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Abstract—The split of a multihop, point to point TCP connec-
tion consists in replacing a plain, end-to-end TCP connection by
a cascade of TCP connections. In such a cascade, connectionn

feeds connectionn+1 through some proxy noden. This technique
is used in a variety of contexts. In overlay networks, proxies
are often peers of the underlying peer to peer network. Split
TCP is also already proposed and largely adopted in wireless
networks at the wired/wireless interface to separate linkswith
vastly different characteristics. In order to avoid lossesin the
proxies, a backpressure mechanism is often used in this context.

In this paper we develop a model for such a split TCP
connection aimed at the analysis of throughput dynamics on both
links as well as of buffer occupancy in the proxy. The two main
variants of Split TCP are considered: that with backpressure
and that without. The study consists of two parts: the first
part is purely experimental and is based onns2 simulations.
It allows us to identify complex interaction phenomena between
TCP flow rates and proxy buffer occupancy, which seem to have
been ignored by previous work on Split TCP. The second part
of the paper is of mathematical nature. We establish the basic
equations that govern the evolution of such a cascade and prove
some of the experimental observations made in the first part.
In particular, we give the conditions for system stability and we
show the possibility of heavy tail asymptotics for proxy buffer
occupancy and delays in the stationary regime.

I. I NTRODUCTION

The panorama of access network technologies has been
changing at incredibly fast rate over the past several years,
whilst almost any substantial change intervened at transport
layer, where TCP has become a “standard de facto”.

However, the increasing user demand for high quality ser-
vices spurs development of performance-enhancing techniques
to implement on top of the preexistent IP infrastructure.

Particularly powerful for content delivery and media stream-
ing in peer to peer systems,overlay networkshave emerged
as an attractive solution for throughput improvement without
any change of the underlying network architecture.

One of the key features of overlay networks is thesplit-
connectionmechanism, that yields a considerable throughput
improvement for a TCP connection when split in shorter
segments on the route between the sender and the receiver
host. Intermediate nodes act as proxies: incoming packets are
locally acknowledged on each segment (LACKs), then stored
and forwarded on the next TCP connection.
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In the context of overlay networks, Split TCP is addressed
in [3] and [17], where, in addition, a backpressure mechanism
is proposed to limit the sending rate to the forwarding rate
in presence of saturated proxy buffer, thus preventing buffer
overflows. In other contexts, Split TCP has been shown to
be particularly effective when the sender-to-receiver route
includes network segments with very different characteristics,
like wired and wireless links, that usually cause problems to
TCP. In fact, the “split connection” approach was initially
proposed in the context of wireless networks where a sig-
nificant throughput degradation has been observed for TCP.
The poor TCP performance in wireless networks is to ascribe
to the congestion control that wrongly attributes to congestion
losses due to link failures (consequence of mobility or channel
errors), or is related to high propagation delays that slacken the
growth of congestion window. In the seminal work of [7], [8]
a new implementation of TCP was proposed, Indirect TCP
(I-TCP), which handles the problem of wired-wireless link
interaction and introduces the concept of Split TCP. Two TCP
connections in tandem replace the single TCP connection: the
first running on the wired side, the second one running over
the wireless link and characterized by different parameters to
cope better with larger delays and channel losses. The same
approach has been drawn on in [16] where the Split TCP
scheme is adapted to mobile ad hoc networks to cope with
the additional issue of a dynamic placement of the proxy.
The aim of the “split-connection” approach is to operate a
clear separation between flow control and congestion con-
trol functionalities over two different network environments.
Similar issues have been studied insatellite networks ([19],
[14]) where long propagation delays cause TCP throughput
degradation by lengthening the slow start duration and slowing
the linear growth of the congestion window in the Congestion
Avoidance phase. Such throughput limitations are aggravated
by frequent losses related to channel errors or temporary link
disconnections. In this context, proxies with specific capa-
bilities, called Performance Enhancing Proxies (PEP), have
been introduced to perform a transport layer connection split
oblivious to end systems (cfr.[21]). Among all the approaches
that attempt to isolate issues pertaining to different media,
the split connection approach is the only one that does not
require any modification of standard TCP implementations,
and for that reason it has been subject of an in-depth study
in the literature. The diffusion and implementation of split-
connection techniques is documented by a recent measurement
study ([24]) where the authors detect, through the use of
inference/detection methods, the deployment of Split TCP in



all commercial networks they consider. They also investigate
the throughput improvement provided by split TCP with
respect to standard TCP implementation, that can be up to
65%. targeted to the throughput evaluation along a chain of
TCP connections. (e.g.[9]). There are only a fewanalytical
attemptsin the literature which study Split TCP’s dynamics.
[25] studies a particular class of split-connection approaches
in wired/wireless networks, that adopts a standard versionof
TCP on wired segment and an “ad hoc” light-weight transport
protocol for the wireless hop. In [23] an estimate of the
expected throughput is provided for a cascade of standard TCP
connections based on the well known square root formula,
thus neglecting the dependencies between the two connections.
Similar models based on the square root formula for TCP
throughput estimation are presented in [13], [17], [22], where
the authors make the assumption that the buffer in the proxy
never empties nor fills.

