The lit-only σ -game and relevant mathematics

Yaokun Wu, Shanghai Jiao Tong University Ziqing Xiang, University of Georgia

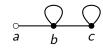
G2S2, Novosibirsk, August 18, 2016

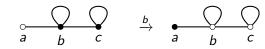
Outline

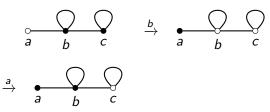
- 1. The lit-only σ -game reachability problem
- 2. Lit-only Cayley digraph
- 3. Phase space classification
- 4. Topaz group and lit-only group
- Line graph
- 6. Turning off all-loops via double covering

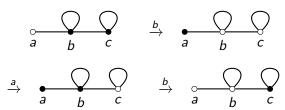
Lit-only σ -game

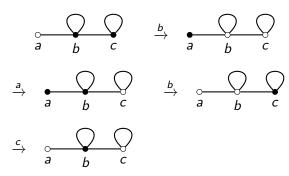
Let D be a digraph, namely a pair of finite sets (V_D, A_D) with $A_D \subseteq V_D \times V_D$.

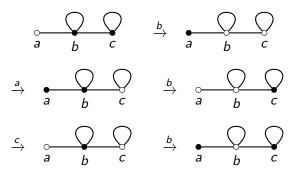

A configuration is a subset of V_D .

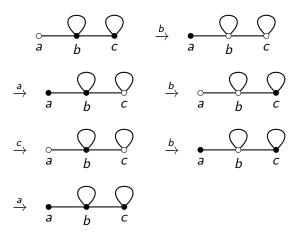

Let x be a configuration and v a vertex from V_D . If $v \in x$, then the configuration x can go to the configuration

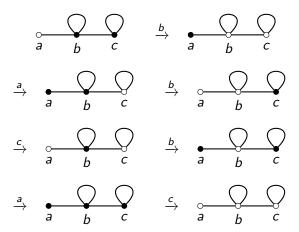

$$x \triangle N_D^+(v)$$
,


where \triangle is the symmetric difference, and $N_D^+(v)$ is the set of out-neighbours of v in D. The dynamical system in which the phase transition follows the above rule is called the lit-only σ -game.


Note that $(2^{V_D}, \triangle)$ is a binary linear space.







All-loops-on can reach all-off in the lit-only σ -game: $L_D \stackrel{*}{\to} \emptyset$.

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

$$\rightarrow$$
 $x = \emptyset$, $y \neq \emptyset$:

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

 $\rightarrow x = \emptyset, y \neq \emptyset$: No!

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

- $x = \emptyset, y \neq \emptyset$: No!
- \triangleright $x \neq L_D$, $y = L_D$:

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

- $\mathbf{x} = \emptyset, \ \mathbf{y} \neq \emptyset$: No!
- $\triangleright x \neq L_D, y = L_D$: No!

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

- $\rightarrow x = \emptyset, y \neq \emptyset$: No!
- $\triangleright x \neq L_D, y = L_D$: No!
- \triangleright $x = L_D$, $y = \emptyset$:

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

- $\rightarrow x = \emptyset, y \neq \emptyset$: No!
- $\triangleright x \neq L_D, y = L_D$: No!
- ▶ $x = L_D$, $y = \emptyset$: Yes, provided D is symmetric!

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

- $x = \emptyset, y \neq \emptyset$: No!
- $\triangleright x \neq L_D, y = L_D$: No!
- ▶ $x = L_D$, $y = \emptyset$: Yes, provided D is symmetric!

Is there any efficient method to solve this decision problem?

The lit-only σ -game reachability problem

THE PROBLEM: Take a digraph D and $x, y \in 2^{V_D}$. Is it true that $x \stackrel{*}{\to}_D y$?

- $x = \emptyset, y \neq \emptyset$: No!
- $\triangleright x \neq L_D, y = L_D$: No!
- ▶ $x = L_D$, $y = \emptyset$: Yes, provided D is symmetric!

Is there any efficient method to solve this decision problem?

Theorem 1

If the digraph D is symmetric, then the above problem is polynomial time solvable.

