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Lecture 3
Computational Complexity of Local Search
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Definition 3.1. An optimization problem OP is characterized by the following
quadruple of objects (I, Sol, F, goal), where

| Is the set of instances of OP;

Sol iIs a function that associates to any input instance xel the set of
feasible solutions of x;

F is the measure function, defined for pairs (x, s) such that xel and
seSol(x). For every such pair (X, s), F(s) provides a positive integer which
IS the value of the feasible solution s;

goale{min; max} specifies whether OP Is a maximization or a
minimization problem.

We want to find global optimal solution
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Definition 3.2. A local search problem is defined by the pair L = (OP, N), where

OP is optimization problem and N: Sol(x) — 2 **® s a neighborhood function.

The N(s, x) is called the neighborhood of the solution seSol(x). For given an
Instance xel, we want to find a locally optimal solution.

Let L; = (OP, Ny), L, = (OP, N,) are two local search problems. We say that
neighborhood N, stranger than neighborhood N; (N1 < Ny) if each local optimum

for N, neighborhood is local optimum for N, neighborhood.
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The class PLS

We assume that instances and solutions are encoded as binary strings, and
| s| < p(|x|) for each seSol(x).

Definition 3.3. A local search problem L is in PLS if there are three polynomial-
time algorithms A, B., C, with the following properties:

— Given a string xe{0, 1}*, algorithm A_ determines whether x Is an instance
xel, and in this case it produces some solution sgeSol(x).

— Given an instance x and a string s, algorithm B, determines whether seSol(x)
and if so, B, computes the cost F(s, x) of the solution s.

— Given an instance x and a solution s, algorithm C,_ determines whether is a
local optimum, and if it is not, C_ outputs a neighbor s’ eN(s, x) with (strictly)

better cost, 1.e., F(s, X) for minimization problem, and F(s’ X) > F(s, x) for
maximization problem.
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Theorem 3.1. [Johnson, Papadimitriou, Yannakakis] If a PLS problem L is
NP-hard, then NP = co—-NP.

Proof. If L is NP-hard, there is NP-complete decision problem D which can be
solved by polynomial deterministic algorithm M with an oracle. This oracle
solves the local search problem L and returns a local optimum. Running time of
the oracle Is ignored.

Let us consider the complementary decision problem D°. If D°cNP then
NP = co—-NP (see M. Garey, D. Johnson, Computers and Intractability, Theorem 7.2).
To show D°eNP we need a polynomial nondeterministic algorithm for D°. Let
algorithm M’ repeats computations of M and guesses a local optimum for L
Instead of to call of the oracle. At the final step, M’ returns «yes», if M returns
«no». Notice that M’ Is polynomial because M is polynomial and algorithm C
for L (definition 3) can check local optimality of the guess in polynomial time.
SoD°eNP. W
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PLS-reductions

Definition 3.4. Let L, and L, be two local search problems. A PLS—reduction
from L; to L, consists of two polynomial time computable functions h and g
such that

a) h maps instances x of L, to instances h(x) of Lo,
b) g maps (solution of h(x), x) pairs to solutions of x,

c) for all instances x of Ly, is s 1s a local optimum for instance h(x) of L,,
then g(s, x) i1s a local optimum for x.
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Proposition 3.1. If Ly, L, and L, are problems in PLS such that L; PLS-reduces
to L, and L, PLS-reduces to L, then L; PLS—reduces to L;.

Proposition 3.2. If L; and L, are problems in PLS such that L; PLS—deduces to
L, and if there is a polynomial-time algorithm for finding local optima for L,,
then there is also a polynomial-time algorithm for finding local optima for L.

We say that a problem L in PLS is PLS—complete if every problem in PLS can
be PLS—reduced to it.
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A first PLS—complete problem

(Circuit, Flip) local search problem
Input: Boolean circuit composed of A, v, — gates with m inputs and n output.

N 7

Circuit —

n.
Objective function: F(z) =) 21~
j=1
Neighborhood Flip(z) consists of all strings of length m that have Hamming
distance 1 from z.
Output: String z.
Goal: Flip local minimum.

Theorem 3.2. [Johnson, Papadimitriou, Yannakakis] Both the maximization
version and the minimization version of (Circuit, Flip) are PLS—complete.

yi(2)
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(Circuit, Flip)

(Pos NAE Max—BSat KL) (Pos NAE Max-3Sat, Flip) (TSP, k—=Opt)

(Graph Partltlonlng KL) \
(Max—Cut, Fllp)

(Graph Partitioning, Swap), .
(Max—ZSat, Flip)

(UFL, Flip) \\
(P-Median, Swap), ...

