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In the context of overlay networks, Split TCP is addressed

~ Abstract—The split of a multihop, point to point TCP connec- in [3] and [17], where, in addition, a backpressure mechmanis
tion consists in replacing a plain, end-to-end TCP connean by 5 yron0sed to limit the sending rate to the forwarding rate
a cascade of TCP connections. In such a cascade, connection . .
feeds connectiom+1 through some proxy noden. This technique in presence of saturated proxy bgffer, thus preventingelouff
is used in a variety of contexts. In overlay networks, proxie ©Overflows. In other contexts, Split TCP has been shown to
are often peers of the underlying peer to peer network. Split be particularly effective when the sender-to-receiverteou
TCP is also already proposed and largely adopted in wireless jncludes network segments with very different charadiess
networks at the wired/wireless interface to separate linkswith like wired and wireless links, that usually cause problems t
vastly different characteristics. In order to avoid lossesin the . ’ . .
proxies, a backpressure mechanism is often used in this cat. TCP. In fa.ct, the “split connelctlon approach was |n|t|ally

In this paper we develop a model for such a split TCP Proposed in the context of wireless networks where a sig-
connection aimed at the analysis of throughput dynamics ondth  nificant throughput degradation has been observed for TCP.
links as well as of buffer occupancy in the proxy. The two main  The poor TCP performance in wireless networks is to ascribe
variants of Split TCP are considered: that with backpressue to the congestion control that wrongly attributes to cotiges

and that without. The study consists of two parts: the first | due to link fail f bilit
part is purely experimental and is based onns2 simulations. '0SS€S Gu€ o linkfailures (consequence of mobility or ciein

It allows us to identify complex interaction phenomena between €rrors), or is related to high propagation delays that gatke
TCP flow rates and proxy buffer occupancy, which seem to have growth of congestion window. In the seminal work of [7], [8]
been ignored by previous work on Split TCP. The second part a new implementation of TCP was proposed, Indirect TCP
of the_ paper is of mathematlcal_ nature. We establish the basi (I-TCP), which handles the problem of wired-wireless link
equations that govern the evolution of such a cascade and pre . ; . .

some of the experimental observations made in the first part. |nteractlpn ar_ld introduces the ConcePt of Split TCP. TWF) TCP
In particular, we give the conditions for system stability and we ~CONnections in tandem replace the single TCP connectien: th
show the possibility of heavy tail asymptotics for proxy bufer first running on the wired side, the second one running over
occupancy and delays in the stationary regime. the wireless link and characterized by different paranseter
cope better with larger delays and channel losses. The same

) approach has been drawn on in [16] where the Split TCP
The panorama of access network technologies has b@@Reme is adapted to mobile ad hoc networks to cope with

changing at incredibly fast rate over the past several yeaige aqditional issue of a dynamic placement of the proxy.
whilst almost any substantial change intervened at tra®sp@he aim of the “split-connection” approach is to operate a
layer, where TCP has become a "standard de facto”. ~ clear separation between flow control and congestion con-
_However, the increasing user demand for high quality S&fy| functionalities over two different network environnts.
vices spurs development of performance-enhancing teaksidsimilar issues have been studiedsatellite networks ([19],
to |mpI_ement on top of the preexistent IP mfrastruc_:ture. [14]) where long propagation delays cause TCP throughput
~ Particularly powerful for content delivery and media strea gegradation by lengthening the slow start duration andisipw
ing in peer to peer systemeyverlay networkshave emerged the |inear growth of the congestion window in the Congestion
as an attractive solution fo_r throughput improvement wWitho a\oidance phase. Such throughput limitations are aggeavat
any change of the underlying network architecture. ~ py frequent losses related to channel errors or temporaky li
One of the key features of overlay networks is 8mit- gisconnections. In this context, proxies with specific capa
connectionmechanism, that yields a considerable throughpgjities, called Performance Enhancing Proxies (PEP)ehav
improvement for a TCP connection when split in short§§een introduced to perform a transport layer connectioit spl
segments on the route between the sender and the recejiifious to end systems (cfr.[21]). Among all the appraegh
host. Intermediate nodes act as proxies: incoming packets gt attempt to isolate issues pertaining to different medi
locally acknowledged on each segment (LACKSs), then storggk split connection approach is the only one that does not

