{ik}^* is optimal solution of the problem:

Follower
$$k$$
:
$$\max_{\overline{y}, x \in \{0,1\}} \sum_{j \in J} d_j \overline{y}_{jk};$$
s.t.
$$\overline{y}_{jk} \leq \sum_{i \in I} x_{ik}, \quad j \in J;$$

$$\sum_{i \in I} x_{ik} \leq p_k;$$

$$z_i + \sum_{k'=1}^{k-1} x_{ik'}^* + x_{ik} \leq 1, \quad i \in I.$$

The set of appropriate point for Follower k: $I_{jk}(z,x) = \{i \in I \mid c_{ij} < \min(c_{lj} \mid z_l + \sum_{k'=1}^{\kappa} x_{lk'}^* > 0)\}$