In this work, we make the following analytical contribu-
tions: we establish the equations for throughput dynamics
jointly with that of buffer occupancy in the proxy. We then
determine the stability conditions by exploiting some intrinsic
monotonicity and continuity properties of the system. Finally,
we focus on the study of buffer occupancy in the proxy and
end-to-end delays to derive tail asymptotics. The framework
allows us to consider both the case with an infinite buffer at the
proxy and that of a limited buffer size, where a backpressure
algorithm is needed to limit the sender rate and avoid lossesin
the proxy. The paper consist of two parts: the first part (§ II,
§ III) exploits some simulation results to make some basic
observations on the system dynamics in different scenarios.
We identify there the complex interaction that exists between
TCP flow rates and proxy buffer occupancy. To the best
of our knowledge, this problem is addressed here for the
first time and finds an analytical explanation in the second
mathematical part of the paper, where we emphasize the role
of the buffer size on the total throughput gain for the split.This
second part (§ IV) contains further mathematical results such
as the equations governing the overall dynamics, the stability
condition for the case without backpressure. We also compute
the tail asymptotics for proxy buffer occupancy and delays
in the stationary regime and show that they are surprisingly
heavy-tailed under certain natural statistical assumptions of
the literature. Finally,§ V is devoted to discussions on future
works and concludes the paper.

II. SIMULATION SCENARIOS

A. Network Scheme

We consider a saturated traffic sourceS that sends packets
to the destinationD through two long-lived TCP-Reno con-
nectionsTCP1, TCP2 in cascade as in Fig. 1. Due to the
fact thatS is saturated,TCP1 always has packets to send.

S
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TCP 1

Ack

   Split  Point
Round Trip Time : R

TCP 2

 2

D
Ack

Fig. 1. Split TCP network scheme.

A layer-4 proxy placed in the middle and forwards packets
from the first link to the second one, sending local acknowl-
edgments toS (LACKs). It prevents the loss of packets that
cannot be immediately forwarded on the second link by storing
them temporarily in a buffer. When the buffer approaches
its maximal capacity, a backpressure mechanism limits the
sender rate. The flow control is accomplished through the
advertised window indication present on the acknowledgments
sent back to the senderS. The transmission window ofS is
then regulated according to the minimum between the current
congestion window and the advertised receiver window. There-
fore, as the buffer occupancy approaches the buffer capacity,
the backpressure algorithm timely starts working and prevents
buffer overflows. In thens2 simulator, the backpressure al-
gorithm is implemented by means of ack notifications to the
sender of the instantaneous available space in the proxy buffer.

B. Assumptions and Notation

In the following we introduce the notation that will be
used throughout the paper and the assumptions shared by the
simulation setting and later by the model.

• The TCP connections are assumed to be in Congestion
Avoidance phase, thus neglecting the initial slow start.

• X(t), Y (t) respectively denoteTCP1, TCP2 rates at
time t.

• The proxy buffer has sizeB. We will generally assume
a limited buffer size, though the mathematical part also
considers the ideal case ofB = ∞.

• The local Round Trip Times,R1, R2 (of TCP1, TCP2
respectively) are assumed to be constant, equal to twice
the local propagation delay.

• Losses are modeled by two kinds of Poisson processes:
- homogeneous Poisson processes with constant intensi-
ties λ, µ, which will be referred to as therate indepen-
dent (RI) case.
- inhomogeneous Poisson processes with (stochastic) in-
tensitiesλX(t), µY (t), proportional to the ratesX(t) and
Y (t), a case that will be referred to as therate dependent
(RD) case.

Concerning the loss process assumptions, the RI case cor-
responds to losses caused by physical layer events arising
on wireless links (fast fading) or some DSL links (impulse
noise [5]) and which occur with a probability that does not
depend on the rate of the connection. The RD case fits well
with the cases where there is a PER (packet error rate) due to
congestion e.g. AQM or droptail losses in shared buffers, self
congestion that arises in slow links, or transmission errors that
are due to decoding errors. In addition, these models allow one
to consider at the same time both transmission error losses and
congestion losses. Some interesting models are hybridations of
the above simple cases. Here is a typical example to be used
in what follows: TCP1 is a fast wired link with RD losses
andTCP2 is a slow DSL or wireless link with RI losses.
C. Scenarios

The following three scenarios focus on a cascade of two
TCP connections. They correspond to different network set-
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tings, and contexts of application of Split TCP.
• The Slow Sender Fast Forwarder case (SF).

When the first TCP connection is “slower” than the
second one, i.e. it has a smaller capacity and/or longer
RTT and/or higher loss rate, we are in what we call the
“SF” scenario. It can be the case in overlay networks,
where the traffic of the first TCP connection is forwarded
on a fasterTCP connection.

• The Fast Sender Slow Forwarder case (FS).
We call the “FS” case, the scenario whereTCP1
is “faster” than TCP2. It is the case in hybrid
wired/wireless scenarios where the faster reliable wired
connection forwards its traffic to a slower lossy wireless
connection. In the case of a wired/satellite configurations,
in addition, the wireless part is characterized by higher
propagation delays. The example whereTCP1 is a fast
link with a RD loss process andTCP2 is a slow one with
RI losses, which is important in the wireless context, will
be referred to as the FS-RD/RI example.

• The symmetric case.
In the wired/wireless cascade, the twoTCP connections
are strongly asymmetric, as the two media are notably
different. In overlay networks, instead, it can happen for
a longTCP connection to be split in smaller symmetric
segments. In this case, it is not clear a priori which
connection is faster or slower.

D. Performance Metrics

The majority of related work on Split TCP are experimen-
tal evaluations of the throughput improvement achieved by
splitting connection techniques. In addition to the throughput
metric, our work is focused on the analysis of buffer occupancy
in the proxy and on packet delays

III. S IMULATION RESULTS

In this section we present a set ofns2 simulations to
illustrate the temporal evolution of congestion windows of
TCP1 and TCP2 as well as the proxy buffer occupancy in
the three cases mentioned above.