I. INTRODUCTION

and forwarded on the next TCP connection. require any modification of standard TCP implementations,
LINRIA & Ecole Normale Supérieure, 45 rue d’Ulm 75005, PaFisance, fand for_ that reason it has peen SubjeCt of an ir_l-depth St_Udy
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all commercial networks they consider. They also investiga A layer-4 proxy placed in the middle and forwards packets
the throughput improvement provided by split TCP witlirom the first link to the second one, sending local acknowl-
respect to standard TCP implementation, that can be upemgments taS (LACKS). It prevents the loss of packets that
65%. targeted to the throughput evaluation along a chain c&nnot be immediately forwarded on the second link by stprin
TCP connections. (e.g.[9]). There are only a fanalytical them temporarily in a buffer. When the buffer approaches
attemptsin the literature which study Split TCP’s dynamicsits maximal capacity, a backpressure mechanism limits the
[25] studies a particular class of split-connection apphes sender rate. The flow control is accomplished through the
in wired/wireless networks, that adopts a standard versfon advertised window indication present on the acknowledgmen
TCP on wired segment and an “ad hoc” light-weight transposent back to the sendé. The transmission window of is
protocol for the wireless hop. In [23] an estimate of th#éhen regulated according to the minimum between the current
expected throughput is provided for a cascade of standaRl T€ngestion window and the advertised receiver window. &her
connections based on the well known square root formufare, as the buffer occupancy approaches the buffer capacit
thus neglecting the dependencies between the two connsctidthe backpressure algorithm timely starts working and prsve
Similar models based on the square root formula for TARiffer overflows. In thens2 simulator, the backpressure al-
throughput estimation are presented in [13], [17], [22]eveh gorithm is implemented by means of ack notifications to the
the authors make the assumption that the buffer in the proggnder of the instantaneous available space in the profgrbuf

never empties nor fills. _ . _ B. Assumptions and Notation
In this work, we make the following analytical contribu- In the following we introduce the notation that will be

.tian: we establish the equations f(?r throughput dynamiﬁged throughout the paper and the assumptions shared by the
jointly with that of buffer occupancy in the proxy. We ther‘simulation setting and later by the model.

?:;ﬁgg:i;heai?igzigﬂirt'd't'?gse%eesxgﬁﬁ':% s;z;m;rca « The TCP connections are assumed to be in Congestion
Y y prop y e Avoidance phase, thus neglecting the initial slow start.

we focus on the study of. buffe_r occupancy in the proxy and . X(1), Y(¢) respectively denotd’C’P1, TCP? rates at
end-to-end delays to derive tail asymptotics. The fram&wor time ¢

allows us to consider both the case with an infinite buffehat t . The proxy buffer has siz&. We will generally assume

proxy and that of a limited buffer size, where a backpressure a limited buffer size thouéh the mathematical part also

algorithm is needed to limit the sender rate and avoid losses considers the ideal éase & — oo

the proxy. The paper consist of two parts: the first pari,( . The local Round Trip TimesR R (of TCP1, TCP2

§ IlI) exploits some simulation results to make some basic respectively) are assumed toll')e 2constant e'qual t0 twice

observations on the system dynamics in different scenarios the local propagation delay '

We identify there the complex interaction that exists betwe . . )
« Losses are modeled by two kinds of Poisson processes:

TCP flow rates and proxy buffer occupancy. To the best . . : .
. : - homogeneous Poisson processes with constant intensi-
of our knowledge, this problem is addressed here for the . . . .
ties A, u, which will be referred to as theate indepen-

first time and finds an analytical explanation in the second
) . dent (RI) case.
mathematical part of the paper, where we emphasize the role . . . s
- inhomogeneous Poisson processes with (stochastic) in-

e ooy S O 1 S enSHESLY (0, (1), proportionl o h e () and
P Y (¢), a case that will be referred to as ttate dependent

as the equations governing the overall dynamics, the gtabil (RD) case

condition for the case without backpressure. We also compu& _ tH | " the RI

the tail asymptotics for proxy buffer occupancy and delays oncerning the 10ss process assumptions, the case cor-
sponds to losses caused by physical layer events arising

in the stati i d sh that th isi . . . . .
n the stationary regime and snow that ey are surprlsmd:)&] wireless links (fast fading) or some DSL links (impulse

heavy-tailed under certain natural statistical assumptiof ise 5 d which ith bability that d ¢
the literature. Finally§ V is devoted to discussions on future'0's€ [5]) and which accur with a Probability that does no
depend on the rate of the connection. The RD case fits well

works and concludes the paper. . X
pap with the cases where there is a PER (packet error rate) due to

Il. SIMULATION SCENARIOS congestion e.g. AQM or droptail losses in shared buffel$, se
congestion that arises in slow links, or transmission ertioat
A. Network Scheme are due to decoding errors. In addition, these models allsv o

We consider a saturated traffic sourgehat sends packetsto consider at the same time both transmission error losges a
to the destinationD through two long-lived TCP-Reno con-congestion losses. Some interesting models are hybritadid
nectionsT’C'P1, TCP2 in cascade as in Fig. 1. Due to thehe above simple cases. Here is a typical example to be used

fact that$ is saturated]’C P1 always has packets to send. in what follows: TCP1 is a fast wired link with RD losses
and7T'CP2 is a slow DSL or wireless link with RI losses.

DED mDIDO mﬂaﬂ C. Scenarios

- s The following three scenarios focus on a cascade of two
“Round Trip Time - R P "™ = Round Trip Time - & TCP connections. They correspond to different network set-
Fig. 1. Split TCP network scheme.




tings, and contexts of application of Split TCP. (PH2) the rate of ’C' P2, Y exhibits a nonlinear growth

« The Slow Sender Fast Forwarder case (SF). when the buffer is empty;
When the first TCP connection is “slower” than the (PH3)the rate of 7CP1, X exhibits a nonlinear growth
second one, i.e. it has a smaller capacity and/or longer when the buffer approaches saturation.
RTT and/or higher loss rate, we are in what we call the 50 :
“SF” scenario. It can be the case in overlay networks, 55 ons Qe

where the traffic of the first TCP connection is forwarded 40 rep — . . i

TCP2™ "

35

on a fastefT'C'P connection.
o The Fast Sender Slow Forwarder case (FS).

