Задачи календарного планирования

Олимпийские игры 1992 г., Барселона, более 2000 мероприятий за 15 дней.

- частичный порядок на множестве событий (четверть финала, полуфинал, финал);
- мощность спортивных сооружений (число одновременных соревнований, число зрителей);
- транспортные проблемы и доход (максимизировать посещаемость наиболее популярных соревнований раздвинуть их по времени);
- требования TV (минимум параллельных трансляций);
- обеспечение безопасности (число полицейских ограничено).

Система поддержки решений «SUCCESS-92» Университет г. Барселоны

Постановка задачи

```
Дано: J = \{1, ..., n\} — множество работ; \tau_j \ge 0 — длительность работы j; C = \{(i, j) | i, j \in J\} — частичный порядок, работа j не может начаться раньше окончания работы i.
```

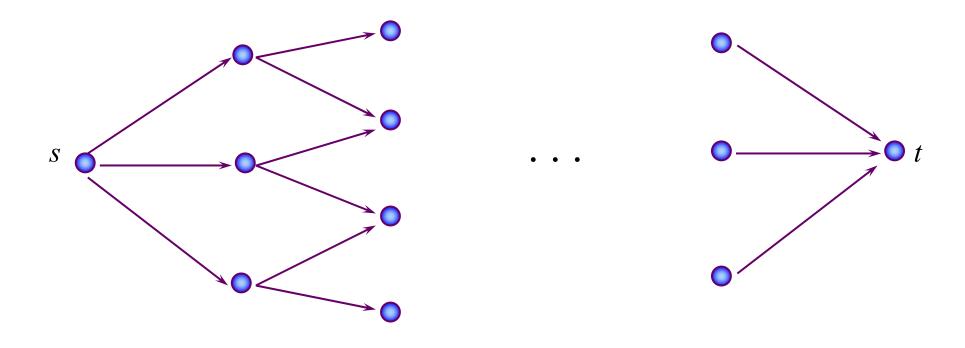
Найти:

- Минимальное время завершения всего проекта.
- Наиболее ранний момент начала и завершения каждой работы.
- Множество критических работ, то есть таких работ, задержка хотя бы одной из которых приведет к задержке всего проекта.
- Допустимое запаздывание для некритических работ.
- Вероятность завершения проекта к заданному сроку.

-2-

Сетевой график «работы — дуги»

G = (V, E) — ориентированный взвешенный граф без циклов с одним источником s и одним стоком t, каждой дуге j = (i, k) приписан вес $\tau_j \ge 0$.

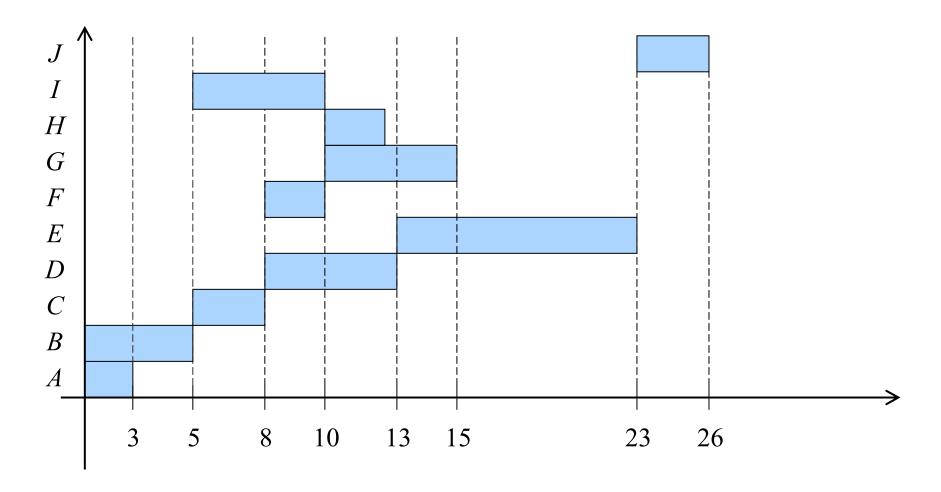


Вершины — события. Дуги — работы.