(TSP, LK")
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Theorem 3.3. The local search problem (UFL, Flip) is PLS—complete.

Proof. Let us consider the PLS—complete problem (Max-Cut, Flip). Given a
graph G = (V, E) with weights we > 0, ecE.

Find a partition of the set V = V1V, with maximal weight of the cut

W (ViV) = D (We | e = (i, ip) € B, iy €V, iy €V5).

We want to reduce the problem to (UFL, Flip).

Denote by E(i) the set of edges in G which are incident to the vertex ieV.
Putl=V, J=E and

Sw, ¢ {O if e= (|1,|2)|_|1or|_|2
€’ e
o=t 2wW,, otherwise

For any solution S < | we define a partition (V4,Vs) by the following V; = S;
V, =V \V; and we have

Zf+2m|nc,J+W(\/1V2) 2> W, m

ieS eck
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Corollary3.1. If a neighborhood N is stronger than Flip, then local search
problem (UFL, N) is PLS—complete.

Theorem 3.4. The p-median problem under Swap, LK, LK;, FM, FM;
neighborhoods are PLS—complete.
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Complexity of the Standard Local Search Algorithm

Definition 3.5. Let L be a local search problem and let x be an instance of L. The
neighborhood graph NG, (x) of instance x is a directed graph with one node for
each feasible solution to x, and with an arc s— t whenever teN(s).

Definition 3.6. The transition graph TGy (x) 1s the subgraph of NG(x) that
Includes only those arcs s— t for which the cost F(t) is strictly better than F(s).
The height of a node v is the length of the shortest path in TG (x) from v to a sink

(a vertex with no outgoing arcs). The height of TG (x) is the largest height of a
node.

The height of a node is a lower bound on the number of iterations for the standard
local search algorithm even if it uses the best possible pivoting rule.
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Definition 3.7. Let L; and L, be local search problems, and let (h, g) be a PLS-
reduction from L; to L,. We say that the reduction is tight if for any instance x of
L1 the height of TG, (X) is at least as large as the height of TG (X).

Corollary. The UFL problem under Flip—neighborhood is tight PLS—complete.
The standard local search algorithm for this problem takes exponential number of
Iterations in the worst case regardless of the tie—breaking and pivoting rules used.

Corollary. The p-median problem under Swap, LK, LK;, FM, FM,
neighborhoods are tight PLS—complete. For these local search problems, the
standard local search algorithm takes exponential number of iterations in the worst
case regardless of the tie—breaking and pivoting rules used.
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The Generalized Graph 2-Coloring Problem (2 - GGSP)
Input:  Graph G = (V, E) and weights we, ecE.
Output: A color assignment c: V — {1, 2}

Goal:  To minimize the total weight of the edges those have endpoint with
the same color.

Given a solution c(v), veV, a Flip—neighbor is obtained by choosing a node and
assigning new color. A solution is Flip—optimal if flipping any single node does
not decrease the total weight of monochromatic edges.

Theorem 3.5. [Vredeveld, Lenstra] The GGCP with the Flip neighborhood is tight
PLS—-complete.
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Difficult family of instances for the «Best Improvement»
pivoting rule

Modulei: A; =20
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Starting solution: all nodes are white. The input node of module K is only
unhappy node.

Theorem 3.6. [Vredeveld, Lenstra] If the input node of module K is the only
unhappy node, the output node of module 1 flip 2" times.
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Iterations of local improvement algorithm

Improvement 4= (8A; +1) + (8A; + 2‘i) — 20A; .

-18-
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Iterations of local improvement algorithm

Improvement Az =-1, A, = - 2

-19-
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Iterations of local improvement algorithm

Improvement As =-A;, 4) =— o,

-20-

Facility location problems. Discrete models and local search methods ® Lecture 3



Iterations of local improvement algorithm

Improvement A; = —A;, 4, =- o,

-21-
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We select the best improvement A= -2
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Iterations of local improvement algorithm

Improvement A, =— 27",

-23-
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Iterations of local improvement algorithm

Improvement Az =-A;

_24-
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Iterations of local improvement algorithm

Improvement Ag=-A;

-25-
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Iterations of local improvement algorithm

Improvement A4; =-2A
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Iterations of local improvement algorithm

_27-
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Module 2 Module 1
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Module 2 Module 1
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Module 2 Module 1
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Module 2 Module 1
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Module 2 Module 1
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Module 2 Module 1
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Module 2 Module 1
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Module 2 Module 1

By induction on K we get desired.

Theorem 3.7. The local search problem (2—-GGCP, Flip) is tightly PLS-reduced
to the (p—median, Swap)
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