A. Rates

Let us start with a rather “symmetric” case, where the
connections have the same rate,C1 = C2 = 100 Mbps, similar
propagation delays,R1 = 100 ms, R2 = 90 ms, and where
losses are generated according to homogeneous (RI) Poisson
processes with intensityλ = µ = 0.3 losses/s. The proxy
buffer can storeB = 15 pkts and we assume a constant packet
size equal to1500 Bytes. Fig. 2 shows thens2 simulation
of the congestion window patterns in Congestion Avoidance
phase, together with the buffer occupancyQ(t) in the proxy.

Looking at the buffer dynamics in Fig. 2, we remark that:
Observation III.1 The rate ofTCP1 and TCP2 interact
through the buffer occupancy. One can distinguish three op-
erational phases:

(PH1) as long as the buffer is neither empty nor full, TCP
rates X, Y follow the AIMD rule, i.e. they linearly
increase until a jump occurs and halves the rate;

(PH2) the rate ofTCP2, Y exhibits a nonlinear growth
when the buffer is empty;

(PH3) the rate ofTCP1, X exhibits a nonlinear growth
when the buffer approaches saturation.
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Fig. 2. Congestion windows and buffer occupancy in the symmetric case.
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Fig. 3. Congestion windows and buffer occupancy in the SF case.
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Fig. 4. Congestion windows and buffer occupancy in the FS case.

In Fig. 3-4, we plot the congestion windows and the proxy
buffer occupancy in theSF andFS cases respectively. In the
SF case we maintain the same links capacities (C1 = C2 =
100 Mbps), the round trip times areR1 = 90 ms, R2 = 30
ms, and loss intensities areλ = µ = 0.4 losses/s (still under
the assumption of RI losses). TheFS case is characterized
by R1 = 40 ms, R2 = 80, andλ = 0.4, µ = 0.2 losses/s. In
both cases, the proxy buffer size isB = 20 pkts. We observe
that in both cases, the dynamics of one of the three possible
phases can be neglected w.r.t. the others. In theFS scenario
the buffer hardly ever empties, therefore the duration of phase
2 is negligible when compared to the other phases, whereas in
the SF it is the opposite scenario : the buffer is rarely close
to saturation, hence phase3 is almost never visible. Therefore,
we will consider laterSF/FS cases with large buffers where
only phases1-2 and1-3 are taken into account, respectively.

The nonlinear behavior ofX or Y bears evidence of the
fact that the two TCP connections interact. In particular,
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TABLE I
IMPACT OF BUFFER SIZE ON STATIONARY THROUGHPUT AVERAGES.

Buffer size[pkt] 1 5 10 20 50 100 1000
Mean Throughput [pkt/s] 780 1415 1840 2285 2954 3340 3340
Throughput Improvement — 81% 136% 193% 278% 328% 328%

the window of TCP2 (and therefore its rate) evolves not
only according to the windows dynamics of TCP, but also
according to the availability of packets in the proxy. Similarly,
the window of TCP1 (and therefore its rate) evolves not
only according to the AIMD rule, but also according to the
availability of space in the receiver buffer, advertised bythe
proxy to the sourceS via the backpressure mechanism.

In Obs. III.1, we have already remarked the role of the buffer
content on the interaction betweenTCP1 andTCP2. In Tab.
I we report the mean values of total throughput in steady state
for different values of the buffer size in aSF case. HereC1 =
C2 = 100 Mbps, R1 = 40 ms, R2 = 20 ms, λ = µ = 0.4
losses/s. Compared to the extreme case ofB = 1 pkt, we
remark a large improvement of total throughput as buffer size
increases. At the other extreme, whenB is large enough to
never saturate, the total throughput reaches its maximum value,
which corresponds to the throughput ofTCP1 in isolation (the
last is computed via the mean throughput formula in§ IV-B).
An important consideration follows:

Observation III.2 In the RI case, the end-to-end throughput
of Split TCP increases with the proxy buffer size.
A large buffer size is beneficial to the total throughput, in
that it makes it less common to use the flow control of the
backpressure mechanism and it reduces the probability for the
buffer to empty, which limits the forwarding rate. On theTCP
rates we observe that:

Observation III.3 In the finite buffer backpressure case, the
long term average ofTCP1 coincides with that ofTCP2 and
is strictly smaller than that of each connection in isolation.
This is in contrast with the throughput estimation provided
in [13], [22], [23], through the application of the square root
formula. These works rely on the assumption that the two con-
nections are independent and evaluate the overall throughput
as the minimum of the throughputs of each connection taken
in isolation. As shown in tab.I, such a minimum rule is in fact
the best case and a significant throughput degradation can be
observed w.r.t. this rule in the presence of small buffer size.

The simulation results presented so far share the assumption
of RI losses, though all considerations still hold for the RD
case. We report in Fig. 5 a symmetric RD scenario with the
following parameters:C1 = C2 = 100 Mbps, R1 = R2 = 60
ms, λ = µ = 0.03, where all three phases can be observed.
B. Buffer Occupancy

We present here the statistical analysis of the buffer occu-
pancy in steady state and whenB = ∞. In order to guarantee
the existence of a steady state, we consider the SF case (we
will give in due time the exact conditions for such a steady
state to exist). To infer some preliminary information on the
queue distribution, we made a fit with theR software (free
clone ofS-plus) of the stationary queue distribution from the
samples extracted vians2simulation.
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Fig. 5. Congestion windows and buffer occupancy in the RD loss case.