30
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&
T

We call the “FS” case, the scenario wheféC'P1 ol | ; |
is “faster” than TCP2. It is the case in hybr|d 15 e Time{sec] 160 245 215 400 \ 430]
wired/wireless scenarios where the faster reliable wired 10 W{/ P‘“jf”z

connection forwards its traffic to a slower lossy wireless Sm ‘ ‘ g

connection. In the case of a wired/satellite configurations %0 10 200 20 30 w0 400

Time [secl

in addition, the wireless part is characterized by highe'g_ - . .
. . ig. 2. Congestion windows and buffer occupancy in the sytrimease.

propagation delays. The example whé&t€ P1 is a fast 140 ‘ ‘ o e

link with a RD loss process ariC P2 is a slow one with wl {1 Phase2 LA

RI losses, which is important in the wireless context, will iy !

be referred to as the FS-RD/RI example.

o The symmetric case.
In the wired/wireless cascade, the t&d’' P connections

100
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Window Size [pkts]

are strongly asymmetric, as the two media are notably 40

different. In overlay networks, instead, it can happen for 20 S prace 1 —

a longT'C' P connection to be split in smaller symmetric . o e
segments. In this case, it is not clear a priori which 20 3 o e 60 i

connection is faster or slower. Fig. 3. Congestion windows and buffer occupancy in the Ske.cas
0 T T T
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D. Performance Metrics

The majority of related work on Split TCP are experimen-
tal evaluations of the throughput improvement achieved by
splitting connection techniques. In addition to the thriopigt
metric, our work is focused on the analysis of buffer occugyan
in the proxy and on packet delays

[1l. SIMULATION RESULTS
In this section we present a set a&2 simulations to o/ /LJ )

0
30 35 40 45 50 55 ¢

illustrate the temporal evolution of congestion windows of Time fsec]
TCP1 andTCP2 as well as the proxy buffer occupancy in  Fig. 4. Congestion windows and buffer occupancy in the F&.cas

the three cases mentioned above.
In Fig. 3-4, we plot the congestion windows and the proxy
A. Rates b : .
uffer occupancy in th& F' and 'S cases respectively. In the
Let us start with a rather “symmetric’ case, where thep case we maintain the same links capacities € C; =
connections have the same raig,= C> = 100 Mbps, similar 1 Mbps), the round trip times ar®, = 90 ms, R» = 30
propagation delaysiz; = 100 ms, R, = 90 ms, and where ms and loss intensities ave= u = 0.4 losses/s (still under
losses are generated according to homogeneous (RI) PoisgRNassumption of RI losses). THeS case is characterized
processes with intensity = p = 0.3 losses/s. The proxy by Ri = 40 ms, Ry = 80, and A = 0.4, 1 = 0.2 losses/s. In
buffer can storeB = 15 pkts and we assume a constant packgbth cases, the proxy buffer size = 20 pkts. We observe
size equal t01500 Bytes. Fig. 2 shows th@s2 simulation that in both cases, the dynamics of one of the three possible
of the congestion window patterns in Congestion Avoidangases can be neglected w.r.t. the others. InfiSescenario
phase, together with the buffer occupar@t) in the proxy. the puffer hardly ever empties, therefore the duration afsgh
Looking at the buffer dynamics in Fig. 2, we remark that js negligible when compared to the other phases, whereas in
Observation 1ll.1 The rate of ’CP1 and TCP2 interact the SF it is the opposite scenario : the buffer is rarely close
through the buffer occupancy. One can distinguish three oy saturation, hence pha8és almost never visible. Therefore,
erational phases: we will consider laterSF/F'S cases with large buffers where
(PH1) as long as the buffer is neither empty nor full, TCRnly phaseds-2 and1-3 are taken into account, respectively.
rates X,Y follow the AIMD rule, i.e. they linearly  The nonlinear behavior ok or Y bears evidence of the
increase until a jump occurs and halves the rate; fact that the two TCP connections interact. In particular,
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TABLE |

IMPACT OF BUFFER SIZE ON STATIONARY THROUGHPUT AVERAGES 50 T Q‘ueue
45 Windows
Buffer size[pk{] 1 5 10 [ 20 |50 [100 [1000 whimei— A7 .7 7 Y |
Mean Throughput [pkt/s]|780 (1415 |1840 |2285 |2954 |3340 |3340 0 Jepzr i
Throughput Improvement — (81% [136% (193% [278% (328% [328% 85 7
30 1
the window of TC' P2 (and therefore its rate) evolves not 25 /i : Py A
only according to the windows dynamics of TCP, but also R e e P T s |
according to the availability of packets in the proxy. Samly, BT/ e f
the window of TC'P1 (and therefore its rate) evolves not tor // phase3 |
only according to the AIMD rule, but also according to the 5; ‘ g |

|
150 200 250 3
Time [secl

availability of space in the receiver buffer, advertisedtbg 0 50 100
proxy to the sources via the backpressure mechanism.