Пример

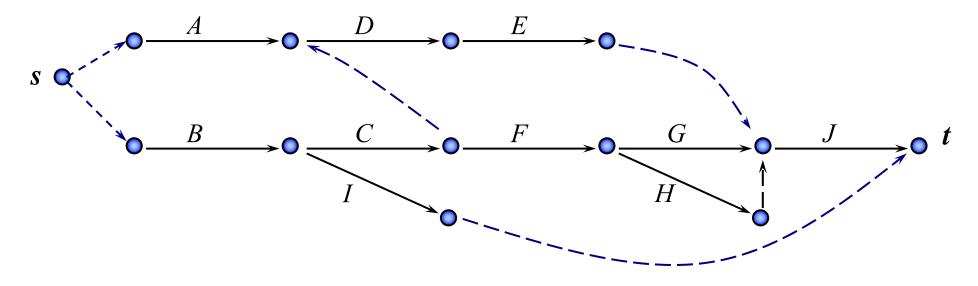
	Предше- ствование	Длитель- ность
A — выбрать место для офиса		3
B — создать финансовый и организационный план		5
C — определить обязанности персонала	В	3
D — разработать план офиса	A, C	5
E — ремонт помещений	D	10
F — отобрать кандидатов на увольнение	C	2
G — нанять новых служащих	F	5
H — назначить ключевых руководителей	F	2
I — распределить обязанности руководителей	B	5
J — обучить персонал	H, E, G	3

Диаграмма Гантта

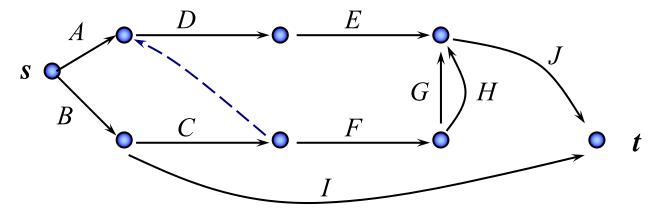


Работа E является критической. Задержка работы F ведет к задержке работ G, H, но не работы J.

Сетевой график «работы — дуги»



Некоторые фиктивные дуги можно исключить



Параметры сетевой модели

Определение *Рангом* r(x) вершины $x \in V$ называется число дуг в максимальном пути (по числу дуг) из источника s в вершину x. Рангом проекта R называется ранг стока t : R = r(t).

Рекуррентные соотношения для рангов

$$r(x) = \begin{cases} 0, & x = s \\ \max\{r(y) + 1 \mid (y, x) \in E\}, & x \neq s \end{cases}$$

Алгоритм Форда

$$|V| = n, |E| = m,$$
 дуга $e = (i(e), k(e)) \in E.$

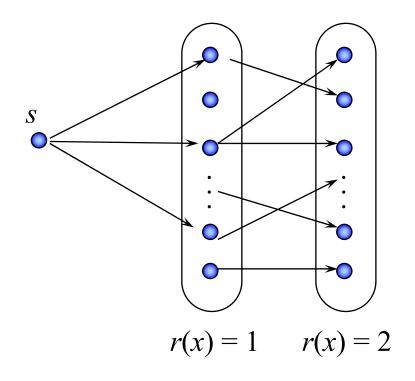
Алгоритм

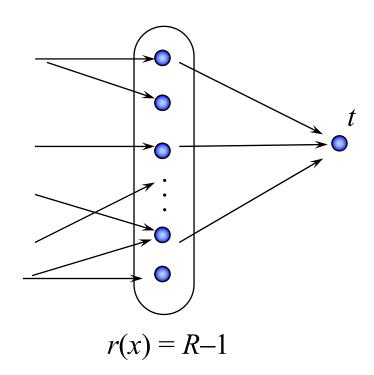
- 1. r(x) := 0 для всех $x \in V$.
- 2. for l := 1,..., |V| do for e := 1,..., |E| do if r(k(e)) < r(i(e)) + 1then r(k(e)) := r(i(e)) + 1.

$$T = O(|V||E|), \quad \Pi = O(|V| + |E|)$$

Определение Нумерация вершин сети G = (V, E) называется *правильной*, если для каждой дуги $e = (i(e), k(e)) \in E$ справедливо неравенство i(e) < k(e).

Построение правильной нумерации вершин (топологическая сортировка)





В произвольном порядке нумеруем вершины ранга 1, затем ранга 2, и т.д.

