o & a0 5 1] 4 4 I & 30§ i 1 4 3 o i E I 9 1 e i L P i i L ' INE INE 4 L : :
‘BE sad] Al e 2 4 4 4 ¢ 1 1 = | o L L : 304 it 1 g < o & k qd E E DL - ot PL
4 9 4 ¢ E . “FEFENE /AL Al 4 j: £ K o g9 I i A9 54 3 q 9 g ] -
v 3 2 Qo O L IE L\ QA 3 qN ¢ S0 I N z o QA 1Nk N 2. QSAs it g JOL JNE 4.9 9 )
cozon T i W L s PRI . Y W W SN N ey ey v .» S W W T iz s . T st i

Yuri Kochetov

Sobolev Institute of Mathematics
Novosibirsk Russia
e-mail: Jkochet@math.nsc.ru




Lecture 5 Computationally Difficult Instances
for the Uncapacitated Facility Location Problems

Content
+ Instances based on Binary Perfect Codes

+ |nstances based on the torus which can be obtained from a chessboard by
identification of the boundaries

+ |nstances based on Finite Projective Planes
+ |nstances with large duality gap
+ |nstances with clustering local optima into several galaxies

- 2- Facility location problems. Discrete models and local search methods ® Lecture 5



The Uncapacitated Facility Location Problem

e Input:
— asetJof users;
— aset | of potential facilities;
— afixed cost f; to open facility i;
— a production-transportation cost c;j to service user j from facility 1.

e Output:
a set S — | of opened facilities;

e Goal:
minimize the total cost to open facilities and service all users

F(S)I Z fi + ZI’InISflC,J
jed 'S

ieS
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Instances on perfect codes

Binary perfect codes with distance 3 is a subset Cc By,

|C | = 2k/(k + 1) such that d(c4,c) = 3 for all ¢4,c,€C, c1#Cs
Each perfect code produces a partition of the hypercube
Into 2"/(k+1) disjoint spheres of radius 1.

N(C) is a number of perfect codes.

Theorem 5.1. [Krotov]

kgl—logz(kﬂ) i:?’ k:IS—Iogg(kﬂ)
N(C) > 22 .32 7 .02
Theorem 5.2. [Solov’eva]

Minimal distance between codes is 2% "2

http://www.codingtheory.gorodok.net/literature/lecture-notes.pdf
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Random instances on perfect codes

Each perfect code produces a partition of the hypercube and corresponds to a
strong local optimum under (FlipwSwap)—neighborhood.

Cs
Define 1 = J ={1,..., 2} and Cs Cs
o If L, Xi) <1 :
Cij = “ij 11 00, Xj) <1 &; is a random number
+ o0, oOtherwise C C
2 6
fi = f >Z qu . lel.
el jed
C1 C?
For k=7 we have N(C)=280=35x 8.
C
For each 8 codes, the pair distance is 32. °
Maximal distance between codes is 32. d (Ci, Cj) =32

Minimal distance between codes is 16.
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The costs of local optima against their distances from global optimum

F(s) ™% 7 9000 starting points
1 8868 local optima under (FlipuSwap)-neighborhood
00000 - o
80000 - Rmin =
70000 - Rave = 3
d(s,s*)
5 L] 15 25 3I5 45 55

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =52, D = 55.
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Instances on Chess-Board

Let us glue the boundaries of the 3kx3k chess board so that to get a torus.
Put r = 3k. Each cell of torus has 8 neighboring cells.

For example, the cell (1, 1) has the following neighbors: (1, 2), (1, 1), (2, 1), (2, 2),
(2, 1), (r, 1), (r, r). The torus is divided into 'S squares by 9 cells in each of them.

<2 £y

B AR NN B
E BN BN B /
ILILILT!
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Random instances on Chess-Board

Define n=9k*, 1=J = {1,...,n} and

5 {cfij if thecells i, j are neighbors
ij =

. , &ij Is a random number
+ oo, otherwise

fi = f >ZZ§”, el

icl jel
The torus is divided into k° squares. Every cover of the torus corresponds to a
strong local optimum for the UFL problem with (FlipuSwap)—neighborhood.
The total number of partitions is 2.3x*1_o9,
The minimal distance between them is 2Kk.

