
The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

The lit-only σ-game and relevant mathematics

Yaokun Wu, Shanghai Jiao Tong University
Ziqing Xiang, University of Georgia

G2S2, Novosibirsk, August 18, 2016

1 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Outline

1. The lit-only σ-game reachability problem

2. Lit-only Cayley digraph

3. Phase space classification

4. Topaz group and lit-only group

5. Line graph

6. Turning off all-loops via double covering

2 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Lit-only σ-game

Let D be a digraph, namely a pair of finite sets (VD ,AD) with
AD ⊆ VD ×VD .

A configuration is a subset of VD .

Let x be a configuration and v a vertex from VD . If v ∈ x , then
the configuration x can go to the configuration

x4N+
D(v),

where 4 is the symmetric difference, and N+
D(v) is the set of

out-neighbours of v in D. The dynamical system in which the
phase transition follows the above rule is called the lit-only
σ-game.

Note that (2VD ,4) is a binary linear space.
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An example

a b c

b−→
a b c

a−→
a b c

b−→
a b c

c−→
a b c

b−→
a b c

a−→
a b c

c−→
a b c

All-loops-on can reach all-off in the lit-only σ-game: LD
∗−→ ∅.
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The lit-only σ-game reachability problem

THE PROBLEM: Take a digraph D and x , y ∈ 2VD . Is it true
that x

∗−→D y?

I x = ∅, y 6= ∅: No!

I x 6= LD , y = LD : No!

I x = LD , y = ∅: Yes, provided D is symmetric!

Is there any efficient method to solve this decision problem?

Theorem 1

If the digraph D is symmetric, then the above problem is
polynomial time solvable.
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Lit-only monoid

Let D be a digraph. For every v ∈ VD , construct a map
T v ∈ End(2VD ):

x 7→

{
x4N+

D(v), v ∈ x ,

x , v /∈ x .

Definition 2

The lit-only monoid of D is the multiplicative monoid generated by
T v ’s:

LOMD :=〈T v : v ∈ VD〉.

When D is loopless, we call LOMD the lit-only group of D, denoted
by LOGD .
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Phase space

The phase space of the lit-only σ-game on a digraph D is the
digraph PSD with:

I VPSD = 2VD ;

I APSD = {(x , T v (x)) : v ∈ x ∈ 2VD}.
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Phase space: An example
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The lit-only σ-game reachability problem, Contd.

The lit-only σ-game reachability problem is, based on the
information about D, to decide the reachability between any two
configurations in the phase space PSD , which is of exponential
size.

In general, as a dynamical system problem, we want to understand
the action of LOMD on 2VD .
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Cayley digraph and its lit-only variant
Taking a group G , a set S and a map β ∈ GS , the Cayley digraph
Γ(G , β) has vertex set G and arc set {g → gβ(s) : s ∈ S , g ∈ G}.

If we are travelling in a world modelled by the Cayley digraph
Γ(G , β), each element s ∈ S is a vehicle which can take us from
where we are, say g ∈ G , to gβ(s) ∈ G . If every vehicle s ∈ S is
available only at a specific set of stations, say α(s) ⊆ G , the real
world which we live in becomes the lit-only Cayley digraph
Γ(G , β, α) that has vertex set G and arc set
{g → gβ(s) : s ∈ S , g ∈ α(s)}. Here the map α ∈ (2G )S gives
the lit-only restriction.

If α(s) = G for all s ∈ S , surely Γ(G , β, α) is just Γ(G , β).

Minicourse I: The lit-only restriction is due to faulty links!
Minicourse II: Does it make sense to consider the Cayley
isomorphism problem with the lit-only restriction?
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PSD as a lit-only Cayley digraph

The power set of V , namely 2V , forms an abelian group where the
sum x + y of two elements x and y of 2V is given by the
symmetric difference x4y of them. Let α be the map from V to
2V such that α(v) = {x ∈ 2V : v ∈ x}.

Digraphs D on vertex set V are just single variable functions β
from V to G = 2V .

I D ⇒ β: β(v)
.

= N+
D(v) ∈ G , ∀v ∈ V .

I β ⇒ D: AD
.

= {v → w : w ∈ β(v)}.

Assuming that digraph D and map β ∈ GV correspond to each
other under the above bijection, then

Γ(2V , β, α) = PSD .
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What is the difference made by the lit-only restriction?