In Obs. 111.1, we have already remarked the role of the buffe
content on the interaction betwegi€'P1 and7'C' P2. In Tab. 1) RI Case: In the RI case, theR software suggests a

| we report the mean values of total throughput in steadye stajejpull distribution with shape parametes; the last param-

for different values of the buffer size in®F' case. Her€y =  eter was obtained through a maximum likelihood estimator.
Cy = 100 Mbps, Ry = 40 ms, Ry = 20 ms, A =y = 0.4 e can then conjecture that:

losses/s. Compared to the extreme caseBof 1 pkt, we b ion L4 In the R it hen there i
remark a large improvement of total throughput as buffez si? servatlon A~ n the case with = oo, when t ere 1s
increases. At the other extreme, whénis large enough to a statlonary regime, the stationary buffer occupancy eixhib
never saturate, the total throughput reaches its maximllmlee,va"’Ihhe"j“/y tail. ‘ ible heavi i th | e
which corresponds to the throughputt' P1 in isolation (the | "€ Presence of possible heaviness in the queue tail medivat

last is computed via the mean throughput formulg iv-B). a fgrtherl mspr)]ec(:jtlon .ofb'?hef mrc])ments 'I(@d ZY rq)eaps of
An important consideration follows: statistical methods suitable for heavy-tailed distribns.

For this purpose, two statistics were employed: the Hilt plo

Observation II.2 In the RI case, the end-to-end throughpulg the R statistic (see definitions an further details of the
of Split TCP increases with the proxy buffer size. analysis in [4]).

A large buffer size is beneficial to the total throughput, in
that it makes it less common to use the flow control of the
backpressure mechanism and it reduces the probabilithéor t
buffer to empty, which limits the forwarding rate. On the’ P
rates we observe that:

IfFig. 5. Congestion windows and buffer occupancy in the RB lm&se.

-~ Hill plot
— R statistic of 2nd order

00 05 10 15

Observation II1.3 In the finite buffer backpressure case, the o o a0 e w0
long term average df'C P1 coincides with that of'C P2 and Sampls
is strictly smaller than that of each connection in isolatio Fig. 6. Hill plot and R statistic for the queue tail.

This is in contrast with the throughput estimation provided
in [13], [22], [23], through the application of the squareto
formula. These works rely on the assumption that the two con-
nections are independent and evaluate the overall thraughp
as the minimum of the throughputs of each connection taken
in isolation. As shown in tab.l, such a minimum rule is in fact
the best case and a significant throughput degradation can be
observed w.r.t. this rule in the presence of small buffee.siz
The simulation results presented so far share the assumptio
of RI losses, though all considerations still hold for the RD Wl .
case. We report in Fig. 5 a symmetric RD scenario with the
following parameter501 — Oy = 100 Mbps, Ry = Ry = 60 Fig. 7. «a-Confidence Intervals witlx = 0.95.
ms, A = u = 0.03, where all three phases can be observed.

In Fig. 6 we plot the parameterof the Hill estimator in the
B. Buffer Occupancy aboveSF scenario. It rapidly converges to a value betwéen
We present here the statistical analysis of the buffer occand 1, which indicates a Pareto-like distribution with infinite
pancy in steady state and whéh= co. In order to guarantee second moment. In contrast with this result, the same figure
the existence of a steady state, we consider the SF case @e® shows the R statistic for the second moment of the tail
will give in due time the exact conditions for such a steadgistribution, computed on the same set of samples; theHatt t
state to exist). To infer some preliminary information o thit becomes zero supports the thesis of the finiteness of the
gueue distribution, we made a fit with thé software (free second moment. The discrepancy between these two results
clone of S-plus) of the stationary queue distribution from th&€an be explained by looking at-confidence intervals for
samples extracted vias2 simulation. the Pareto distribution or for the above mentioned Weibull



distribution in this example. We observe in Fig. 7 that theistory of W (t) - see [2] for the definition of stochastic

0.95-confidence intervals of a Pareto distribution with= 0.5  intensity) which is either constant or proportional 5 (¢)

and a Weibull distribution with shape paramete$ largely depending on the case we consider (RI/RD).

overlap in a way which compromises the inference of the tail Linked to the congestion window we define the instanta-

distribution. In conclusion, we showed that these statsti neous rate or throughput (here the two words are interchange

methods aimed at the identification of the shape of theseyheaible), asX (t) = W(t)/R, a generally accepted assumption

tails provide discordant answers. in the literature, which can be seen as an avatar of Little’s
2) RD Case:In the RD case both the Hill plot and the Rlaw. The rationale for the linear increase is as follows: TCP

statistic agree that the distribution of the buffer occugyamas stipulates that in the Congestion Avoidance phase, theawnd

all finite moments. We reported in Fig. 8, the Hill plot and thés increased of 1 unit everiy’ ack. In an infinitesimal interval

R statistic for the second moment of the distribution in a S&f lengthdt, the number of acks that arrive 5(t)dt. Hence

scenario with such RD losses. The results of statisticalites the window increases of (t)dt/W (t) = dt/R. The rationale

the RD case allows us to observe that: for the halving of the window in case of a loss is just the

Observation 111.5 In the RD case, the buffer occupancy exultiplicative decrease rule.

hibits a light tail decay.