Определение *Наиболее ранним моментом* свершения события x называется максимальный момент времени $T_p(x)$, раньше которого данное событие произойти не может.

Обозначим через L_{sx} длину максимального пути из s в x во взвешенном графе $G=(V,E),\ \tau(e)\geq 0,\ e\in E.$ Тогда $T_p(x)=L_{sx}.$

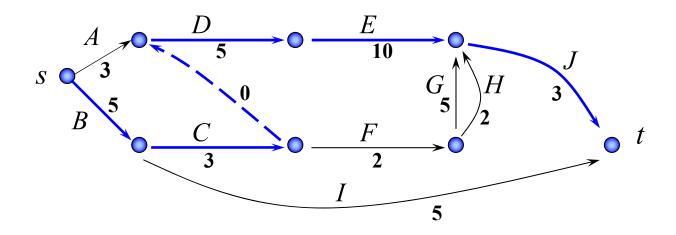
Рекуррентные соотношения

$$T_P(x) = \begin{cases} 0, & x = s \\ \max\{T_P(y) + \tau(yx) \mid (yx) \in E\}, & x \neq s \end{cases}$$

Упражнение Используя правильную нумерацию вершин, построить алгоритм вычисления всех величин $T_P(x)$ с трудоемкостью T = O(|E|).

Критическое время проекта — наиболее раннее время завершения всего проекта, то есть $T_{Kp} = T_P(t)$.

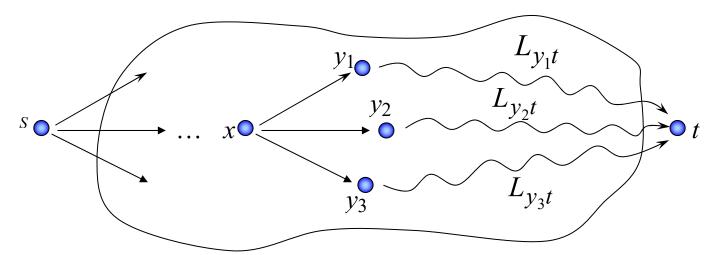
Определение Всякий путь в G = (V, E), имеющий длину T_{Kp} называется *критическим*. Работы и события, лежащие на критическом пути, называются *критическими*.



Определение *Наиболее поздним моментом* $T_{\Pi}(x)$ свершения события x называется максимально возможный момент свершения события x, не приводящий к увеличению T_{Kp} . Легко заметить, что $T_{\Pi}(x) = T_{Kp} - L_{xt}$.

Рекуррентные соотношения

$$T_{\Pi}(x) = \begin{cases} T_{Kp}, & x = t \\ \min\{T_{\Pi}(y) - \tau(x, y) \mid (x, y) \in E\}, & x \neq t \end{cases}$$



Упражнение Построить алгоритм вычисления величин $T_{\Pi}(x)$ с T=O(|E|).

Определение Полным резервом времени для работы $e = (i, k) \in E$ называется величина $T_{\Pi}(k) - T_{P}(i) - \tau(e)$.

Теорема Необходимым и достаточным условием принадлежности работы критическому пути является равенство нулю ее полного резерва времени.

Доказательство Необходимость. Пусть дуга e = (i, k) является критической. Тогда

$$L_{si} + au(e) + L_{kt} = L_{Kp}$$
 и $(T_{Kp} - L_{kt}) - L_{si} - au(e) = 0,$ но $T_{Kp} - L_{kt} = T_{\Pi}(k)$ и $L_{si} = T_{P}(i),$

откуда и следует доказательство теоремы. Достаточность доказывается аналогично. ■

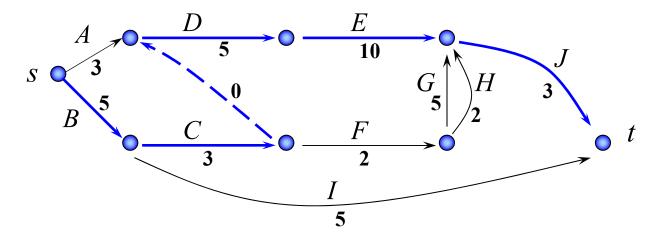
Следствие Событие *x* является критическим, если и только если $T_P(x) = T_D(x)$.

Стратегический анализ

Критический путь B, C, D, E, J. Длина пути $T_{Kp} = 26$.