Line graph

Let D be a digraph. For every $v \in V_D$, construct a map $\mathcal{T}_{V} \in \text{End}(2^{V_{D}})$:

$$x \mapsto \begin{cases} x \triangle N_D^+(v), & v \in x, \\ x, & v \notin x. \end{cases}$$

Lit-only monoid

Let D be a digraph. For every $v \in V_D$, construct a map $\mathcal{T}_v \in \text{End}(2^{V_D})$:

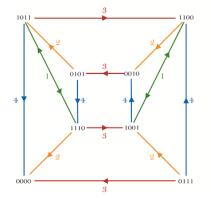
$$x \mapsto \begin{cases} x \triangle N_D^+(v), & v \in x, \\ x, & v \notin x. \end{cases}$$

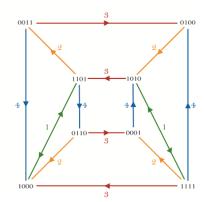
Definition 2

The lit-only monoid of D is the multiplicative monoid generated by \mathcal{T}_{v} 's:

$$LOM_D := \langle \mathcal{T}_v : v \in V_D \rangle.$$

When D is loopless, we call LOM_D the lit-only group of D, denoted by LOG_D.


Phase space


The phase space of the lit-only σ -game on a digraph D is the digraph \mathcal{PS}_D with:

- $\triangleright V_{\mathcal{PS}_D} = 2^{V_D};$

Phase space: An example

The lit-only σ -game reachability problem, Contd.

The lit-only σ -game reachability problem is, based on the information about D, to decide the reachability between any two configurations in the phase space \mathcal{PS}_D , which is of exponential size.

The lit-only σ -game reachability problem, Contd.

The lit-only σ -game reachability problem is, based on the information about D, to decide the reachability between any two configurations in the phase space \mathcal{PS}_D , which is of exponential size.

In general, as a dynamical system problem, we want to understand the action of LOM_D on 2^{V_D} .

Cayley digraph and its lit-only variant

Taking a group G, a set S and a map $\beta \in G^S$, the Cayley digraph $\Gamma(G,\beta)$ has vertex set G and arc set $\{g \to g\beta(s) : s \in S, g \in G\}$.

Cayley digraph and its lit-only variant

Taking a group G, a set S and a map $\beta \in G^S$, the Cayley digraph $\Gamma(G,\beta)$ has vertex set G and arc set $\{g \to g\beta(s) : s \in S, g \in G\}$.

Phase space classification

If we are travelling in a world modelled by the Cayley digraph $\Gamma(G,\beta)$, each element $s\in S$ is a vehicle which can take us from where we are, say $g\in G$, to $g\beta(s)\in G$.

Cayley digraph and its lit-only variant

Taking a group G, a set S and a map $\beta \in G^S$, the Cayley digraph $\Gamma(G,\beta)$ has vertex set G and arc set $\{g \to g\beta(s) : s \in S, g \in G\}$.

If we are travelling in a world modelled by the Cayley digraph $\Gamma(G,\beta)$, each element $s\in S$ is a vehicle which can take us from where we are, say $g\in G$, to $g\beta(s)\in G$. If every vehicle $s\in S$ is available only at a specific set of stations, say $\alpha(s)\subseteq G$, the real world which we live in becomes the lit-only Cayley digraph $\Gamma(G,\beta,\alpha)$ that has vertex set G and arc set $\{g\to g\beta(s):\ s\in S,g\in \alpha(s)\}$. Here the map $\alpha\in (2^G)^S$ gives the lit-only restriction.

Cayley digraph and its lit-only variant

Taking a group G, a set S and a map $\beta \in G^S$, the Cayley digraph $\Gamma(G,\beta)$ has vertex set G and arc set $\{g \to g\beta(s): s \in S, g \in G\}$.

If we are travelling in a world modelled by the Cayley digraph $\Gamma(G,\beta)$, each element $s\in S$ is a vehicle which can take us from where we are, say $g\in G$, to $g\beta(s)\in G$. If every vehicle $s\in S$ is available only at a specific set of stations, say $\alpha(s)\subseteq G$, the real world which we live in becomes the lit-only Cayley digraph $\Gamma(G,\beta,\alpha)$ that has vertex set G and arc set $\{g\to g\beta(s):\ s\in S,g\in \alpha(s)\}$. Here the map $\alpha\in (2^G)^S$ gives the lit-only restriction.

If $\alpha(s) = G$ for all $s \in S$, surely $\Gamma(G, \beta, \alpha)$ is just $\Gamma(G, \beta)$.