-~ Hill plot
¥ —|— R statistic of 2nd order

o 1 B. Mean Throughput in Steady State
The stationary distribution of the rate of each TCP connec-
L tion in isolationhas an analytical expression. In particular, the
S S S mean throughput af'C'P1 (resp.T’C P2), in isolation is given
s by X = 2 (resp.Y = Z), wherea = 1/R2, = 1/R2

Fig. 8. Hill plot for the RD case This result follows from the fact that (t) —at+2 fo u)du

3) Mixed Case:In the SF case withB = oo, TCP1 is a martingale (cfr.[4]). Thanks to the PASTA property, the
RI and TCP2 RD, the R software also gives a stationarynean valueEQ [X (0—)] of the stationary rate just before a
buffer content with a tail which is asymptotically Weibulf o loss is equal to stationary rate in continuous titkie Using
parameter approximately. 1/2 (see [4]). this and the fact that the packet loss probability is % we
obtain the square root formula

IV. MATHEMATICAL ANALYSIS

In this part, we first establish the differential equations X =, /2_047 <resp.Y_ L . (2
which govern the joint evolution of the windows and the p q
rates of the connections and of the buffer content. We th¥h[6], the following square root formula is derived for th®R

give formal proofs for some of the experimental observatiofas€:

made in .the previous sections and add further results. More Yo g7 resp.¥ = & B ’ 3)
precisely: )\ I
« We address the stability issue, in case of infinite buffers ered — \/’ (1—47))~1 ~ 1.309
and no backpressure (which is the only case where e P (1 47))=128 B

stability question is of interest);
« We analyze the tail asymptotics for the buffer occupangy. The Split Connection Model
as well as for end-to-end delays;
« We prove that in the finite buffer, backpressured case, theL€t now introduce the stochastic equations for the split
stationary throughput is strictly less than the minimum ¢fonnection model.
the stationary throughput of each connection in isolation. With respect to the case of a single TCP connection, as

. . observed in Obs. Ill.1 there are three operational phases:
A. The Single Connection Model

Let us now briefly revisit the models of [6] and [5] for a
single TCP connection. In Congestion Avoidance phase, the ) .
evolution of the TCP congestion window is described through * Phase 2 or thetarvation phasewhen the buffer is empty

s s - S andY is limited by the input rateX.
the following *hybrid” differential equation: « Phase 3 or théackpressure phasevhen the buffer has
AW (t) = at  Wi(t)

— ——=N(dt) (1) reached it storage capaciy and X is forced by the
which states that the window increase between two loss gvent Packpressure algorithm to slow down to the rateat
is linear with slopef;, whereR denotes the Round Trip Time which the buffer is drained off.

and that loss events produce jumps of congestion windoysthe free phase, the AIMD rule gives:

which is cut by half. In this stochastic differential equati {dX( ) = adt — X2(t) M(dt)

o Phase 1 or thdree phasewhere the buffer is neither
empty nor full, andX (¢) andY (¢) evolve independently;

N(t) represents the loss point process. We assume here than {0 < Q(t) < B} v (1) = gt — ¥ ”N(dt) 4)

(
this point process has a stochastic intensity (w.r.t. tharah 2



In the starvation phase, as long as the buffer is empty (whith Stability in the Infinite Buffer, Rl Case

requires thatX (¢) < Y(¢)), we have:
on {Q(t) = 0} dX (t) = adt — X M (dt) 5) phase 1 and 2 exist. A natural question within this infinite
- dY (t) = By dt — TN (dt). buffer context is that obystem stabilitywhich is understood
where M (t), N(t) represent the loss processes¥randY. here as the finiteness of the stationary buffer occupandyeat t
The rationale for a linear increase ®f(¢) proportional to Proxy. In the stable case, this infinite buffer model is a good
% < 1is that when the buffer is empty, sinéé(t) < Y'(t), approximation of the SF case, whenevgris not too small
the rate at which packets are injectedlid’ P2 and hence the (We have seen ify lll that in this case, phasgis almost never
rate at whichTC'P2 acks arrive isX (¢). Hence the window Visited and that we can focus on phasphase2 dynamics).

of TCP2, Ws, increases ofX (t)dt/Wa(t) = dt X(1) in Inthe RI case, the stability proofs rely on some monotoyicit

the interval(t, ¢ + dt) and the rate of'C P2 thus in@?gg;es of properties which we introduce in the following paragraph.
1) Monotonicity Properties in the RI Casd:et consider

ﬁdt% during this interval. The ratiqu—g can be interpreted _ ¢

as theutilization factor of the congestion windowVz(t): in Zamplg p?ths ofX (1) ;Bd Y4(t) n 5(:a§eB _d.oo’ where the

contrast with what happens in the free phase, wh&re”2 is ynamics 1S gove;mi y (,,) or (5) lepen Ing@). .

