### Lecture 10. The Bin Packing Problem

The one dimensional bin packing problem is defined as follows. Given a set  $L = \{1, ..., n\}$  of items and theirs weights  $w_i \in (0,1), i \in L$ . We wish to partition the set L into minimal number m of subsets  $B_1, B_2, ..., B_m$  in such a way that

$$\sum_{i \in B_j} w_i \le 1, \ 1 \le j \le m.$$

The sets  $B_i$  we will call **bins**.

In other words, we wish to pack all items in a minimal number of bins.

It is NP-hard problem in the strong sense.

### **Mathematical Model**

#### **Decision variables:**

$$y_j = \begin{cases} 1 & \text{if bin } j \text{ is used} \\ 0 & \text{otherwise} \end{cases}; \qquad x_{ij} = \begin{cases} 1 & \text{if item } i \text{ is in bin } j \\ 0 & \text{otherwise} \end{cases}$$
 
$$\min \sum_{j=1}^n y_j$$
 s.t. 
$$\sum_{i=1}^n w_i x_{ij} \leq y_j, \ j=1,\dots,n;$$
 
$$\sum_{j=1}^n x_{ij} = 1, \ i=1,\dots,n;$$
 
$$y_i, x_{ij} \in \{0,1\}, \ i,j=1,\dots,n.$$

Can we find the optimal solution for the linear programming relaxation in polynomial time?

#### **Bad News**

- There is much symmetry in the model.
- The problem is hard to approximate.

**Theorem 1.** The existence of a polynomial time  $\left(\frac{3}{2} - \varepsilon\right)$ -approximation algorithm for any positive  $\varepsilon$  implies P = NP.

**Proof.** Let us consider the following NP-complete problem. Given n positive numbers  $a_1, \ldots, a_n$ . Is it possible to partition this set into two subsets  $A_1, A_2$  in such a way that  $\sum_{i \in A_1} a_i = \sum_{i \in A_2} a_i$ ?

We put  $C = \frac{1}{2} \sum_{i=1}^{n} a_i$ ,  $w_i = \frac{a_i}{c}$ , i = 1, ..., n, and apply our  $\left(\frac{3}{2} - \varepsilon\right)$ -approximation algorithm. If we get 2 bins, then answer is Yes, otherwise No. It is *exact* answer!

# **Strong Heuristic (FFD)**

Rank the items by the weights:

$$w_1 \ge w_2 \ge \dots \ge w_n$$

and apply the First Fit strategy:

- put the first item in the first bin;
- at the step k, we try to put item k into the used bins and, if it is not possible, we put item k into a new bin.

**Theorem 2.**  $FFD(L) \le \frac{11}{9} \ OPT(L) + 4$  for all L and there exist some instances for the bin packing problem with

$$FFD(L) \geq \frac{11}{9} OPT(L).$$

# **Hard Example**

$$L = \{1, \dots, 30 m\}$$

ard Example 
$$L = \{1, ..., 30 m\}$$

$$w_{i} = \begin{cases} \frac{1}{2} + \varepsilon, & 1 \leq i \leq 6m \\ \frac{1}{4} + 2\varepsilon, & 6m < i \leq 12m \\ \frac{1}{4} + \varepsilon, & 12m < i \leq 18m \\ \frac{1}{4} - 2\varepsilon, & 18m < i \leq 30m \end{cases}$$

$$\frac{1}{4} - 2\varepsilon$$

$$\frac{1}{4} + \varepsilon$$

$$\frac{1}{4} - 2\varepsilon$$

$$\frac{1}{4} - 2\varepsilon$$

$$\frac{1}{4} + 2\varepsilon$$



### **Huge Reformulation**

**Given**  $L = \{1, ..., n\}$  is the set of items;

 $w_i > 0$  is the weight of item i;

 $n_i > 0$ , integer, is the number of identical items i

 $a_{ij}$  is the number of identical items i in packing pattern j.

Find a partition of all items into a minimal number of bins.

**Variables:**  $x_j \ge 0$ , integer, is the number of bins for the pattern j

J is the set of all possible patterns.