The problem

Cayley digraph and its lit-only variant

Taking a group G, a set S and a map $\beta \in G^S$, the Cayley digraph $\Gamma(G,\beta)$ has vertex set G and arc set $\{g \to g\beta(s) : s \in S, g \in G\}$.

If we are travelling in a world modelled by the Cayley digraph $\Gamma(G,\beta)$, each element $s\in S$ is a vehicle which can take us from where we are, say $g\in G$, to $g\beta(s)\in G$. If every vehicle $s\in S$ is available only at a specific set of stations, say $\alpha(s)\subseteq G$, the real world which we live in becomes the lit-only Cayley digraph $\Gamma(G,\beta,\alpha)$ that has vertex set G and arc set $\{g\to g\beta(s):\ s\in S,g\in \alpha(s)\}$. Here the map $\alpha\in (2^G)^S$ gives the lit-only restriction.

If $\alpha(s) = G$ for all $s \in S$, surely $\Gamma(G, \beta, \alpha)$ is just $\Gamma(G, \beta)$.

Minicourse I: The lit-only restriction is due to faulty links! Minicourse II: Does it make sense to consider the Cayley isomorphism problem with the lit-only restriction?

\mathcal{PS}_D as a lit-only Cayley digraph

The power set of V, namely 2^V , forms an abelian group where the sum x+y of two elements x and y of 2^V is given by the symmetric difference $x\triangle y$ of them. Let α be the map from V to 2^V such that $\alpha(v)=\{x\in 2^V: v\in x\}.$

\mathcal{PS}_D as a lit-only Cayley digraph

The power set of V, namely 2^V , forms an abelian group where the sum x+y of two elements x and y of 2^V is given by the symmetric difference $x\triangle y$ of them. Let α be the map from V to 2^V such that $\alpha(v)=\{x\in 2^V: v\in x\}.$

Digraphs D on vertex set V are just single variable functions β from V to $G=2^V$.

- $D \Rightarrow \beta \colon \beta(v) \doteq \mathsf{N}_D^+(v) \in \mathcal{G}, \forall v \in V.$

\mathcal{PS}_D as a lit-only Cayley digraph

The power set of V, namely 2^V , forms an abelian group where the sum x+y of two elements x and y of 2^V is given by the symmetric difference $x\triangle y$ of them. Let α be the map from V to 2^V such that $\alpha(v)=\{x\in 2^V: v\in x\}.$

Digraphs D on vertex set V are just single variable functions β from V to $G=2^V$.

- $D \Rightarrow \beta \colon \beta(v) \doteq \mathsf{N}_D^+(v) \in \mathsf{G}, \forall v \in \mathsf{V}.$

Assuming that digraph D and map $\beta \in G^V$ correspond to each other under the above bijection, then

$$\Gamma(2^V, \beta, \alpha) = \mathcal{PS}_D$$
.

Line graph

What is the difference made by the lit-only restriction?

Let

$$\Gamma(2^V,\beta) = \mathcal{PS}_D^{\sigma},$$

which surely contains

$$\Gamma(2^V, \beta, \alpha) = \mathcal{PS}_D$$

as a subgraph.

Playing the σ -game on the digraph D is to find a "good" path in \mathcal{PS}_D^{σ} while playing the lit-only σ -game on D is to find a "good" path in \mathcal{PS}_D .

The reachability problem for \mathcal{PS}_D^{σ} based on information of β (D) amounts to solving a system of linear equations over the binary field and hence is easy.

What is the difference made by the lit-only restriction?

Let

$$\Gamma(2^V,\beta) = \mathcal{PS}_D^{\sigma},$$

which surely contains

$$\Gamma(2^V, \beta, \alpha) = \mathcal{PS}_D$$

as a subgraph.

Playing the σ -game on the digraph D is to find a "good" path in \mathcal{PS}_D^{σ} while playing the lit-only σ -game on D is to find a "good" path in \mathcal{PS}_D .

The reachability problem for \mathcal{PS}_D^{σ} based on information of β (D) amounts to solving a system of linear equations over the binary field and hence is easy. Our main work is to tell the difference between \mathcal{PS}_D^{σ} and \mathcal{PS}_D .

Vector spaces associated to graphs

- ▶ Arc space: 2^{A_D} .
- ► Two subspaces of 2^{A_D} that appear often in algebraic graph theory: Cut space and cycle space.
- ▶ Vertex space: 2^{V_D}.
- ▶ Neighbour space: $\mathcal{N}_D := \langle \mathsf{N}_D^+(\mathsf{v}) : \mathsf{v} \in \mathsf{V}_D \rangle \leq 2^{\mathsf{V}_D}$.