“independent” of’C'P1 and where the windowl’; is fully We denote by}/ (ffree Y7) some fictitious process which

utilized (draining packets from the buffer), in the staiwat evolves according to the dynamics of phasqnly. In the RI
case, we can actually choose to makeoaiplingof Y/ and

phase, the number of packets transmitted/liy P2 depends - o
on X (t), which brings the utilization factor belowand leads Y by bwldmg thes_e two processes from theme realization
of the Poisson point process.

to a nonlinear evolution as observed in Obs. Ill.1. i i
. . . We can then state three main properties:
In the backpressure phase, which lasts until the buffer is ) ~
() If we consider two processed;’(t),Y () based

saturated (this requires that(¢) > Y'(¢)), we have . .
( a ( )17(15) (t)) X () on the same realization oV, but departing from
dX (t) = asdt — == M(dt)

This subsection is focused on the cd$e- oo, where only

on {Q(t) = B} Xy (6) different initial conditions)Y'/(0) < Y7(0), then,
dy (t) = pdt — XL N (dt). YI(#)<V/ (1), ¥t > 0.
The rationale for this should be clear: acks BE'P1 now (i)  1f we consider the procesg,/ (¢),t > v which starts
come back at a rate df (¢). Hence the congestion window, from 0 at time v, thenY;/ (¢) > Y/ (¢), for all v; <
Wi (t) of TC'P1 grows at the rat& (¢)/Wy(t). vy < t.
The evolution of the buffer occupancy in the proxy within (i) If Y/ (0) =Y (0), thenY'(t) <Y/ (t), for all t > 0.
phasel (Q(t) > 0) is given by The proofs of the first 2 properties should be clear. The last
; .
one follows from the fact that in phase Z(t) < Y (¢), so that
Qt) =Q(0) +/ (X(u) = Y (u))du. (7) at any continuity point, the slope &f(t) is always less than

0 .
Note that the queue at the proxy can be seen as a fluid queu@qual to the slope of /(¢). Since both processes have the
with a fluid input rateX (¢) and a fluid output ratd’(¢) at same discontinuity points (thanks to the coupling), theiltes

time ¢. Hence we can also writte: immediately follows.
_ Consider now the casg finite with backpressure. The triple
t) = 3 Xw)-Y d
Q(f) = max (Oiligt\/u () ()dv, (X(t),Y(t),Q(t)) forms a continuous time Markov process.
t Thanks to the fact thap is bounded from below by 0 and from
Q(0) +/ (X (u) — Y(U))du> : (8) above byB, one can show that this Markov process admits

0 . . L. . .
Fig.9 shows the perfect agreement between the evolution®ftNique stationary distribution, and that, starting frony a

congestion windows as predicted by Eq.(4)-(7) or providgd Bnitial value, this markov process converges to the statipn
ns2 simulations. one in the total variation norm.

We again compare the procesges(t), Y (¢)) in the Split
b ‘ ‘ T TCP system and the free proces$as' (¢), Y/ (t)). We build
TR these processes on the same realizations of the point pexces
Yy /] M and N. Assume the initial conditions to be the same:
- ‘ (X(0),Y(0)) = (X7(0),Y7(0)). When we are in phase 1, the
two processes have exactly the same dynamics, so that & at th
beginning of the phasd X (.),Y(.)) < (X/(.),Y7(.)) coor-
dinatewise, then this holds true at the end of the phase too. |
phase 2 (resp. 3), the slope ¥f(resp.X) is strictly less than
that of Y/ (resp.X/) and both are halved at the same epochs,
‘ whereasX and X/ (resp.Y andY/) have exactly the same
oL - - - - - dynamics. Hence, if X(.),Y(.)) < (X7(.),Y/(.)) at the
Fig. 9. Congestion windows: comparison between the modeina@ beginning of the phase, théX (.), Y (.)) < (X/(.),Y/(.)) at
the end. This leads to the following confirmation of Obs.3tll.

Window Size [pkis]




Lemma IV.1 In the RI case withB < oo, when backpressure Proof: We prove first that ifp > 1, then the system is
is used, the stationary rate of Split TCP strictly less than not stable. The equation fak, is that of a classical fluid
the minimum of that of'C P1 and T'C P2 in isolation. gueue withstationary and jointly ergodi@rrival and service
2) Queue BoundsThe triple (X (¢),Y (t),Q(t)) forms a processes. The joint ergodicity follows from the fact thee t
Markov process. Interestingly enough, the direct stahdlital- couple (X,Y/) forms a Harris recurrent and geometrically
ysis of this Markov via Liapunov functions is not an easy taskrgodic Markov process (see [4]). We can hence apply cklssic
In particular, we were unable to make use of the classical fluiesults on fluid queues stating that under the above staifpna
limit techniques for Markov chains here, primarily becan$e and ergodicity properties, iE[X (0)] > E[Yf( )], then L,
the multiple phases. This is the reason why we use backwééfids a.s. tax, which in turn implies that we cannot have
construction techniques to prove stability. This will bendo limsup, ., Q:(0) a.s. finite. Hencey > 1 implies instability.
by introducing two simple bounds on the queue size. We now prove that ifp < 1, then the system is stable.
The proposed backward construction (see e.g. [2] Chapfgsume thalim sup Q;(0) = oo with a positive probability.
1 for classical instances of such constructions) consists Thenhm sup U; = oo with a positive probability too. AsX
building the queue siz§.(0) at time0 when departing from andY;’ are locally integrable for ali, this together with the
an appropriate initial condition at time < 0. The initial Second monotonicity property of the last subsection impét t
condition that we select consists of a queue %){¢) = 0, a there exists a sequencg tending to—oo and such that a.s.
rate forT'C'P1 which is the stationary rat& (¢) of TCP1 at 0 < »
timet in isolation, and a rate faFC' P2 wh|ch(|s the stationary (X(v) = Y7, (0))dv = oc 00 (12)
rater( ) of TC' P2 at timet in isolation. From (8), we have Let us show that this is not possible under the assumption
fs p < 1. Let#; denote the product shift of the point procesaés
@ils) = tiﬁ}i’s/u (X(v) = Yi(v))dv, ©) and N (this shift is ergodic). The pointwise ergodic theorem
for all s > t, whereY;(v) denotes the rate ofCP2 in the implies that
Split TCP system and at timeunder the above assumptions. 1 = >
IOThe stablﬁty issue can then be stated in the foIIowmg terms; / X )dv = _/ X(0) 0 bydv =00 E[X(0)], (13)
does@.(0) have an almost surely (a.s.) finite limsup when where the last limit is in the a.s. sense. We show now that the
tends to—oo? This is enough to ensure that the Markov chaifollowing a.s. limit also holds:

(X(t),Y(t),Q(¢)) is neither transient nor null recurrent. o P
We are now in a position to define the lower bound queue. / Y7, (0)dv =100 E[YY(0)]. (14)
From (iii) and from (9), we get This will conclude the proof since (13)-(14) and the assump-

Qu0) > Ly = sup /O(f((v) _ VI w)dv,  (10) tion E[X (0)] < E[Y(0)] imply thet a.slim; j_o X(v)—
t<u<0Ju Y7, (v))dv = —c0, which contradicts (12).
whereY/(.) is the stationary free process f6iC P2. In [4], Let us now prove (14). From the monotonicity properties,
we prove that the stochastic procesk (t),Y/(¢)), which the functiony, = f_ot v/, (v)dv is super-additiveip,,, >
describes the fluid input and the fluid drain in this queuey o _s + ¢,. Thanks to the sub-additive ergodic theorem,
forms a stationary and geometrically ergodic Harris chaithis together Wlth the fact thap, is integrable imply that
In particular we show there that we can apply the splitting.s. 3lim;_.o 1 f Y_ft (v)dv = K, for some constanfs
technique of Athreya and Ney (cfr.[1]) for such chains an&hich may be flnlte or infinite. The fact thak™ is finite
that there exist renewal cycles for this process relatedsto follows from the boundo < Y7/,(v) < Y/(v) and from
return times to the compact sét= [0,z] x [0, 22z], where the pointwise ergodic theorem applied to the stationary and
2 is an arbitrary positive real number. In what follows, wergodic processY 7 (v)}. Since K is finite, the last limit
will denote byT the length of such a renewal cycle. We nowholds both a.s. and id! [18]. Using again super-additivity
define the upper bound queue. ligt) denote the beginning of the forward process, we get by the same arguments:
of the last busy period af),(s) before time 0 (0ifQ;(0) =0 K = lim; 1 7 j Yf v)dv = lim; E fo yf dv) But

andt if Qu(s) > 0 for all t < s < 0). We have from the fact thatY (v), v > 0 is a geometrically ergodic

0 0 ~
Q+(0) :/ (X (v) — Yi(v))dv S/ (X (v) — ny(t)( ))dv Markov chain, EhrnH00 7 fo Yf (v)dv = E[Y/(0)] as
(1) (1) HenceK=E[Y/(0)], which concludes the proof of (14).m

0
<U = sup / (X (v) = Y,/ (v))dv, (11) E. Stability in the Infinite Buffer, RD Case

t<u<0 .
where the first inequality follows from the fact that the In the RD case, we use the same backward construction as

dynamics on(7(t),0) is that of the free phase and from the.;1bove to prove the exact analogue of Lemma IV.2 (in the RD
fact thatth (.) is the minimal value for the fre&@C P2 (1). casey is also equal tow_u) We anly sketch the main ideas of

3) StabTifit)y: the proof. To get an upper bound @ (0), we consider the
following optlmlzatlon problem what is the infimum over all

Lemma IV.2 If p < 1, wherep = ﬁ— then the RI system isy > 0 of the mtegralj (v)dv whereYufy( ) denotes the

stable. Ifp > 1, then it is unstable. value of the free process 65TCP2 at timev > u when starting



from an initial value ofy at timew? Let us first show that the Lemma IV.3 In the RI case, the queue distribution is heavier
last optimization problem admits an a.s. unique solugitfz), than a Weibull distribution of shape parameter= 0.5.
and that this solution is a.s. finite. ) )
For defining such an infimum, we need the following con- T1iS unexpected result suggests that the buffer occupancy i
struction which builds the stochastic processgs (v), v > v Pt TCP is notnegligible. It also explains the quite imjport
from a two dimensional homogeneous Poisson point procd&ituations observed on end-to-end delays within thisednt
N of intensity z on the positive half planét € R,y € R4.).
We start withY,/, (u) = y and then have a linear growth
of slope 8 until we find a point of A" below the curve
v/, (). There we halve the value df/, at that time and
we proceed again using the same rule of a linear growth | | L
until the next point below the curve (see Fig. 10). It is easy voon K T