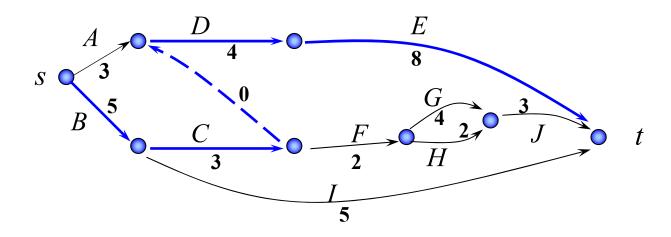
Работа J — обучение персонала. Работа E — ремонт помещений.

Можно обучать персонал в учебном центре и убрать предшествование E для J. Длительности работ можно сократить, если привлечь дополнительные средства.



Новая сетевая модель

Сократили длительности работ D, E, G и удалили работу E из предшественников работы J. Новый критический путь B, C, D, E. Длина пути $T_{Kp} = 20$.



Вопросы

- Задача вычисления критического времени проекта принадлежит классу Р (Да или Hem?)
- Если полный резерв времени некоторой работы e = (i, k) равен нулю, то события i, k являются критическими (Да или Нет?)
- Сокращение длительности критической работы или удаление условия предшествования между двумя критическими работами ведет к сокращению длительности всего проекта (Да или Нете?)
- Критическое время проекта можно найти, решив задачу линейного программирования (Как?)
- Если требуется сократить критическое время проекта путем сокращения длительности каких-то работ, то минимум таких сокращений можно найти, решив задачу линейного программирования.

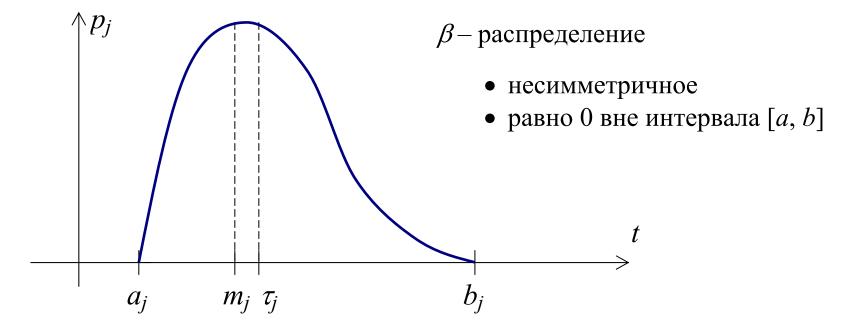
Вероятностная модель

Для каждой работы $j \in J$ кроме τ_j — длительности выполнения (в среднем) зададим три величины:

 a_{j} — оптимальное время завершения;

 m_{j} — наиболее вероятное время завершения;

 b_i — пессимистическое время завершения.



Оценка параметров для β -распределения

Для работы j среднее значение $\tau_j \approx \frac{(a_j + 4m_j + b_j)}{6}$, дисперсия $\sigma_j \approx \left(\frac{b_j - a_j}{6}\right)^2$, стандартное отклонение $\sqrt{\sigma_j} \approx \frac{b_j - a_j}{6}$.

	a	m	$\frac{b}{b}$	Среднее	Ст. отклонение	Лисперсия
<i>J</i>	u		υ			
A	1	3	5	3	2/3	4/9
B	3	4,5	9	5	1	1
C	2	3	4	3	1/3	1/9
D	2	4	6	4	2/3	4/9
E	4	7	16	8	2	4
F	1	1,5	5	2	2/3	4/9
G	2,5	3,5	7,5	4	5/6	25/36
H	1	2	3	2	1/3	1/9
I	4	5	6	5	1/3	1/9
J	1,5	3	4,5	3	1/2	1/4

Вероятность завершения проекта к заданному сроку

Предполагаем, что

- длительности работ являются независимыми случайными величинами;
- ullet случайная величина \widetilde{T}_{Kp} имеет нормальное распределение.

Требуется оценить $Prob\{\widetilde{T}_{Kp} \leq T^*\}$ для любого T^* .

