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Lecture 4

Average case behavior and approximability

Content

+ Empirical result (for the standard local search algorithm)

+ Average case analysis for random functions on hyper cube.
+ Approximate local search

* The class Guaranteed Local Optima (GLO)

+ APX=GLO
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Emperical results

¢ The Standard local search algorithm is polynomial in average
+ There are instances with exponential number of local optima

¢ For many problems local search optima are relatively close to each other
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Pivoting rules

Let N*(s) be a set of neighboring solutions with better value of the objective
function

N*(s) ={s'e N(s)| F(s") < F(s)}, s e Sol(X).
The Best improvement rule selects the best element in the set N*(s).
The Worst improvement rule selects the worst element in N*(s).
The Random improvement rule picks an element in N*(s) at random.
The First improvement rule uses the first found element in N*(s).

The Circular rule is a variant of the First improvement rule but starts the
search from the position where the previous step terminates.

The Freedom rule select an element s” e N(s) with maximal cardinality of
the set N*(s”).
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Computational results for the p-median problem with Swap
neighborhood

The average number of steps without Worst Rule, p = n/10

Best
Worst
First
Circular
Random
Freedom

250
200 -
150 -
100
a0
0

RARRE

The average number of steps for the Worst and the Average relative error, p =n/10
Maximal Freedom Rule, p =n/10

15000 - =3

10000 - Ly

5000 A 5
0 - u 0

i gl 131 150
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Computational results for the p-median problem with Swap
neighborhood

The average number of steps without Worst Rule, p = 15

—o— Best
250 -
——  Worst
iy ——  First
150 - .
100 - —e—  Circular
SR ——— s s S — —— Random
I:I I 1 L] I 1 1 1] 1 1 1 T 1 1 1 1 I 1 1 + Freedom
30 80 130 180
The average number of steps for the Worst and the Average relative error, p =15
Maximal Freedom Rule, p =15
15000 -
25
10000 - d
5000 -
|:| -

- 6- Facility location problems. Discrete models and local search methods ® Lecture 4



Average case analysis

Let us consider the problem min {F(s), seE"} and assume that the values of F
are distinct.

Neighborhood N(s) = {s’€E" | d(s’ s) = 1}.
Question: How many steps is required for the standard local search algorithm to
reach local search?

For any objective function F(s) we can construct an «ordering», a list of the
vertices from the best to worst function value. The random distribution we
consider is that all orderings are equally likely to occur.

Theorem 4.1. [Tovey] Under the assumption that all ordering are equally likely,
the expected number of steps of any local improvement algorithm is less
than 1,5 en, where e denotes the logarithmic constant.
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Theorem 4.2. [Tovey] Suppose the ratio of probabilities of occurrence satisfies
Prob[v] < pan
Prob[v']

for all orderings v, v. Then the expected number of steps of any local
Improvement algorithm is less then (« + 2)en.

Theorem 4.3. [Tovey] Suppose the vertices of the hypercube E" are assigned
neighbors Is such a way that every vertex has at most q(n) neighbors,

where g(n) > n is a polynomial. Then for any probability distribution satisfying
Prob[v]
Prob[v']

Improvement algorithm is less them e(« + 2)q(n).

< 2" for all orderings v, v’ the expected number of steps of any local
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Aproximate Local Search

Definition 4.1. We say that a feasible solution s“eSol(x) to instance xel is
an e-local minimum if F(s®) < (1 + &) F(s) for all seN(s®).

Definition 4.2. A family of algorithms (A,).> ¢ Is an e-local optimization scheme

If A, produce an &local minimum. If the running time of algorithm A, is

polynomial in the input size and 1/¢, it is called a fully polynomial time &local
optimization scheme.
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Local FPTAS

Let us consider a combinatorial optimization problem with Sol(x) is a family of
subset of a finite ground set E = {1,..., n} and linear objective function

F(s):Zfe. The goal is to find a local minimum with respect to the
eeS
neighborhood N: Sol(x)—2°°'™. We assume that this local search problem is in

the class PLS and F(s) > 0 for all seSol(x).

New goal is to find an &-local minimum for given &> 0.
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Algorithm g-Local Search

1. Find SOeSOI(X) and put 1 :=0.

i K , rf
2. PutK :=F(s"), q:= 2n(1i€), fo .=F§Tq, ecE.

3. Putj:=0and sl=g"
4. Repeat until F(sij) < K/2
If s”is local optimum then s* := s! STOP
else select better solution s"**eN(s"), F(s"*) < F(s") and put j := j +1.

5. Put s :=s" i:=i+1and goto2.
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Theorem 4.4. [Orlin, Punnen, Schulz] Algorithm e&Local Search produces an
&-local optimum and its running time is polynomial in the input size and 1/e.

Proof. Let s* be the solution produced by the algorithm and seN(s). Note that

F(s%) = Z fo < Z rfeTq<Z I eTq<2q(—+l) Zf +ng = F(s) +na.
ees ees ees
E
F(s )_F(S)s ng _ ng < 2n(
F(s) F(s) F(s¥)-nqg K-2ng
Let us analyze the running time. Stepl is polynomial because the local search

problem is in the class PLS. In each improvement move in Step 4 we get
Improvement at least q units. Thus the number of local search iterations at the

Step4is O(n(1+eg)le) = O(n/e).