#### **LP-Based Heuristic**

Solve the linear programming relaxation

Put  $x_j = [x_j^*]$ ,  $j \in J$ . It is a feasible solution with deviation from the optimum at most

$$\varepsilon = \frac{\sum_{j \in J} (\left[ x_j^* \right] - x_j^*)}{\sum_{j \in J} x_j^*}$$

where  $x_i^*$  is the optimal solution for the LP model.

Can we solve LP?

### **The Column Generation Method**

Let us consider a subset  $J'\subset J$  of patterns and assume that the following subproblem

$$\min \sum_{j \in J'} x_j$$

s.t.

$$\sum_{j \in J'} a_{ij} x_j \ge n_i, \quad i \in L;$$
$$x_j \ge 0, \quad j \in J';$$

has at least one feasible solution.

Denote by  $x_j^*$  the optimal solution to this subproblem.

#### **The Dual Problem**

$$\max \sum_{i \in L} n_i \lambda_i$$

$$\sum_{i \in L} a_{ij} \lambda_i \le 1, \ j \in J';$$

$$\lambda_i \ge 0, \ i \in L.$$

Denote by  $\lambda_i^* \geq 0$  its optimal solution. If

$$\sum_{i \in L} a_{ij} \lambda_i^* \le 1, \text{ for } j \in J \setminus J';$$
(\*)

then

$$\bar{x}_j = \begin{cases} x_j^*, & j \in J'; \\ 0, & j \in J \setminus J' \end{cases}$$

is the optimal solution for the LP problem.

# **How to Check (\*)?**

Let us consider the following knapsack problem:

$$\alpha = \max \sum_{i \in L} \lambda_i^* y_i$$
 s.t. 
$$\sum_{i \in L} w_i y_i \leq 1 \,; \qquad \text{(capacity of bin)}$$
 
$$y_i \geq 0 \text{, integer, } i \in L.$$

If  $\alpha \leq 1$  then (\*) is satisfied.

If  $\alpha > 1$  then we have got a new pattern and include it in J'.

### The Framework of the Method

- 1. Select an initial subset  $J' \subset J$ .
- 2. Solve the subproblem for J' and its dual one, get  $x_i^*$ ,  $\lambda_i^*$ .
- 3. Solve the knapsack problem for  $\lambda^*$  and compute  $\alpha$ .
- 4. If  $\alpha \leq 1$  then STOP.
- 5. Include new pattern  $j_0$ :  $a_{ij_0} = y_i^*$ ,  $i \in L$ , into subset J' and goto 2.

**Surprise:** As a rule, solution  $x_j = [x_j^*]$ ,  $j \in J$  is optimal for the bin packing problem. If it is not true, we have at most one additional bin only!

Lecture 10 11

### **Two-Dimensional Packing Problem**

**Given:** n rectangles with size  $w_i \times l_i$ , i = 1, ..., n.

Find: a packing of the rectangles into a rectangle area with minimal square.



Rotations are forbidden

$$L \times M \rightarrow \min$$

It is guillotine solution.

### **The Strip Packing Problem**

Дано: n rectangles with size  $w_i \times l_i$ ,  $i \in L$ , and large strip with width W.

Find: a packing of rectangles into the strip with minimal length.



For  $l_i=1$  we have one-dimentional bin packing problem (NP-hard)

**Hometask.** Design a linear integer programming model for the strip packing problem (with and without 90° rotations).

Lecture 10 13

### The Two-Dimensional Knapsack Problem

**Given:** n rectangles with size  $w_i \times l_i$ , profit  $c_i$  for each rectangle, and the size of a vehicle  $W \times L$ .

Find: a subset of rectangles with maximal total profit which can be packed into the vehicle.



For  $l_i = L$ , we have the classical knapsack problem

**Hometask.** Design a linear integer programming model for the two-dimensional knapsack problem.

Lecture 10

### The Two-Dimensional Bin Packing Problem

**Given:** n rectangles with size  $w_i \times l_i$  and the size of a vehicle  $W \times L$ .

Find: a packing all rectangles into the minimal number of vehicles.



Hometask. Design LP-based heuristic for the two-dimensional bin packing problem.

Lecture 10 15