to see that the stochastic intensity of the losses is exactlyFig. 11. Decomposition of the integral of in a sum of trapezes.
uYu{y(t) at timet, which is precisely what we want. With this  We give the proof of this result in [4]. Let us summarize
construction, ally;/, (t) are defined as deterministic functionere the main steps of the proof. It relies on the lower bodnd o
of N/ and the infimum over al; of f;‘*t Yu{y(y)du for fixed EQ.(10), and it is based on the fact that the fluid input preces
t > 0 and u is well defined in view of the fact that theand the fluid draining process of this lower bound queue are
functiony — j;j‘” Yuf;y(v)dv is piecewise continuous, with ajointly stationary and ergodic and have renewal cycles (see
finite number of discontinuities in any compact, is incragsi [4]). We denote by’ the length of such a renewal cycle and
between discontinuities and tendsdo wheny tends toco. We define

Denote byY*(v) the functionYJU*(u) (v). Hence

A= /T X(@t) =Y (t)ydt =1, — I,

We first study thtoa asymptotics fdP(A > z) asz — oo.
We show that this is lower-bounded by random variables
with a Weibull distribution with shape parametef2. Hence
Veraverbeke’s theorem ([11]) can be used to show &as
heavier than a Weibull distribution with shape paraméex.

o t We now provide an intuitive explanation of the result on the
Fig. 10. Coupling of the RD processes. tail of A. By looking atI,., we observe that each trapeze area
0 _ has a triangular lower bound, so that
@) <Ui= sw [ (@) - Vi@ (@5) o v
t<u<0Jy ) li
The arguments to prove stability when< 1 are then similar P XO:T”‘pl >q| =P Z a5 ~a);

to those in the RI case: whentends tooo, lf_OtX(U)dU where Ny denotes the number of losses in’the cycle. All
tends tolE[X(0)] a.s. from the pointwise ergodic theoremtriangular areas are i.i.d and heavy tailed: msare i.i.d
The functionyp, = ff)t Y*,(v))dv is super-additive. We then exponentially distributed, each summand has a tail distrib
use the sub-additive ergodic theorem to prove t%qa; tends tion P a§ >z) = P(r> %w — e—u\/¥7 which
to a constant{ a.s. and the pointwise ergodic theorem agaig@ \weibull with shape parametér = 0.5. Thanks to the

to show that this constant is necessafiljy / (0)]. properties of subexponential distributions, the resuftliag to
The proof of the last property relies on the following twgpe integral ofX, and then propagates @ In ns2simulations,

ingredients: a) For all, with probability 1, there exists a gych result has been proven not to be affected by a limited
positive random variable(y) > 0 such that the functions congestion window, when large enough.

1 k f The communication literature contains many instances of
y—=9t(y) =5 | Yo, (v)dv h : :

eavy tailed queues. The most famous example is probably

are t-uniformly continuous; b) Let°(t) be the initial con- that of a FIFO queue subject to a self-similar input process;
dition that minimizes|; Yy, (v)dv; the liminf of the function it is proved in [20] that the stationary buffer content isrthe
y°(t) ast tends toco is 0. From b), we deduce that there existaeavy-tailed; it is also well known (see e.g. [10]) that sseli-
a subsequendsg, such tha°(t,,) convergesto 0 a.s. Itis easysimilar input processes arise in connection with HTTP taffi
to see thay;, (y°(t.)) converges tak asn tends to infinity. In this example, heavy tailed queues arise as a corollary of
But g¢, (0) converges tdEY /(0) due to the ergodicity of the long range dependence, which in turn is a consequence of the
Harris chainY/(.). This together with the continuity propertyheavy tailedness of file sizes and off periods. In contrast, t
a) allow one to conclude thak’ = lim, . g+, (y°(tn)) = heavy tailedness of the proxy contents in our Split TCP model
lim, 00 g1, (0) = EY/(0) a.s. arises as a direct consequence of the AIMD dynamics under
the assumption of a RI loss process. Note however that the
heaviness of the tail is linked to the loss model considdred.
Here, we take up the Obs.lIl.4 and prove to following resulthe RD case, arguments similar to those used in the Rl case let

F. Tail Asymptotics in the RI Case



us conjecture that the queue distribution is light (ObS)lI

G. Phases Duality and End-to-End Delays

case, 1) is the Split TCP stationary rate increasing3iras
suggested by Obs. 111.2? 2) what is the value of the stationar
rate of the connection? In the infinite buffer stable case, 3)

The structure of Eqg. (5), (6) points out tieality between is the stationary proxy buffer contents light tailed in thB R
phase2 and3: we can obtain one equation from the other bgase? 4) what is the exact asymptotic behaviour of the tail in
exchanging the roles of (¢t) andY'(¢) (and their parameters).the RI case (we only proved it was heavier than Weibull)? 5)
In phase3, the analogue of)(¢) in phase2 is what we can what is the distribution, or the mean value of the stationary
call theantibuffer A(¢t) = B — Q(t), the amount of the proxy buffer content?

buffer space available at timeBased on this duality between
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