The maximal distance between them is k.
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The costs of local optima against their distances from global optimum

F(s) 94000 1 9000 starting points
1 8868 local optima under (FlipuSwap)—-neighborhood
aiono | CHESS—board 12x12
Rmin =

64000 - Rmax =178
ﬁdl]I]I]:

OPT d(s,s*)
Mg 77—
-5 5 15 25 35 15 5

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =53, D = 50.
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Instances on the Finite Projective Planes

Finite projective plane of order k :

n=ky+k+1. k=2, n=17
. L1= {X1, X2, X3}

PoiInts Xy,... Xn. Ly={ Xa, X, X}
Lines Lq,..., L. X1 L3 ={ X1, X5, X6}
i ) La={ X1, X4, X7}
Incidence (nxn) matrix A: Ls={ X3, X7, Xe}
1. A has constant row sum k + 1; Lo =1{ X2, X7, X5}
L7 ={ X2, Xa, Xe}

2. A has constant column sum k + 1;
3. The inner product of any two district rows of A is 1;
4. The inner product of any two district columns of A is 1.

These matrices exist if k is a power of prime.
Bundle for the point x; : B; = {L; | xjeLi}.
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Random instances on the Finite Projective Planes

Definel =J={1,..., ky +k+ 1} and

i If line L; contains point X; .
Gjj = °i = P I & is arandom number,
+oo0, otherwise

fi = f >ZZ§U‘, el

el jeld
Every bundle corresponds to a strong local optimum of the UFL problem with
(FlipuSwap)—neighborhood.

Optimal solution corresponds to a bundle of the plane and can be found in
polynomial time.

Hamming distance for arbitrary pair of the bundles equals 2k.
There are no other local optima with distance less or equal k to the bundle.
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The costs of local optima against their distances from global optimum

F(S)gaﬁuu: 9000 starting points

1 8987 local optima under (FlipuSwap)-neighborhood
83500 k=11

: Rmin=1
3500 .

i Rave =
63500 3

] Rmax =
53500 .
43500 -

1 OPT

d(s,s*)

3%&1@ --------------------- Q --------------------
3 2 ¥ 12 17 22 2F 32 37 ]2

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =1, D =51.
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Random instances with large duality gap

Define 1=J={1,...,n}and fi=f>> > &, iel.
el jel

Gap-A: each column of the matrix (cjj) has | small elements &;.

Gap-B: each row of the matrix (cj;) has | small elements &;.

Gap-C: intersection of Gap-A and Gap-B.

: - : OPT - F p
The instances have significant duality gap: o = oPT -100%.

For | = 10, n = 100 we observe that 6[21%, 29%].

For the class Gap-C, the branch and bound algorithm evaluates about 0,5-10°
nodes in the branching tree.

-13- Facility location problems. Discrete models and local search methods ® Lecture 5



The costs of local optima against their distances from global optimum

F(S) ss000 - 9000 starting points

1 6022 local optima under (FlipuSwap)—neighborhood
sooo0 | Class Gap-A
55000 -

] Rmin =
H0000 ]
45000 -
40000 -

OPT

_ d(s,s*
B S e . 5.57)
2 3 g 13 18 23 20 i

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =7, D = 36.

_14-
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The costs of local optima against their distances from global optimum

F(S) 7000 , 9000 starting points

8131 local optima under (FlipuSwap)-neighborhood

71000 1 Class Gap-B

66000 - : Rmin =

61000 Rave =18

56000 - ~ s Rmax = 164

51uuu§ Q )

46000

O OPT d(s S*)

L T L ’
-5 0 5 10 15 20 25 30 I35 40 45

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) = 16, D =42.
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The costs of local optima against their distances from global optimum

F(s) 75000 - 9000 starting points
1 8465 local optima under (FlipuSwap)—neighborhood
o000 ] Class Gap-C

65000 i Rmin=1
60000 Rave =14
55000 | Rimax = 229
50000 -
45000 -
OPT Q d(s,s*)
11 1 1 R R e
5 0 5 10 15 20 25 30 % 10 15

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =21, D =41.
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Easy random instances
Define 1=J={1,...,n}and f;=f = 3000, i<l.