Let
Γ(2V , β) = PSσD ,

which surely contains

Γ(2V , β, α) = PSD

as a subgraph.

Playing the σ-game on the digraph D is to find a “good” path in
PSσD while playing the lit-only σ-game on D is to find a “good”
path in PSD .

The reachability problem for PSσD based on information of β (D)
amounts to solving a system of linear equations over the binary
field and hence is easy.

Our main work is to tell the difference
between PSσD and PSD .
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Vector spaces associated to graphs

I Arc space: 2AD .

I Two subspaces of 2AD that appear often in algebraic graph
theory: Cut space and cycle space.

I Vertex space: 2VD .

I Neighbour space: ND :=〈N+
D(v) : v ∈ VD〉 ≤ 2VD .

The cosets of the neighbour space ND in the vertex space is the
set of all strongly connected components of PSσD . We may say
that the difference between PSσD and PSD is small if we can show
that these cosets are almost always still strongly connected
components of PSD .

We call the dimension of ND the rank of D, and we often use r
for this number.
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A question

Are there more general groups G , connection maps β, and lit-only
restrictions α for which we can test efficiently the reachability on
the lit-only Cayley digraph Γ(G , β, α) based on the local
information of β and α, as possible generalization of Theorem 1?
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The classification

According to the types of differences between PSσD and PSD , we
try to classify all strongly connected digraphs. We are successful
for symmetric digraphs and have corresponding conjecture for
asymmetric digraphs.

Prior to the classification results, we present our newly-discovered
graph classes.
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The natural maps from N to {0, 1}

Over the Boolean semifield B:{
0 7→ 0,

n 7→ 1, n ≥ 1.

Over the binary field F2:

n 7→ n mod 2.
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The natural maps from multigraphs to graphs

A multigraph (symmetric nonnegative integer matrix):

(a) Over the Boolean
semifield B

(b) Over the binary
field F2
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Line graphs
Given a multigraph G , its line graph, denoted by L(G ), is the
graph with:
I Vertex set: VL(G) = EG ;
I Edge set: EL(G) = {{e, f } : | ∂G (e) ∩ ∂G (f )| ≡ 1, e, f ∈ EG}.

A line graph is ordinary if it is the line graph of a graph.

a

b

c d

e

(a) G

a b

c d

e

(b) L(G )

Figure: A multigraph and its line graph.
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Characterization of loopless ordinary line graphs

Theorem 3 (Beineke’s characterization)

A loopless graph is an ordinary line graph if and only if it does not
contain any of the nine graphs below as a vertex-induced subgraph.

a

b0

b1 b2

a0 a1

b0 b1

c0

c1

ab

c0

c1

d1

d0

a

b1b0

c0

c1

a0 a1

b0 b1

c0

c1

a0

a1

b0 b1 c0 c1

a

b0

b1

b2 b3

b4

a0

a1

b0

b1

c1

c0

a0 a1

b0

b1

b2

Figure: Nine forbidden vertex-induced subgraphs for loopless ordinary
line graphs.
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Three loopless extraordinary line graphs

a

b0

b1 b2

a

b1b0

c0

c1

a0 a1

b0

b1

b2

Figure: Three line graphs from the list of Beineke and their root
multigraphs.
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Quadratic form

Let V be a binary linear space. For any map Q : V→ F2, we
define its polarisation to be the map ∇Q : V×V→ F2 such that

∇Q(x , y) :=Q(x + y)− Q(x)− Q(y), ∀x , y ∈ V .

A quadratic form on V is a map Q : V→ F2 such that Q(0) = 0
and that ∇Q is F2-bilinear, and so an alternating form
(∇Q(x , x) = 0).
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Let X be a set.

Example 4

It is clear that Q = | · |
2 is a quadratic form on V =

( X
even

)
and its

polarisation ∇Q is given by ∇Q(x , y) ≡ |x ∩ y | for all x , y ∈
( X

even

)
.