The cosets of the neighbour space \mathcal{N}_D in the vertex space is the set of all strongly connected components of \mathcal{PS}_D^{σ} . We may say that the difference between \mathcal{PS}_D^{σ} and \mathcal{PS}_D is small if we can show that these cosets are almost always still strongly connected components of \mathcal{PS}_D .

We call the dimension of \mathcal{N}_D the rank of D, and we often use r for this number.

A question

Are there more general groups G, connection maps β , and lit-only restrictions α for which we can test efficiently the reachability on the lit-only Cayley digraph $\Gamma(G, \beta, \alpha)$ based on the local information of β and α , as possible generalization of Theorem 1?

The classification

According to the types of differences between \mathcal{PS}_D^{σ} and \mathcal{PS}_D , we try to classify all strongly connected digraphs. We are successful for symmetric digraphs and have corresponding conjecture for asymmetric digraphs.

Prior to the classification results, we present our newly-discovered graph classes.

The natural maps from $\mathbb N$ to $\{0,1\}$

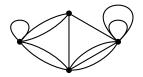
The natural maps from \mathbb{N} to $\{0,1\}$

Over the Boolean semifield B:

$$\begin{cases} 0 \mapsto 0, \\ n \mapsto 1, & n \ge 1. \end{cases}$$

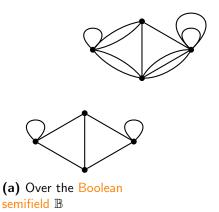
Line graph

Over the Boolean semifield B:

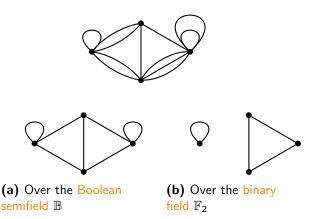

$$\begin{cases} 0 \mapsto 0, \\ n \mapsto 1, & n \ge 1. \end{cases}$$

Over the binary field \mathbb{F}_2 :

$$n \mapsto n \mod 2$$
.


The natural maps from multigraphs to graphs

A multigraph (symmetric nonnegative integer matrix):


The natural maps from multigraphs to graphs

A multigraph (symmetric nonnegative integer matrix):

The natural maps from multigraphs to graphs

A multigraph (symmetric nonnegative integer matrix):

Line graphs

Given a multigraph G, its line graph, denoted by $\mathfrak{L}(G)$, is the graph with:

- ▶ Vertex set: $V_{\mathfrak{L}(G)} = E_G$;
- ▶ Edge set: $\mathsf{E}_{\mathfrak{L}(G)} = \{\{e, f\}: |\partial_G(e) \cap \partial_G(f)| \equiv 1, e, f \in \mathsf{E}_G\}.$

Line graphs

Given a multigraph G, its line graph, denoted by $\mathfrak{L}(G)$, is the graph with:

- ▶ Vertex set: $V_{\mathfrak{L}(G)} = E_G$;
- ▶ Edge set: $E_{\mathfrak{L}(G)} = \{\{e, f\}: |\partial_G(e) \cap \partial_G(f)| \equiv 1, e, f \in E_G\}.$

A line graph is ordinary if it is the line graph of a graph.

Line graphs

Given a multigraph G, its line graph, denoted by $\mathfrak{L}(G)$, is the graph with:

- ▶ Vertex set: $V_{\mathfrak{L}(G)} = \mathsf{E}_G$;
- ▶ Edge set: $E_{\mathfrak{L}(G)} = \{\{e, f\}: |\partial_G(e) \cap \partial_G(f)| \equiv 1, e, f \in E_G\}.$

A line graph is ordinary if it is the line graph of a graph.

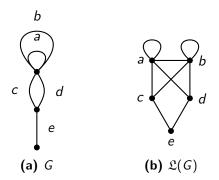
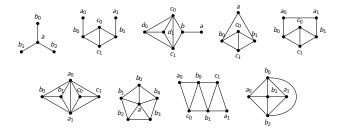
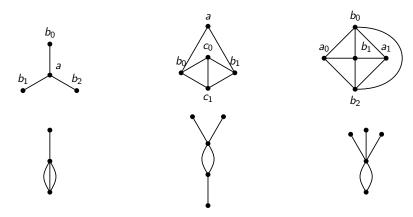



Figure: A multigraph and its line graph.