Step 2 Is executed at most log F(so) times. Thus the total number of the local
search iterations is O(n log F(so)/g). |

Remark [Orlin, Punnen, Schulz] The total number of the local search iterations is
O(n°£log n).
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Negative Results

Theorem 4.5. If there is an algorithm that for every instance x of PLS—complete
local search problem (P,N) finds in polynomial time a feasible solution s* such that
F(s*) < F(s) + eforall se(s?)
for some fixed &> 0, then all problems in the class PLS are polynomially solvable.
Proof. Without lost of generality we may assume that objective function is an
Integer—value function. For each instance x we create a new instance x” with the
same set of feasible solution Sol(x” ) = Sol(x) and new objective function

F'(s)= ) fg, seSol(x") where fg = fo(1+¢),ecE.
eesS
Apply the given algorithm to the new instance x” and let s” be the resulting

solution. Then, F’(s”)—F’(s) < efor all seN(s”). Thus, F(s”) —-F(s) < e/(etl) < 1
forall seN(s”) and s’ is a local optimum for x. m
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Theorem 4.6. If a PLS—complete local search problem (P,N) has a fully
polynomial time &-local optimization scheme (A,). > ¢ such that the actual running

time of A_ is polynomial in the input size and log 1/g, then all problems in the
class PLS are polynomially solvable.

Proof. We assume without lost of generality that F(s) is an integer—value function.

Choose &=1/(nf o« +1), fmax = Max fe, and apply A.. Note that its running time
eck

is polynomial in the input size. If s®is the solution returned by the algorithm, then
F(s?) < (1 + gF(s) < F(s) + 1 for all seN(s")

Hence, s”is a local optimum. m

Remark. For the facility location problems which we consider, these results hold.
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We say that the neighborhood N is exact if each local optimum is global optimum.

Remember that a problem is called strongly NP-hard if it remains NP-hard even
when the weights (costs) of its instances are polynomially bounded.

Theorem 4.7. [Yannakakis] Let a local search problem (P,N) is in the class PLS.
1. If P is strongly NP-hard, then N can not be exact unless P = NP.
2. If P 1s NP-hard, then N can not be exact unless NP = co—NP.

Theorem 4.8. [Yannakakis] Let a local search problem (P,N) is in the class PLS.

1. If the approximation of P within a factor r is strongly NP-hard, then N does
not guarantee ratio r unless P = NP.

2. If the approximation of P within a factor r is NP-hard, then N does not
guarantee ratio r unless P = co—NP.
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Class GLO

We say that optimization problem P is polynomially bounded if there exists a
polynomial r such that, given any instance xel and given any feasible solution
seSol(x), F(s) <r(| x|).

Definition 4.3. An optimal problem P has guaranteed local optima if there exists
a polynomial time computable neighborhood N and a constant k (0 < k < 1) such
that, for every instance xel, any local optimum s of x with respect to N has the
property that F(s) <kOPT(x) (for a minimization problem).

Definition 4.4. Let an instance xel and feasible solution seSol(x) be given. We
say that s” €Sol(x) is an h—bounded neighbor of s if d(s,s”) <h.

A neighborhood mapping N is said to be an h—bounden mapping if there exists
constant h such that, given xel and seSol(x), any s”eN(s) Is an h-bounded
neighbor of s.
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Definition 4.5. Let P be a polynomially bounded optimization problem. We say
that P belongs to the class GLO (Guaranteed Local Optima) if the following two
conditions are satisfied:

— at least one feasible solution seSol(x) can be computed in polynomial time for
every instance xel,

— there exists a constant h such that P has guaranteed local optima with respect
to a suitable h—bounded neighborhood.

Examples:
¢ Metric p—-median problem;
+ Max- Satisfiability;
+ Max—Cut.
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Approximation preserving reduction

Definition 4.6. Let A and B be two optimization problems. A is said to be
PTAS-reducible to B (in symbol A <pras B) If three function f, g, ¢ exist such
that:
— for any xelp and for any €e(0,1)q, (Q Is the set of rational number) f(x,s)elg
IS computable in time polynomial with respect to | X|;
— for any xelp, for any s €Solg (f(X, ¢)), and for anys €(0,1)q, g(X, s,&)€Sola (X)
IS computable in time polynomial with respect to both | x| and | s|;
—¢:(0,1)g — (0,1)q Is computable and surjective;
— for any xelp, for any s eSolg (f(x, €)), and for anye €(0,1)q
Eg(f(X, &), ) <c(e) implies Ea(X, g(X, &) < ¢

|F(s)-OPT(x)|
max{F(s),OPT(x)}

where E(x,s) is the relative error of s for x, E(X,S) =
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Closure of GLO under approximation preserving reductions

Given two optimization problems A and B. If A <ptas B and Be APX (BePTAS)
then AcAPX (AePTAS).

If C Is a class of optimization problems, then by ¢ we denote the closure of C
under PTAS reductions, that is, the set of problems

C ={A|3Be( such that A <pyas B}

Theorem 4.9. [Ausiello, Protasi] GLO = APX.
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