Lecture 4.

Lower and Upper Bounds for Global Optimum

Consider an integer linear program
zip=max{cx|Ax <b, x € Z}}

How we can get an upper bound for z;p ?

How we can get an lower bound for z;p?



Lagrangian Relaxation

We rewrite this program as
Z;p = Max cx
Alx < b! (complicating constraints)
A%x < b? (nice constraints)
x € Z}
If we drop the complicating constraints, then we obtain a relaxation that is easier
to solve than the original problem.



We assume that Q = {x € ZI |A%x < b?} = Q.

Now for any nonnegative vector A we consider the problem
LR(A): z;p(1) = max{z(4,x) | x € Q}

where z(1,x) = cx + A(b! — A'x).

The problem LR(A) is called the Lagrangian relaxation of IP(Q) with respect
to Alx < bl

Theorem. z;p(A) = z;p forallA = 0.

Proof. Let us consider a feasible solution x of IP(Q). Note that x is feasible for
LR(1) as well. Moreover, A(b* — Ax') = 0 for x because 1 =0 and A'x < b'.
|



Lagrangian Dual

The least upper bound available from the infinite family of relaxations
{LR(A)} 150 is z p(A7), where A" is an optimal solution to

LD: ZLp = MU Z1R (1)

Problem LD is called the Lagrangian dual of IP(Q) with respect to
the constraints A'x < bl.

Theorem. z;, = max{cx |A'x < b, x € conv(Q)} where conv(Q) is a rational
polyhedron, conv(Q) is a minimal convex polyhedron which contains all discrete
points from Q = {x € ZI' |A*x < b?}.



Example 1

max 7x, + 2x,

s.t. —x1 + 2x, <4 (Alx < bY)
5x;, +x, <20 )
—2Xx1 — 2Xxy < —7
—Xq <-2 > Q ={x €Z2|A%x < b?}
X, <4

x € Z2 /



ZIP — 28
x* = (4,0);
All feasible points: (2,2), (2,3), (3,1),(3,2), (3,3), (4,0)



If we drop the constraint - x; + 2x, < 4 then we get the relaxed problem
with optimal value 29. The set Q is finite and contains 8 points:

(x1,x%, ..., x%) = {(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4), (4,0)}
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Lagrangian relaxation with respect to constraint —-x; + 2x, < 4 is
zir(A1) = mea(‘;({7x1 +2x, + A(4 + x; — 2x,)} =
X

= max{(7 + Dx; + (2 —2)x, + 41}
S.t.
5x1 + xy <2
—2X1 — 2Xx, < —7;
—Xq < —2;
X, < 4;

x € Z2.



A




How to solve the dual problem?

Let x*(A°) be the optimal solution for the Lagrangian relaxation LR(A").
Then
S =bht—Ax*(1%)
is the subgradient of function z;(;) at the point A = A%, We put
A =20+ p9s,
where [ is a suitable scalar coefficient.

if % =0, Xp=, B =0 then zp;) — zp.



Example 2
The assignment problem with budget constraint

The is a set of n jobs to be assigned to a set of n workers, N = {1, ..., n}.
c;; is the value of assigning worker i to job j;
t;; is the cost of training worker i to do job j;

b is training budget.

We wish to maximize the total value of the assignment subject to the budget
constraint.



Optimization model:

S.t.

IEN JEN
inj = 1, ] (S N;
LEN
Z xij = 1, l € N,
JEN
IEN JEN

(1)

(2)

(3)



How to choose a Lagrangian relaxation?

Let us consider 4 variants:

1. Lagrangian relaxation with respect to (3):

maxE Z(Cij — )Ltij)xij + Ab

LR{(A): iEN jEN
s.t. (1), (2)

It is well-known assignment problem, integrality gap is 0, the linear programming

relaxation has an integer optimal solution.

Hence,

_ 1
Zip = ZLp = Zjp-



2. Lagrangian relaxation with respect to (1) and (2)

maxz Z(Cij —U;j — U])XU + Zui + z Uj

LR, (u,v): iEN JEN iEN JEN

s.t. (3).

It is well-known knapsack problem, integrality gap is nonnegative (often positive).
Hence,

1 2
Zip = Zjp = Zjp = Zjp.

We can get better upper bound than in previous case.



3. Lagrangian relaxation with respect to (2)

maxz Z(cij — U)X + zui

LR;(u): iEN jJEN iEN
s.t. (1), (3).

It is well-known multiple-choice knapsack problem. Integrality gap is nonnegative
(often positive). Moreover, each feasible solution for LR is feasible in the LR,.

Hence,
1 2 3
Zip = Zip = Zip = Zjp = Zjp-

We can improve the previous upper bound.



4.Lagrangian relaxation with respect to (2) and (3)

maxz: Z(Cij —Uj — Atij)xl-j + Eui + Ab

LR,(u,A): iEN jEN iEN

s.t. (1).

It is trivial to solve. For each j we maximize ¢;; — u; — At;; and the corresponding
x;j is set to 1. Hence, the gap is 0 and

4 _ 1 2 3
Zip = Zip = Zip = Zjp = Z 2[p= Zp.

Should we relax (1), (2), (3) at the same time or (1),(3)?



Lagrangian Relaxation for the SPLP

minz:z: Cijxij + Z:fiyi

icl jeJ icl
S.t.

Y xy=1, jej

€]

Vi inj' jE],i € I[;
yi,xij (S {0,1}
Two ways to relax the problem.

What is the best one?



Relaxation 1

LR1(A): mmzz CijXij + zflyl + z ( zxu>

el jej Ll J€EJ Ll

Can we solve this problem in polynomial time?



Relaxation 2

LR2(y): minzz:cijxij +Zfi3’i +zzyij(xij — i)

icl jEJ icl icl jeJ
s.t.
:E:.ij =1, jE];
LEI

Vi, xi; € {0,1}, tel,j€e];

ZIR2(1) = mmZZ(cij + )% + z fi — Z)’ij Vi

L€l jE] LEI J€EJ

Can we find LR2(y) in polynomial time?



Hometask 1. The Capacitated Facility Location Problem

min 2 2 Cijxij + 2 fiyi

icl je icl
S.t.
Z:xij =1, j€];
icl

Yi inj; lEI;] E];

Z)’i = D;

i€l
zCIjxij <Qiyi, €L
JEJ
v €{01}, x;; =0, i€l,j€e].
Can we solve the Lagrangian relaxation problem with respect to
YierXij = 1,j € ], in polynomial time?



Hometask 2.

A company has two plants and three warehouses. The first plant can supply at
most 100 units and the second and most 200 units of the same product. The
sales potential at the first warehouse is 150, at the second warehouse 200, and
at the third 350. The sales revenues per unit at the three warehouses are $12 at
the first, $14 at the second, and $15 at the third. The cost of manufacturing one
unit at the plant i and shipping it to warehouse j is given in table. The company
wishes to determine how many units should be shipped from each plant to each
warehouse so as to maximize profit.

Table.
From plant To warehouse ($)
1 2 3
1 3 10 12
2 7 9 11

Create a mathematical model and solve it by Exel (Touck pewerus).