1) RI Case: In the RI case, theR software suggests a
Weibull distribution with shape parameter0.5; the last param-
eter was obtained through a maximum likelihood estimator.
We can then conjecture that:

Observation III.4 In the RI case withB = ∞, when there is
a stationary regime, the stationary buffer occupancy exhibits
a heavy tail.
The presence of possible heaviness in the queue tail motivated
a further inspection of the moments ofQ by means of
statistical methods suitable for heavy-tailed distributions.

For this purpose, two statistics were employed: the Hill plot
and the R statistic (see definitions an further details of the
analysis in [4]).
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Fig. 6. Hill plot and R statistic for the queue tail.

Fig. 7. α-Confidence Intervals withα = 0.95.

In Fig. 6 we plot the parameterγ of the Hill estimator in the
aboveSF scenario. It rapidly converges to a value between0
and1, which indicates a Pareto-like distribution with infinite
second moment. In contrast with this result, the same figure
also shows the R statistic for the second moment of the tail
distribution, computed on the same set of samples; the fact that
it becomes zero supports the thesis of the finiteness of the
second moment. The discrepancy between these two results
can be explained by looking atα-confidence intervals for
the Pareto distribution or for the above mentioned Weibull
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distribution in this example. We observe in Fig. 7 that the
0.95-confidence intervals of a Pareto distribution withα = 0.5
and a Weibull distribution with shape parameter0.5 largely
overlap in a way which compromises the inference of the tail
distribution. In conclusion, we showed that these statistical
methods aimed at the identification of the shape of these heavy
tails provide discordant answers.

2) RD Case: In the RD case both the Hill plot and the R
statistic agree that the distribution of the buffer occupancy has
all finite moments. We reported in Fig. 8, the Hill plot and the
R statistic for the second moment of the distribution in a SF
scenario with such RD losses. The results of statistical test in
the RD case allows us to observe that:

Observation III.5 In the RD case, the buffer occupancy ex-
hibits a light tail decay.
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Fig. 8. Hill plot for the RD case

3) Mixed Case: In the SF case withB = ∞, TCP1
RI and TCP2 RD, the R software also gives a stationary
buffer content with a tail which is asymptotically Weibull of
parameter approximately. 1/2 (see [4]).

IV. M ATHEMATICAL ANALYSIS

In this part, we first establish the differential equations
which govern the joint evolution of the windows and the
rates of the connections and of the buffer content. We then
give formal proofs for some of the experimental observations
made in the previous sections and add further results. More
precisely:

• We address the stability issue, in case of infinite buffers
and no backpressure (which is the only case where the
stability question is of interest);

• We analyze the tail asymptotics for the buffer occupancy
as well as for end-to-end delays;

• We prove that in the finite buffer, backpressured case, the
stationary throughput is strictly less than the minimum of
the stationary throughput of each connection in isolation.

A. The Single Connection Model

Let us now briefly revisit the models of [6] and [5] for a
single TCP connection. In Congestion Avoidance phase, the
evolution of the TCP congestion window is described through
the following “hybrid” differential equation:

dW (t) =
dt

R
− W (t)

2
N(dt) (1)

which states that the window increase between two loss events
is linear with slope1

R
, whereR denotes the Round Trip Time

and that loss events produce jumps of congestion windows
which is cut by half. In this stochastic differential equation,
N(t) represents the loss point process. We assume here that
this point process has a stochastic intensity (w.r.t. the natural

history of W (t) - see [2] for the definition of stochastic
intensity) which is either constant or proportional toW (t)
depending on the case we consider (RI/RD).

Linked to the congestion window we define the instanta-
neous rate or throughput (here the two words are interchange-
able), asX(t) = W (t)/R, a generally accepted assumption
in the literature, which can be seen as an avatar of Little’s
law. The rationale for the linear increase is as follows: TCP
stipulates that in the Congestion Avoidance phase, the window
is increased of 1 unit everyW ack. In an infinitesimal interval
of lengthdt, the number of acks that arrive isX(t)dt. Hence
the window increases ofX(t)dt/W (t) = dt/R. The rationale
for the halving of the window in case of a loss is just the
multiplicative decrease rule.

B. Mean Throughput in Steady State

The stationary distribution of the rate of each TCP connec-
tion in isolationhas an analytical expression. In particular, the
mean throughput ofTCP1 (resp.TCP2), in isolation is given
by X̄ = 2α

λ
(resp. Ȳ = 2β

µ
), whereα = 1/R2

1, β = 1/R2
2.

This result follows from the fact thatX(t)−αt+ λ
2

∫ t

0
X(u)du

is a martingale (cfr.[4]). Thanks to the PASTA property, the
mean valueE0

N [X(0−)] of the stationary rate just before a
loss is equal to stationary rate in continuous timeX̄. Using
this and the fact that the packet loss probability isp = λ

X̄
, we

obtain the square root formula

X̄ =

√
2α

p
,

(
resp.Ȳ =

√
2β

q

)
. (2)

In [6], the following square root formula is derived for the RD
case:

X̄ = Φ

√
α

λ
,

(
resp.Ȳ = Φ

√
β

µ

)
, (3)

whereΦ =
√

2
π

P

∞

i=0
(
Q

i
j=1

(1−4j))−1

P

∞

i=0
(
Q

i
j=1

(1−4j))−12i
≈ 1.309.

C. The Split Connection Model

Let now introduce the stochastic equations for the split
connection model.