Characterization of loopless ordinary line graphs


Theorem 3 (Beineke's characterization)

A loopless graph is an ordinary line graph if and only if it does not contain any of the nine graphs below as a vertex-induced subgraph.

Figure: Nine forbidden vertex-induced subgraphs for loopless ordinary line graphs.

Three loopless extraordinary line graphs

Figure: Three line graphs from the list of Beineke and their root multigraphs.

Quadratic form

Let $\mathbb V$ be a binary linear space. For any map $Q: \mathbb V \to \mathbb F_2$, we define its *polarisation* to be the map $\nabla_Q: \mathbb V \times \mathbb V \to \mathbb F_2$ such that

$$\nabla_Q(x,y) := Q(x+y) - Q(x) - Q(y), \quad \forall x,y \in \mathbb{V}.$$

A quadratic form on $\mathbb V$ is a map $Q: \mathbb V \to \mathbb F_2$ such that Q(0)=0 and that ∇_Q is $\mathbb F_2$ -bilinear, and so an alternating form $(\nabla_Q(x,x)=0)$.

The problem

Let X be a set.

Example 4

It is clear that $Q = \frac{|\cdot|}{2}$ is a quadratic form on $V = {X \choose \text{even}}$ and its polarisation ∇_Q is given by $\nabla_Q(x,y) \equiv |x \cap y|$ for all $x,y \in {X \choose \text{even}}$.

Example 5

We often write an element $\{A,B\} \in 2^X/\{\mathbf{0},X\}$ as A|B and thus view $2^X/\{\mathbf{0},X\}$ as the set of splits on X. For each $S \in 2^X/\{\mathbf{0},X\}$, we define $\overline{S_x}$ and S_x to be two sets such that $x \in S_x$, $x \notin \overline{S_x}$ and $S = S_x|\overline{S_x}$. For any $x \in X$, define the quadratic form Q_x on $V = 2^X/\{\mathbf{0},X\}$ by setting $Q_x(S) \equiv |\overline{S_x}|$. Note that the polarisation of Q_x vanishes everywhere.

There is a natural nondegenerate pairing of $\begin{pmatrix} X \\ \text{even} \end{pmatrix}$ and $2^X/\{\mathbf{0}, V_G\}$ as \mathbb{F}_2 -vectorspaces:

$$\begin{pmatrix} X \\ \text{even} \end{pmatrix} \times 2^X / \{\mathbf{0}, V_G\} \to \mathbb{F}_2 : (Z, A|B) \mapsto |A \cap Z|.$$

But it is not clear if there is also some natural correspondence between the quadratic forms on $2^{V_G}/\{\mathbf{0}, V_G\}$ and those on $\binom{V_G}{G}$.

Euler form

Regarding a graph G as a one-dimensional abstract simplicial complex, the Euler characteristic of G (over \mathbb{F}_2), denoted by $\chi(G)$, is $|\mathsf{V}_G|-|\mathsf{E}_G|\in\mathbb{F}_2$.

The Euler form of a graph G (over \mathbb{F}_2), denoted by χ_G , is the quadratic form on 2^{V_G} given by

$$\chi_G(x) :\equiv \chi(G[x]) \equiv \sum_{v \in V_G \setminus L_G} v^*(x)^2 - \sum_{uv \in E_G \setminus L_G} u^*(x)v^*(x),$$

where G[x] is the vertex-induced subgraph of G for subset $x \subseteq V_G$.

Some graph classes

Opal line graphs: Line graphs of multigraphs with odd number of vertices.

Emerald line graphs: Line graphs of multigraphs with even number of vertices.

Cuspidal graphs: Graphs that are not line graphs.

Polished graphs: Graphs G that admit a (unique) quadratic form q_G on \mathcal{N}_G such that $q_G \circ \mathrm{N}_G = \chi_G$. For polished graphs G, the Arf invariants of q_G determine the shape of \mathcal{PS}_G .

Unpolished graphs: Graphs G that are not polished.

Loop-linked digraphs: Digraphs *D* in which every vertex can go to a loop vertex and every vertex can be reached by a loop vertex.

Loopless digraphs: Digraphs D without loops.