Example 5

We often write an element {A,B} ∈ 2X/{0,X} as A|B and thus
view 2X/{0,X} as the set of splits on X . For each
S ∈ 2X/{0,X}, we define Sx and Sx to be two sets such that
x ∈ Sx , x /∈ Sx and S = Sx |Sx . For any x ∈ X , define the
quadratic form Qx on V = 2X/{0,X} by setting Qx(S) ≡ |Sx |.
Note that the polarisation of Qx vanishes everywhere.
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There is a natural nondegenerate pairing of
( X

even

)
and 2X/{0,VG}

as F2-vectorspaces:(
X

even

)
× 2X/{0,VG} → F2 : (Z ,A|B) 7→ |A ∩ Z |.

But it is not clear if there is also some natural correspondence
between the quadratic forms on 2VG /{0,VG} and those on

( VG
even

)
.

23 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Euler form

Regarding a graph G as a one-dimensional abstract simplicial
complex, the Euler characteristic of G (over F2), denoted by χ(G ),
is |VG | − |EG | ∈ F2.

The Euler form of a graph G (over F2), denoted by χG , is the
quadratic form on 2VG given by

χG (x) :≡χ(G [x ]) ≡
∑

v∈VG \ LG

v∗(x)2 −
∑

uv∈EG \ LG

u∗(x)v∗(x),

where G [x ] is the vertex-induced subgraph of G for subset x ⊆ VG .
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Some graph classes

Opal line graphs: Line graphs of multigraphs with odd number of
vertices.

Emerald line graphs: Line graphs of multigraphs with even number
of vertices.

Cuspidal graphs: Graphs that are not line graphs.

Polished graphs: Graphs G that admit a (unique) quadratic form
qG on NG such that qG ◦NG = χG . For polished graphs G , the
Arf invariants of qG determine the shape of PSG .
Unpolished graphs: Graphs G that are not polished.

Loop-linked digraphs: Digraphs D in which every vertex can go to
a loop vertex and every vertex can be reached by a loop vertex.

Loopless digraphs: Digraphs D without loops.
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Theorem 6

Let G be a loopless connected multigraph. Then, L(G ) is polished
if and only if |VG | 6≡ 2 (mod 4).
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Phase space of nonempty loopless strongly connected
graphs (Theorem)

Graph classes Phase space

1. Opal line graphs Neighbour space 0

(r+1
2

) (r+1
4

)
· · ·

(r+1
r−2

) (r+1
r

)
2. Polished emerald line graphs Neighbour space

0

(r+2
2

) (r+2
4

)
· · ·

( r+2
r/2−1

) ( r+2
r/2+1

)
of rank ≥ 4 Exception

(r+2
1

) (r+2
3

)
· · ·

( r+2
r/2−2

) (r+2
r/2

)
3. Unpolished emerald line graphs Neighbour space

0

(r+2
2

) (r+2
4

)
· · ·

( r+2
r/2−2

) (r+2
r/2

)
of rank ≥ 4 Exception

(r+2
1

) (r+2
3

)
· · ·

( r+2
r/2−1

) ( r+2
r/2+1

)
4. Polished cuspidal graphs, I Neighbour space 0

2r−1 − 2r/2−1 2r−1 + 2r/2−1 − 1

5. Polished cuspidal graphs, II Neighbour space 0
2r−1 − 2r/2−1 − 1 2r−1 + 2r/2−1

6. Unpolished cuspidal graphs Neighbour space 0
2r − 1

Exception 2r−1 − 2r/2−1 2r−1 + 2r/2−1
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Phase space of loop-linked strongly connected graphs
(Theorem)

Graph classes Phase space

7. Loop-linked line graphs Neighbour space 0

(r
1

) (r
2

)
· · ·

( r
r−2

) ( r
r−1

)
LD

8. Loop-linked cuspidal graphs Neighbour space 0
2r − 2

LD
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Phase space of loopless strongly connected asymmetric
digraphs (Conjecture)

Graph class Phase space

9. Loopless asymmetric digraphs Neighbour space 0
2r − 1
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Phase space of loop-linked strongly connected asymmetric
digraphs (Conjecture)

Graph class Phase space

10. Asymmetric digraphs, I Neighbour space 0

(r
1

) (r
2

)
· · ·

( r
r−2

) ( r
r−1

)
LD

11. Asymmetric digraphs, IIA Neighbour space 0

(r+1
2

) (r+1
4

)
· · ·

(r+1
r−2

) (r+1
r

)
Exception

(r+1
1

) (r+1
3

)
· · ·

(r+1
r−3

) (r+1
r−1

)
LD

12. Asymmetric digraphs, IIB Neighbour space 0

(r+1
2

) (r+1
4

)
· · ·

(r+1
r−3

) (r+1
r−1

)
LD

Exception
(r+1

1

) (r+1
3

)
· · ·

(r+1
r−2

) (r+1
r

)
13. Asymmetric digraphs, IIIA Neighbour space 0

2r − 2
LD

14. Asymmetric digraphs, IIIB Neighbour space 0
2r − 1

Exception
2r − 1

LD

30 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Topaz groups

Definition 7

Let D be a loopless digraph. The Topaz group of D, denoted by
TGD , is the restriction of LOGD to the invariant subspace ND .