With respect to the case of a single TCP connection, as
observed in Obs. III.1 there are three operational phases:

• Phase 1 or thefree phase, where the buffer is neither
empty nor full, andX(t) andY (t) evolve independently;

• Phase 2 or thestarvation phase, when the buffer is empty
andY is limited by the input rateX .

• Phase 3 or thebackpressure phase, when the buffer has
reached it storage capacityB and X is forced by the
backpressure algorithm to slow down to the rateY at
which the buffer is drained off.

In the free phase, the AIMD rule gives:

on {0 < Q(t) < B}
{

dX(t) = αdt − X(t)
2 M(dt)

dY (t) = βdt − Y (t)
2 N(dt).

(4)
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In the starvation phase, as long as the buffer is empty (which
requires thatX(t) ≤ Y (t)), we have:

on {Q(t) = 0}
{

dX(t) = αdt − X(t)
2 M(dt)

dY (t) = β X(t)
Y (t) dt − Y (t)

2 N(dt).
(5)

whereM(t), N(t) represent the loss processes onX andY .
The rationale for a linear increase ofY (t) proportional to
X(t)
Y (t) < 1 is that when the buffer is empty, sinceX(t) < Y (t),
the rate at which packets are injected inTCP2 and hence the
rate at whichTCP2 acks arrive isX(t). Hence the window
of TCP2, W2, increases ofX(t)dt/W2(t) = dt X(t)

R2Y (t) in
the interval(t, t+dt) and the rate ofTCP2 thus increases of
βdtX(t)

Y (t) during this interval. The ratioX(t)
Y (t) can be interpreted

as theutilization factor of the congestion windowW2(t): in
contrast with what happens in the free phase, whereTCP2 is
“independent” ofTCP1 and where the windowW2 is fully
utilized (draining packets from the buffer), in the starvation
phase, the number of packets transmitted byTCP2 depends
on X(t), which brings the utilization factor below1 and leads
to a nonlinear evolution as observed in Obs. III.1.

In the backpressure phase, which lasts until the buffer is
saturated (this requires thatX(t) ≥ Y (t)), we have

on {Q(t) = B}
{

dX(t) = α Y (t)
X(t)dt − X(t)

2 M(dt)

dY (t) = βdt − Y (t)
2 N(dt).

(6)

The rationale for this should be clear: acks ofTCP1 now
come back at a rate ofY (t). Hence the congestion window,
W1(t) of TCP1 grows at the rateY (t)/W1(t).

The evolution of the buffer occupancy in the proxy within
phase1 (Q(t) > 0) is given by

Q(t) = Q(0) +

∫ t

0

(X(u) − Y (u))du. (7)

Note that the queue at the proxy can be seen as a fluid queue
with a fluid input rateX(t) and a fluid output rateY (t) at
time t. Hence we can also write:

Q(t) =max

(
sup

0≤u≤t

∫ t

u

(X(v) − Y (v))dv,

Q(0) +

∫ t

0

(X(u) − Y (u))du

)
. (8)

Fig.9 shows the perfect agreement between the evolution of
congestion windows as predicted by Eq.(4)-(7) or provided by
ns2simulations.
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D. Stability in the Infinite Buffer, RI Case

This subsection is focused on the caseB = ∞, where only
phase 1 and 2 exist. A natural question within this infinite
buffer context is that ofsystem stability, which is understood
here as the finiteness of the stationary buffer occupancy at the
proxy. In the stable case, this infinite buffer model is a good
approximation of the SF case, wheneverB is not too small
(we have seen in§ III that in this case, phase3 is almost never
visited and that we can focus on phase1/phase2 dynamics).
In the RI case, the stability proofs rely on some monotonicity
properties which we introduce in the following paragraph.

1) Monotonicity Properties in the RI Case:Let consider
sample paths ofX(t) and Y (t) in caseB = ∞, where the
dynamics is governed by (4) or (5) depending onQ(t).

We denote byY f (“free Y”) some fictitious process which
evolves according to the dynamics of phase1 only. In the RI
case, we can actually choose to make acoupling of Y f and
Y by building these two processes from thesame realization
of the Poisson point processN .

We can then state three main properties:

(i) If we consider two processes,Y f (t), Ŷ f (t) based
on the same realization ofN , but departing from
different initial conditions,Y f (0) ≤ Ŷ f (0), then,
Y f (t)≤Ŷ f (t),∀t ≥ 0.

(ii) If we consider the processY f
v (t), t ≥ v which starts

from 0 at timev, thenY f
v1

(t) ≥ Y f
v2

(t), for all v1 <
v2 ≤ t.

(iii) If Y f (0) = Y (0), thenY (t) ≤ Y f (t), for all t ≥ 0.

The proofs of the first 2 properties should be clear. The last
one follows from the fact that in phase 2,X(t) ≤ Y (t), so that
at any continuity point, the slope ofY (t) is always less than
or equal to the slope ofY f (t). Since both processes have the
same discontinuity points (thanks to the coupling), the result
immediately follows.

Consider now the caseB finite with backpressure. The triple
(X(t), Y (t), Q(t)) forms a continuous time Markov process.
Thanks to the fact thatQ is bounded from below by 0 and from
above byB, one can show that this Markov process admits
a unique stationary distribution, and that, starting from any
initial value, this markov process converges to the stationary
one in the total variation norm.

