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L_ocal Search Problems

¢ Input:
—  Optimization problem min {f(s), seSol}

— Neighborhood function N: Sol - Phte

e Qutput:

— feasible solution seSol;

e Goal:
— find a local optimum f(s) <f(s”), s”e N(s).
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Standard local descent algorithm

1. Select a starting solution se Sol
2. Try to find better neighboring solution s ”:
f(s”) <f(s), s”e N(s)
3. If it exists then move:
s:=S’and goto2 else STOP

4. Return local minimum S.

Examples: — Siplex method for linear programming problem;
— Ford—Falkerson method for maximum flow problem;

— Bubble sort algorithm for the sorting problem.
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The p-median problem with Swap neighborhood

e Input:

— aset | of facilities;

— asetJ ofusers;

— anumber p of opened facilities;

— a production—transportation cost Cjj to service user J from facility I;
e Qutput:

asetScl,|S|=p, of opened facilities;
e Swap neighborhood:
N(S)={S’c1||S|=p,|S\S’|=|S\S|=1}
e Goal: fine a local optimal solution

F(S)= mecIJ < ZmlnC,J,VS'e N(S).
je el !
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Lin-Kernighan Neighborhoods

Basic steps:

is minimal even 1f it greater than F(S)

2. Perform excange of ljns and Irem.

3. Repeat steps 1, 2 k times so that a facility can not be chosen to be inserted in
S 1if 1t has been removed from S in one of the previous iterations of step 1
and step 2.
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Lin-Kernighan Neighborhoods

The sequence {(lins,irem )} <k defines k neighbors S, for the solution S.

The best element in the LK—neighborhood can be found in O(klJ) time.
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Balas — VVazacopoulos Neighborhood

Current solution

The 5 best solutions in Swap
neighborhood

¢ The 2 best solutions for the
first level

® o ¢ o o ¢ o o o ¢ The best solution for the
second level
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Theorem 2.1. Assuming P#NP, no polynomial searchable neighborhood N can
guarantee that each local optimum S of the p-median problem is p-approximate

solution for any fixed constant p > 1, that is F(S)/Opt < p for any instances.

Proof. Let us consider the vertex cover problem (VC): given graph G = (V,E) and
integer positive number K. Is there a subset V' V, | V7| <k such that each edge is

incident to at least one vertex of V’? It 1s NP—complete problem.
Consider the family of the p-median problems with | =V, J=E, p=Kk and
o {1 if edgee; isincident to vertex |
"1 E|+1)p, otherwise.

Let us select an arbitrary subset S — I, | S| = p and apply Standard Local Search
Descent algorithm with neighborhood N. For this family, it is polynomial time
procedure. But each local optimum must have the same wvalue 1f it i1s

p-approximate solution! Otherwise F(S) > |[E| -1+ (|[E|+ 1)p> |E|p. m
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Remark. The statement holds for p = where ( is any fixed polynomial.

Corollary. Assuming P = NP, there 1s no exact polynomial searchable
neighborhood for the p-median problem.

Theorem 2.2. [4] For the metric p-median problem, standard local descent
algorithm with Swap—neighborhood produces 5-approximate solution.

Theorem 2.3. [Arua et al. 2004] For the metric p-median problem, standard local
descent algorithm with k—-Swap-neighborhood produces (3 + %)-approximate

solution.
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Advanced Local Search Strategies

Optimal problem min {F(S) | seSol}
Neighborhood N: Sol — 2°°

Threshold algorithms

1. Construct an initial solution seSol, s* :=s, k := 0.
2. Repeat until a stop criterion is satisfied

2.1. Generate s’eN(S) and put kK := k+1;

2.2. If F(S)—F(S7) <tk thens:=s’;

2.3. If F(S*)>F(S) then s* :=s.
3. Return s*.
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Three Types of Threshold Algorithms

¢ [terative improvement: ty = 0, kK > 0, it is standard LD algorithm with
random pivoting rule.

¢ Threshold accepting: tx > 0, ty > ty+, k>0, lim t, =0.
K—o0

¢ Simulated annealing: tx 1s a random variable with expected value E(ty) =
Ck, K > 0; more exactly, the probability of accepting S’eN(S) at the K™
iteration is given by

1 if F(S")<F(S)

P, {accept S’}:<6Xp(F(S);F(S’)j it F(S")> F(S)
L K
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Simulated Annealing Algorithm

A F(S)

= exn{—A4/C)

Local minimum

Y

SA was introduced by Kirkpatrick, Gellat, and Vecchi, 1983; (Viern}‘l, 1985.
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Typical Behavior of SA
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Great Deluge Algorithm

Global optimum

S’ S

Level

S N

Landscape

GD was introduced by Dueck, 1993
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Great Deluge Algorithm

1. Construct an initial solution s, put L = F(S), $* :=S;

2. Repeat until a stop criterion 1s satisfied;

2.1. Randomly generate S” eN(S);

2.2. If F(s’)<F(s)thens:=s”elseif F(s”) <L thens:=s’;
23. L=L-4L

2.4. It F(s*) > F(s) then s* :=s;

3. Return s*.

-16-
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Typically behavior of Great Deluge
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Tabu Search Algorithm

Tabu Search was introduced by F. Glover 1989
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Probabilistic Tabu Search

1. Construct an initial solution seSol; s* :=s;
2. Repeat until a stop criterion 1s satisfied
2.1.Generate a random subneighborhood N’ (S) < N(S)
2.2.Select the best legal neighbor s”:
s": F(s")min{F(s"),s" € N'(s) \ Tabu(s)}
2.3. Put s :=s’, update TabuList
2.4. If F(s*)> F(s) then s* :=s5.

3. Return s*
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Typical Behavior of Tabu Search
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Variable Neighborhood Search Algorithm

Local optimum
Local optimum

Global optimum

VNS was introduced by P. Hansen and N. Mladenovi¢ 1997.
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VNS Algorithm

1. Construct an 1nitial solution seSol, select the set of neighborhoods N,
k — 1,..., kmaX
2. Repeat until a stop criterion is satisfied

2.1. Setk:=1;
2.2. Repeat until K = Kqay;
(a) Senerate s’eNg(S) at random;
(b) Apply some local search method with S’ as 1nitial solution;
denote with s” the so obtained local minimum;
(¢c) If F(s")<F(s)then(s:=s5") & (k:=1)else k .=k + 1

3. Return s.
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Typical Behavior of Variable Neighborhood Search
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Genetic Local Search Algorithm

Global optimum

Genetic algorithms approach was introduced be J.H. Holland, 1975.
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GLS Algorithm

1.
2.

Construct an initial population of K solutions.
Use local search to replace the k solutions in the population by | local
optima.
Repeat until a stop criterion is satisfied
3.1. Augment the population by adding m offspring solutions;
3.2. Use local search to replace the m offspring solutions by m local
optima;
3.3. Reduce the population to its original size by selecting K solutions

from the current population.

Return the best solution from the population.

-25-
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Property of local optima

«On average, local optima are very much closer to the global optimum than
are randomly chosen points and closer to each other than random point
would be. The distribution of local optima is not 1sotropic, rather they are

clustered in a big valley (or central massif for maximization problems).»

C. Reeves. 1999,
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