Пример Берем критический путь B, C, D, E и считаем дисперсию для \widetilde{T}_{Kp} .

$$\sigma(\widetilde{T}_{Kp}) = \sigma(B) + \sigma(C) + \sigma(D) + \sigma(E) = 1 + \frac{1}{3} + \frac{4}{9} + 4 = \frac{52}{9}$$
. Стандартное откло-

нение
$$\sqrt{\sigma(\widetilde{T}_{Kp})} = \sqrt{\frac{52}{9}} = 2,404$$
. Итак, \widetilde{T}_{Kp} — нормально распределенная слу-

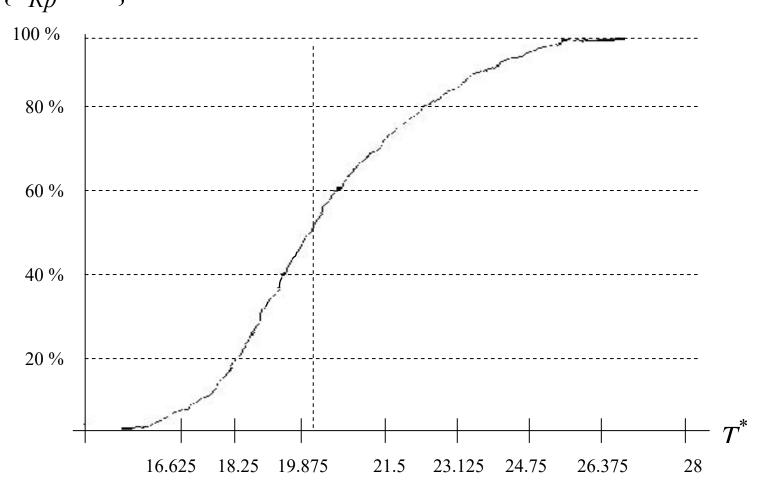
чайная величина с мат.ожиданием $T_{Kp} = 20$ и стандартным отклонением 2,404.

Тогда для
$$z = (\widetilde{T}_{Kp} - T_{Kp})/\sqrt{\sigma}$$
 при $T^* = 22$ получаем

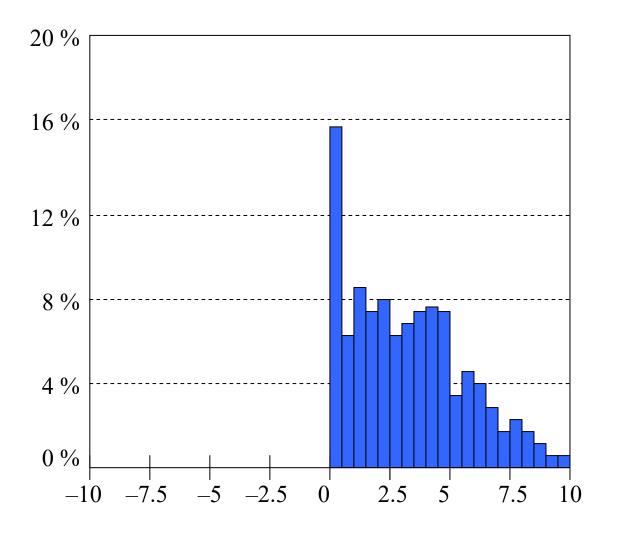
$$Prob \ \{\widetilde{T}_{Kp} \le T^*\} = Prob \ \left\{ \frac{\widetilde{T}_{Kp} - T_{Kp}}{\sqrt{\sigma}} \le \frac{T^* - T_{Kp}}{\sqrt{\sigma}} \right\} = Prob \ \{z \le 0.8319\} \approx 0.8.$$

Расчеты по имитационной модели

Функция распределения для вероятности окончания проекта к времени T^* $Prob\{\widetilde{T}_{Kp} \leq T^*\}$



Распределение резерва времени для работы F



Полный резерв для работы F равен 3. Среднее значение полного резерва по имитационной модели 3,026, но большая дисперсия. Достаточно часто работа F оказывалась критической!

Вопросы

- Функция распределения для вероятности окончания проекта к заданному сроку вычисляется за полиномиальное время (Да или Нет?)
- Полный резерв времени любой работы является случайной величиной (Да или Нет?)
- Если требуется решить задачу о рюкзаке в вероятностной постановке, то можно аналогичным образом построить функцию распределения для суммарной ценности выбранных предметов и оценить вероятность получения дохода не ниже заданного (Да или Нет?)