We again compare the processes(X(t), Y (t)) in the Split
TCP system and the free processes(Xf (t), Y f (t)). We build
these processes on the same realizations of the point processes
M and N . Assume the initial conditions to be the same:
(X(0), Y (0)) = (Xf (0), Y f (0)). When we are in phase 1, the
two processes have exactly the same dynamics, so that if at the
beginning of the phase,(X(.), Y (.)) ≤ (Xf (.), Y f (.)) coor-
dinatewise, then this holds true at the end of the phase too. In
phase 2 (resp. 3), the slope ofY (resp.X) is strictly less than
that ofY f (resp.Xf ) and both are halved at the same epochs,
whereasX andXf (resp.Y andY f ) have exactly the same
dynamics. Hence, if(X(.), Y (.)) ≤ (Xf (.), Y f (.)) at the
beginning of the phase, then(X(.), Y (.)) < (Xf (.), Y f (.)) at
the end. This leads to the following confirmation of Obs. III.3:
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Lemma IV.1 In the RI case withB < ∞, when backpressure
is used, the stationary rate of Split TCP isstrictly less than
the minimum of that ofTCP1 and TCP2 in isolation.

2) Queue Bounds:The triple (X(t), Y (t), Q(t)) forms a
Markov process. Interestingly enough, the direct stability anal-
ysis of this Markov via Liapunov functions is not an easy task.
In particular, we were unable to make use of the classical fluid
limit techniques for Markov chains here, primarily becauseof
the multiple phases. This is the reason why we use backward
construction techniques to prove stability. This will be done
by introducing two simple bounds on the queue size.

The proposed backward construction (see e.g. [2] Chapter
1 for classical instances of such constructions) consists in
building the queue sizeQt(0) at time0 when departing from
an appropriate initial condition at timet < 0. The initial
condition that we select consists of a queue sizeQ(t) = 0, a
rate forTCP1 which is the stationary ratẽX(t) of TCP1 at
time t in isolation, and a rate forTCP2 which is the stationary
rateỸ f (t) of TCP2 at timet in isolation. From (8), we have

Qt(s) = sup
t≤u≤s

∫ s

u

(X̃(v) − Yt(v))dv, (9)

for all s ≥ t, whereYt(v) denotes the rate ofTCP2 in the
Split TCP system and at timev under the above assumptions.

The stability issue can then be stated in the following terms:
doesQt(0) have an almost surely (a.s.) finite limsup whent
tends to−∞? This is enough to ensure that the Markov chain
(X(t), Y (t), Q(t)) is neither transient nor null recurrent.

We are now in a position to define the lower bound queue.
From (iii) and from (9), we get

Qt(0) ≥ Lt = sup
t≤u≤0

∫ 0

u

(X̃(v) − Ỹ f (v))dv, (10)

whereỸ f (.) is the stationary free process forTCP2. In [4],
we prove that the stochastic process(X̃(t), Ỹ f (t)), which
describes the fluid input and the fluid drain in this queue,
forms a stationary and geometrically ergodic Harris chain.
In particular we show there that we can apply the splitting
technique of Athreya and Ney (cfr.[1]) for such chains and
that there exist renewal cycles for this process related to its
return times to the compact setC = [0, x] × [0, 2β

α
x], where

x is an arbitrary positive real number. In what follows, we
will denote byT the length of such a renewal cycle. We now
define the upper bound queue. Letτ(t) denote the beginning
of the last busy period ofQt(s) before time 0 (0 ifQt(0) = 0
and t if Qt(s) > 0 for all t < s ≤ 0). We have

Qt(0) =

∫ 0

τ(t)

(X̃(v) − Yt(v))dv ≤
∫ 0

τ(t)

(X̃(v) − Y f

τ(t)(v))dv

≤ Ut = sup
t≤u≤0

∫ 0

u

(X̃(v) − Y f
t (v))dv, (11)

where the first inequality follows from the fact that the
dynamics on(τ(t), 0) is that of the free phase and from the
fact thatY f

τ(t)(.) is the minimal value for the freeTCP2 (i).
3) Stability:

Lemma IV.2 If ρ < 1, whereρ = αµ
βλ

, then the RI system is
stable. Ifρ > 1, then it is unstable.

Proof: We prove first that ifρ > 1, then the system is
not stable. The equation forLt is that of a classical fluid
queue withstationary and jointly ergodicarrival and service
processes. The joint ergodicity follows from the fact that the
couple (X̃, Ỹ f ) forms a Harris recurrent and geometrically
ergodic Markov process (see [4]). We can hence apply classical
results on fluid queues stating that under the above stationarity
and ergodicity properties, ifE[X̃(0)] > E[Ỹ f (0)], then Lt

tends a.s. to∞, which in turn implies that we cannot have
lim supt→∞ Qt(0) a.s. finite. Henceρ > 1 implies instability.

We now prove that ifρ < 1, then the system is stable.
Assume thatlim sup Qt(0) = ∞ with a positive probability.
Then lim sup Ut = ∞ with a positive probability too. AsX̃
andY f

t are locally integrable for allt, this together with the
second monotonicity property of the last subsection imply that
there exists a sequencetn tending to−∞ and such that a.s.∫ 0

tn

(X̃(v) − Y f
tn

(v))dv →n→∞ ∞. (12)

Let us show that this is not possible under the assumption
ρ < 1. Let θt denote the product shift of the point processesM
andN (this shift is ergodic). The pointwise ergodic theorem
implies that

1

t

∫ 0

−t

X̃(v)dv =
1

t

∫ 0

−t

X̃(0) ◦ θvdv →t→∞ E[X̃(0)], (13)

where the last limit is in the a.s. sense. We show now that the
following a.s. limit also holds:

1

t

∫ 0

−t

Y f
−t(v)dv →t→∞ E[Ỹ f (0)]. (14)

This will conclude the proof since (13)-(14) and the assump-
tionE[X̃(0)] < E[Ỹ f (0)] imply that a.s.limt→∞

∫ 0

−t
(X̃(v)−

Y f
−t(v))dv = −∞, which contradicts (12).
Let us now prove (14). From the monotonicity properties,

the functionϕt =
∫ 0

−t
Y f
−t(v)dv is super-additive:ϕt+s ≥

ϕt ◦ θ−s + ϕs. Thanks to the sub-additive ergodic theorem,
this together with the fact thatϕt is integrable imply that
a.s. ∃ limt→∞

1
t

∫ 0

−t
Y f
−t(v)dv = K, for some constantK

which may be finite or infinite. The fact thatK is finite
follows from the bound0 < Y f

−t(v) ≤ Ỹ f (v) and from
the pointwise ergodic theorem applied to the stationary and
ergodic process{Ỹ f (v)}. Since K is finite, the last limit
holds both a.s. and inL1 [18]. Using again super-additivity
of the forward process, we get by the same arguments:
K = limt

1
t

∫ 0

−t
Y f
−t(v)dv = limtE(1

t

∫ t

0
Y f

0 (v)dv
)

. But

from the fact thatY f
0 (v), v ≥ 0 is a geometrically ergodic

Markov chain, ∃ limt→∞
1
t

∫ t

0 Y f
0 (v)dv = E[Ỹ f (0)] a.s.

HenceK=E[ ˜Y f (0)], which concludes the proof of (14).

E. Stability in the Infinite Buffer, RD Case

In the RD case, we use the same backward construction as
above to prove the exact analogue of Lemma IV.2 (in the RD
case,ρ is also equal toαµ

βλ
). We only sketch the main ideas of

the proof. To get an upper bound onQt(0), we consider the
following optimization problem: what is the infimum over all
y ≥ 0 of the integral

∫ 0

u
Y f

u,y(v)dv whereY f
u,y(v) denotes the

value of the free process ofTCP2 at timev ≥ u when starting
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from an initial value ofy at timeu? Let us first show that the
last optimization problem admits an a.s. unique solutiony∗(u),
and that this solution is a.s. finite.

For defining such an infimum, we need the following con-
struction which builds the stochastic processesYu,y(v), v ≥ u
from a two dimensional homogeneous Poisson point process
N of intensityµ on the positive half plane(t ∈ R, y ∈ R+).
We start withY f

u,y(u) = y and then have a linear growth
of slope β until we find a point ofN below the curve
Y f

u,y(.). There we halve the value ofY f
u,y at that time and

we proceed again using the same rule of a linear growth
until the next point below the curve (see Fig. 10). It is easy
to see that the stochastic intensity of the losses is exactly
µY f

u,y(t) at timet, which is precisely what we want. With this
construction, allY f

u,y(t) are defined as deterministic functions
of N and the infimum over ally of

∫ u+t

u
Y f

u,y(v)dv for fixed
t > 0 and u is well defined in view of the fact that the
functiony →

∫ u+t

u
Y f

u,y(v)dv is piecewise continuous, with a
finite number of discontinuities in any compact, is increasing
between discontinuities and tends to∞ when y tends to∞.
Denote byY ∗

u (v) the functionY f

u,y∗(u)(v). Hence
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Fig. 10. Coupling of the RD processes.

Qt(0) ≤ Ut = sup
t≤u≤0

∫ 0

u

(X̃(v) − Y ∗
u (v))dv. (15)

The arguments to prove stability whenρ < 1 are then similar
to those in the RI case: whent tends to∞, 1

t

∫ 0

−t
X̃(v)dv

tends toE[X̃(0)] a.s. from the pointwise ergodic theorem.
The functionϕt =

∫ 0

−t
Y ∗
−t(v))dv is super-additive. We then

use the sub-additive ergodic theorem to prove that1
t
ϕt tends

to a constantK a.s. and the pointwise ergodic theorem again
to show that this constant is necessarilyE[Ỹ f (0)].

The proof of the last property relies on the following two
ingredients: a) For ally, with probability 1, there exists a
positive random variableǫ(y) > 0 such that the functions

y → gt(y) =
1

t

∫ t

0

Y f
0,y(v)dv

are t-uniformly continuous; b) Letyo(t) be the initial con-
dition that minimizes

∫ t

0
Y f

0,y(v)dv; the liminf of the function
yo(t) ast tends to∞ is 0. From b), we deduce that there exists
a subsequencetn such thatyo(tn) converges to 0 a.s. It is easy
to see thatgtn

(yo(tn)) converges toK asn tends to infinity.
But gtn

(0) converges toEỸ f (0) due to the ergodicity of the
Harris chainỸ f (.). This together with the continuity property
a) allow one to conclude thatK = limn→∞ gtn

(yo(tn)) =
limn→∞ gtn

(0) = EỸ f (0) a.s.

F. Tail Asymptotics in the RI Case

Here, we take up the Obs.III.4 and prove to following result.

Lemma IV.3 In the RI case, the queue distribution is heavier
than a Weibull distribution of shape parameterk = 0.5.

This unexpected result suggests that the buffer occupancy in
Split TCP is not negligible. It also explains the quite important
fluctuations observed on end-to-end delays within this context.

Tτ
1

τ τ
2 ι

Fig. 11. Decomposition of the integral ofX in a sum of trapezes.