Theorem 8

Let D be a nonempty loopless strongly connected digraph. Then,
TGD is determined by ND and the type of D as follow.

1. Opal line graphs: SymdimND+1.

2. Emerald line graphs of rank ≥ 4: SymdimND+2.

3. Polished cuspidal graphs: O+(ND) or O−(ND).

4. Unpolished cuspidal graphs: Sp(ND).

5. Asymmetric digraphs: SL(ND).
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Lit-only groups

Theorem 9

Let D be a nonempty loopless strongly connected graph. Then,
LOGD is determined by ND and the type of D as follow.

1. Opal line graphs: SymdimND+1 nN
codimND
D .

2. Emerald line graphs of rank ≥ 4: SymdimND+2 nN
codimND−1
D .

3. Polished cuspidal graphs: O+(ND) nN codimND
D or

O−(ND) nN codimND
D .

4. Unpolished cuspidal graphs: Sp(ND) nN codimND−1
D .

Conjecture 10

Let D be a strongly connected loopless asymmetric digraph. Then,
LOGD is SL(ND) nN codimND

D .
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Characterization of loopless line graphs

Theorem 11

For a loopless graph G, the following statements are equivalent.

I The graph G is a line graph.

I The graph G does not contain any graph in a set of thirty-two
forbidden graphs as an induced subgraph.

I Every connected 6-vertex vertex-induced subgraph of G is a
line graph.

I Every connected nonsingular 6-vertex vertex-induced subgraph
of G is one of the eleven line graphs of 7-vertex trees.
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The thirty-two forbidden graphs

Figure: The 32 forbidden subgraphs for loopless line graphs.
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The eleven line graphs of 7-vertex trees

Figure: Eleven 6-vertex line graphs of trees.
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Three observations

I There are 43 connected nonsingular 6-vertex graphs. They
consist of the 32 forbidden graphs and the 11 line graphs of
7-vertex trees.

I All the 32 forbidden graphs are connected loopless polished
cuspidal graphs with Arf invariant 1 and have a lit-only group
isomorphic to W (E6).

I All those 11 line graphs are connected loopless opal line
graphs and have Sym7 as their lit-only group.
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Edge clique partition

For a hypergraph K ⊆ 2V with vertex set V , let dK(v) be
{k ∈ K : v ∈ k} for all v ∈ V . The dual hypergraph of K is
K∗ = {dK(v) : v ∈ V } on the vertex set K.

Definition 12

Let G be a graph without isolated vertices. An edge clique
partition of G is a simple hypergraph K ⊆ 2VG \ {∅} such that the
following conditions hold:

1. For every v ∈ VG \ LG , it holds dK(v) ∈
(K

2

)
;

2. For every v ∈ LG , it holds dK(v) ∈
(K

1

)
;

3. The edge set EG is the disjoint union of (k ∩ LG ) ∪
(k

2

)
where

k runs through all elements of K;

4. For each k ∈ K, it happens |k ∩ LG | ≤ 1.

37 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Examples

a

b c

(a) G

abc

b c

(b) K∗
G

a

b c

d

(c) H

abc

bd cd

(d) K∗
H

Figure: Graphs, edge clique partitions and root graphs.

G = L(K∗G ), H = L(K∗H)
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Generalization of Whitney’s theorem

Theorem 13 (Whitney’s theorem)

A connected loopless ordinary line graph has an edge clique
partition.

Theorem 14 (Generalization of Whitney’s theorem)

Except the four graphs, a connected ordinary line graph has a
unique edge clique partition.