Uniform: values c;j; are selected in interval [0, 10" at random with uniform
distribution and independently from each other.

Euclidean: value c;; is Euclidean distances between points i and j in the two

dimension space. The points are selected in square 7000x7000 at random with
uniform distribution and independently from each other.

The interval and size of the square are taken in such a way that optimal solutions
have the same cardinality as in the previous classes.
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The costs of local optima against their distances from global optimum

9000 starting points
F(s) 1018 local optima under (Flip.uSwap)—neighborhood

85000 1 Class Uniform
f o e o
@
83000 -
: Rmin =
81000 -
Rave = 31
79000 -
Rmax = 101
77000 -
75000 -
i OPT
] d(s,s*)
-7 7————TT7————
e 2 6 10 14 18 22 26 30 34

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =1, D =33.
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Instances on Euclidean plane

9000 starting points
arsoo , 40 local optima under (FlipuSwap)-neighborhood
Class Euclidean

F(s)
97600 -

97400 J

97200 -

97000 -

Rave = 13
96800 1

96600

: <
96400 0 o . O
::: QOPT Q osh

The radius R of each sphere is a number of local optima which are located near the
given local optimum, d(s, s”) < 10. R(OPT) =10, D = 21.
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Performance of the B & B algorithm in average

Benchmarks Gap Iterations The best Running
classes o B&B Iteration time
BPC, 128 0.1 374 264 371 646 00:00:15

CB, 144 0.1 138 674 136 236 00:00:06
FPP11 133 7.5 6 656 713 6 652 295 00:05:20
Gap-A 100 25.6 10 105 775 3280 342 00:04:52
Gap-B 100 21.2 30 202 621 14 656 960 00:12:24
Gap-C 100 28.4 541 320 830 323 594 521 01:42:51

Uniform 100 4.7 9834 2 748 00:00:00
Euclidean 100 0.1 1084 552 00:00:00
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Frequency of obtaining optimal solutions by metaheuristics

Beglcagg;rks n PTS GA GRASP + LD

BPC, 128 0.93 0.90 0.99
CBs4 144 0.99 0.88 0.68
FPP11 133 0.67 0.46 0.99
Gap-A 100 0.85 0.76 0.87
Gap-B 100 0.59 0.44 0.49
Gap-C 100 0.53 0.32 0.42
Uniform 100 1.0 1.0 1.0
Euclidean 100 1.0 1.0 1.0

-21- Facility location problems. Discrete models and local search methods ® Lecture 5



Attributes of the local optima allocation

Benchmarks n Diameter . Radis R100 R*
classes min average max
BPC; 8868 55 1 3 57 24 52
CBy 8009 50 1 13 178 78 53
FPP1, 8987 51 1 2 8 3 1
Gap-A 6022 36 1 53 291 199 7
Gap-B 8131 42 1 18 164 98 16
Gap-C 8465 41 1 14 229 134 21
Uniform 1018 33 1 31 101 61 1
Euclidean 40 21 11 13 18 1. 10
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Multi Stage Facility Location Problem

e Input:
— aset J of users;
— aset I of potential facilities;
— aset P of potential facility paths;
— a(0,1)-matrix (gpi) of inclusions facilities into paths;
— afixed cost fjto open facility i;
— a production-transportation cost c; to service user j from facility path p;
e Output:
a set Sc P of facility paths;

e Goal:
minimize the total cost to open facilities and service all users

F(S) =) _max fig,. + > mincy.
icl PeS jed peS
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Random instances with clustering local optima

Define P=J={1,...,n}, 1 ={1,..., m} and

f 0 =i v
f=IM,  if i=iy

M, i =i

qp. = i iy vio

Values cy; are Euclidean distances between points Jy, ..., Jo In the two dimension
space. The points are selected at random with uniform distribution and

Independently from each other.

1

0

icl, M,>M;>>f>0.
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The costs of local optima against their distances from global optimum

50000, F(8)

530001 st TNt
ool
w5000l
o000l

* 4‘ g* E' : : * *t - - :
opT 4 et 111111 T T T UL

d(s,s*)

0 10 20 30 40 50 60 70 80

Three galaxies of local optima
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