We give the proof of this result in [4]. Let us summarize
here the main steps of the proof. It relies on the lower bound of
Eq.(10), and it is based on the fact that the fluid input process
and the fluid draining process of this lower bound queue are
jointly stationary and ergodic and have renewal cycles (see
[4]). We denote byT the length of such a renewal cycle and
we define

∆ =

∫ T

0

X̃(t) − Ỹ f (t)dt = Ix − Iy .

We first study the asymptotics forP(∆ > x) as x → ∞.
We show that this is lower-bounded by random variables
with a Weibull distribution with shape parameter1/2. Hence
Veraverbeke’s theorem ([11]) can be used to show thatQ is
heavier than a Weibull distribution with shape parameter1/2.
We now provide an intuitive explanation of the result on the
tail of ∆. By looking atIx, we observe that each trapeze area
has a triangular lower bound, so that

P

(
NT∑

0

Trapi > q

)
≥ P

(
NT∑

0

α
τ2
i

2
> q

)
,

where NT denotes the number of losses in the cycle. All
triangular areas are i.i.d and heavy tailed: asτi are i.i.d
exponentially distributed, each summand has a tail distribu-

tion P

(
α τ2

2 > x
)

= P

(
τ >

√
2x
α

)
= e−µ

√
2x
α , which

is Weibull with shape parameterk = 0.5. Thanks to the
properties of subexponential distributions, the result applies to
the integral ofX̃, and then propagates toQ. In ns2simulations,
such result has been proven not to be affected by a limited
congestion window, when large enough.

The communication literature contains many instances of
heavy tailed queues. The most famous example is probably
that of a FIFO queue subject to a self-similar input process;
it is proved in [20] that the stationary buffer content is then
heavy-tailed; it is also well known (see e.g. [10]) that suchself-
similar input processes arise in connection with HTTP traffic.
In this example, heavy tailed queues arise as a corollary of
long range dependence, which in turn is a consequence of the
heavy tailedness of file sizes and off periods. In contrast, the
heavy tailedness of the proxy contents in our Split TCP model
arises as a direct consequence of the AIMD dynamics under
the assumption of a RI loss process. Note however that the
heaviness of the tail is linked to the loss model considered.In
the RD case, arguments similar to those used in the RI case let
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us conjecture that the queue distribution is light (Obs.III.5).

G. Phases Duality and End-to-End Delays

The structure of Eq. (5), (6) points out theduality between
phase2 and3: we can obtain one equation from the other by
exchanging the roles ofX(t) andY (t) (and their parameters).
In phase3, the analogue ofQ(t) in phase2 is what we can
call theantibuffer: A(t) = B−Q(t), the amount of the proxy
buffer space available at timet. Based on this duality between
the SF and FS scenarios, we can use the analysis of the tail
asymptotics ofQ in the SF case to evaluateA(t) = B−Q(t)
in the dual FS case.

Let us now look at end-to-end delays. This is the sum of
three terms: the two local propagations delays and the proxy
buffer waiting and forwarding time. In the FS case and when
B is large enough, the processing delay of a packet arriving at
time t at the proxy is well approximated by the queue length
at time t divided by the mean value of the stationary service
rate ofTCP2 i.e.

D(t)≈R1

2
+

R2

2
+

Q(t)E[Ỹ ]
=

R1

2
+

R2

2
+

BE[Ỹ ]
− A(t)E[Ỹ ]

. (16)

The fluctuations ofD(t) are then determined by those of
A(t). Duality shows that the fluctuations ofA(t) in this FS
scenario are similar to those ofQ(t) in the SF case. We can
hence propose the following intuitive explanation for the high
variability of the end-to-end delays in the FS-RD/RI example:
the fluctuations of the delays are directly linked to those of
the instantaneous buffer content (Eq. (16)) or equivalently to
those of the antibuffer. The fluctuations of the antibuffer in
the FS-RD/RI case are similar to those of the buffer in the
dual SF-RI/RD case with the sameB. If B is large, the last
buffer content fluctuates like that of the SF-RI/RD case with
B = ∞, which we can conjecture to be heavy tailed in view
of our observations (§III-B3) and of the ideas in the proof of
Lemma IV.3.

V. CONCLUSIONS

The first contribution of the paper is the set of Equations
(4)-(7) which, to the best of our knowledge, provides the
first mathematical attempt for describing the dynamics of the
Split TCP system. Previous models neglect the dependence
between the two connections, by assuming that the buffer at
the intermediate node never empties nor saturates ([13]), whilst
we showed that there exist two phases, (ph. 2, 3) where the
interaction between the TCP ratesX andY and buffer occu-
pancyQ cannot be ignored. These equations also allowed us to
show that the prediction of the expected throughput in steady
state as provided by the square-root formula for the slowest
TCP connection in isolation ([17], [23], [13], [22]) isnot valid
unless buffers are very large. Finally, these equations allowed
us to identify situations where the proxy buffer content has
either heavy tails or important fluctuations which imply in turn
important fluctuations for end-to-end delays. We also expect
these equations to open a new analytical track for answering
the following list of questions which remain open as to the
writing of the present paper: In the finite buffer backpressured

case, 1) is the Split TCP stationary rate increasing inB as
suggested by Obs. III.2? 2) what is the value of the stationary
rate of the connection? In the infinite buffer stable case, 3)
is the stationary proxy buffer contents light tailed in the RD
case? 4) what is the exact asymptotic behaviour of the tail in
the RI case (we only proved it was heavier than Weibull)? 5)
what is the distribution, or the mean value of the stationary
buffer content?
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