We can design a very simple linear-time algorithm to reconstruct
the root graph of a line graph.
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Graphs having two edge clique partitions
Graph Type A ECP Type B ECP

X = ∅
Y = ∅
Z = ∅

a

b c

abc

a

cb

acab

bc

X = {x}
Y = ∅
Z = ∅

a

b c

x abc

a

cxbx

x

acab

bcx

X = ∅
Y = {y}
Z = {z}

a

b c

yz

abc

ayz

cybz

yz

acyabz

bc

X = {x}
Y = {y}
Z = {z}

a

b c

x

yz

abc

ayz

cxybxz

xyz

acyabz

bcx

Table: Graphs and the dual hypergraphs of their two edge clique
partitions.
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Characterization of loop-linked line graphs

Theorem 15

A loop-linked graph is a line graph if and only if it does not
contain any graph below as a vertex-induced subgraph.

Figure: The 9 classes of forbidden vertex-induced subgraphs of
loop-linked graphs. Dashed lines stand for paths of length zero or more.
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Box minus

Let G be a graph and v be a loop vertex of G .

Let G � v be the graph with vertex set VG \{v} and edge set
EG 4

(NG (v)
1

)
4
(NG (v)

2

)
.

v

(a) G (b) G � v
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Another characterization of loop-linked line graphs

Theorem 16

A loop-linked graphs is cuspidal if and only if it can be reduced to
one of the following graphs by a sequence of − and � operations
through loop-linked graphs.

Figure: The two minimal (with respect to operators − and �)
loop-linked cuspidal graphs.
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Summary

I Loopless line graphs have 32 forbidden subgraphs.

I Loop-linked line graphs have 9 classes of forbidden subgraphs.

I Loop-linked cuspidal graphs can be reduced to two graphs.

I Most line graphs have unique edge clique partitions.

Problem 17

Why do they happen?
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A double covering from PSG to PSG�v : wv ∈ EG

φ0(α)|VG�v
= α, φ0 + φ1 = NG (v), v∗ ◦ φi = i ,∀α ∈ 2VD�v , i ∈ F2 .

G� v :

α

w

β

w

G :

φ1(α)

wv

φ0(α)

wv

φ1(β)

wv

φ0(β)

wv

w

v

w

v

Figure: For w ∈ NG (v) \ {v}, a w -arc in PSG�v is lifted to two
length-two walks in PSG .
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A double covering from PSG to PSG�v : wv /∈ EG

φ0(α)|VG�v
= α, φ0 + φ1 = NG (v), v∗ ◦ φi = i ,∀α ∈ 2VD�v , i ∈ F2 .

G� v :

α

w

β

w

G :

φ1(α)

v w

φ0(α)

v w

φ1(β)

v w

φ0(β)

v w

w w w

v

v

Figure: For w ∈ VG \NG (v), a w -arc in PSG�v is lifted to two w -arcs
in PSG .
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A generalization of Sutner’s Theorem

Theorem 18 (Sutner’s Theorem)

LG ∈ NG .

Theorem 19 (A generalization of Sutner’s Theorem)

LG
∗−→G 0.

Proof.

Induct on the number of vertices.
Pick a loop vertex v ∈ LG . By induction hypothesis,
LG�v

∗−→G�v 0.

LG = φ1(LG�v )
v−→G φ0(LG�v )

∗−→G φ0(0) = 0 .

47 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

A generalization of Sutner’s Theorem

Theorem 18 (Sutner’s Theorem)

LG ∈ NG .

Theorem 19 (A generalization of Sutner’s Theorem)

LG
∗−→G 0.

Proof.

Induct on the number of vertices.
Pick a loop vertex v ∈ LG . By induction hypothesis,
LG�v

∗−→G�v 0.

LG = φ1(LG�v )
v−→G φ0(LG�v )

∗−→G φ0(0) = 0 .

47 / 47



The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

A generalization of Sutner’s Theorem

Theorem 18 (Sutner’s Theorem)

LG ∈ NG .

Theorem 19 (A generalization of Sutner’s Theorem)

LG
∗−→G 0.

Proof.

Induct on the number of vertices.
Pick a loop vertex v ∈ LG . By induction hypothesis,
LG�v

∗−→G�v 0.

LG = φ1(LG�v )
v−→G φ0(LG�v )

∗−→G φ0(0) = 0 .

47 / 47


	The problem
	Lit-only Cayley digraph
	Phase space classification
	The groups
	Line graph
	Double covering