Theorem 6

Let G be a loopless connected multigraph. Then, $\mathfrak{L}(G)$ is polished if and only if $|V_G| \not\equiv 2 \pmod{4}$.

Phase space of nonempty loopless strongly connected graphs (Theorem)

Graph classes	Phase space	
1. Opal line graphs	Neighbour space	$ 0 \qquad $
2. Polished emerald line graphs	Neighbour space	$ \begin{array}{c} \bullet \\ 0 \end{array} $
of rank ≥ 4	Exception	$ \begin{pmatrix} r+2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} r+2 \\ 3 \end{pmatrix} \cdots \qquad \begin{pmatrix} r+2 \\ r/2-2 \end{pmatrix} \qquad \begin{pmatrix} r+2 \\ r/2 \end{pmatrix} $
3. Unpolished emerald line graphs	Neighbour space	$ \begin{array}{c} \bullet \\ 0 \end{array} $
of rank ≥ 4	Exception	$\begin{pmatrix} r+2 \\ 1 \end{pmatrix} \begin{pmatrix} r+2 \\ 3 \end{pmatrix} \cdots \begin{pmatrix} r+2 \\ r/2-1 \end{pmatrix} \begin{pmatrix} r+2 \\ r/2+1 \end{pmatrix}$
4. Polished cuspidal graphs, I	Neighbour space	0
5. Polished cuspidal graphs, II	Neighbour space	0
6. Unpolished cuspidal graphs	Neighbour space	0 2 - 1
	Exception	$2^{r-1} - 2^{r/2-1}$ $2^{r-1} + 2^{r/2-1}$

Phase space of loop-linked strongly connected graphs (Theorem)

Graph classes	Phase space	
7. Loop-linked line graphs	Neighbour space	$0 \leftarrow \begin{pmatrix} r \\ 1 \end{pmatrix} \leftarrow \begin{pmatrix} r \\ 2 \end{pmatrix} \leftarrow \cdots \leftarrow \begin{pmatrix} r \\ r-2 \end{pmatrix} \leftarrow \begin{pmatrix} r \\ r-1 \end{pmatrix} \leftarrow \begin{pmatrix} r \\ 1 \end{pmatrix} \leftarrow \begin{pmatrix} r $
8. Loop-linked cuspidal graphs	Neighbour space	$ \begin{array}{cccc} \bullet \leftarrow 2^r - 2 & \leftarrow \\ 0 & L_D \end{array} $

Phase space of loopless strongly connected asymmetric digraphs (Conjecture)

Phase space of loop-linked strongly connected asymmetric digraphs (Conjecture)

Graph class	Phase space	
10. Asymmetric digraphs, I	Neighbour space	$0 \leftarrow \begin{pmatrix} r \\ 1 \end{pmatrix} \leftarrow \begin{pmatrix} r \\ 2 \end{pmatrix} \leftarrow \cdots \leftarrow \begin{pmatrix} r \\ r-2 \end{pmatrix} \leftarrow \begin{pmatrix} r \\ r-1 $
11. Asymmetric digraphs, IIA	Neighbour space	$0 \leftarrow (r+1) \leftarrow (r+1) \leftarrow \cdots \leftarrow (r+1) \leftarrow (r+1$
	Exception	$ \underbrace{\binom{r+1}{1}}_{1} + \underbrace{\binom{r+1}{3}}_{1} + \cdots + \underbrace{\binom{r+1}{r-3}}_{1} + \underbrace{\binom{r+1}{r-1}}_{1} + \binom{r+$
12. Asymmetric digraphs, IIB	Neighbour space	$0 \leftarrow \begin{pmatrix} r+1 \\ 2 \end{pmatrix} \leftarrow \begin{pmatrix} r+1 \\ 4 \end{pmatrix} \leftarrow \cdots \leftarrow \begin{pmatrix} r+1 \\ r-3 \end{pmatrix} \leftarrow \begin{pmatrix} r+1 \\ r-1 \end{pmatrix} \leftarrow \begin{pmatrix} r+1 \\ $
	Exception	$ \underbrace{\binom{r+1}{1}} \leftarrow \underbrace{\binom{r+1}{3}} \leftarrow \cdots \leftarrow \underbrace{\binom{r+1}{r-2}} \leftarrow \underbrace{\binom{r+1}{r}} $
13. Asymmetric digraphs, IIIA	Neighbour space	$ \begin{array}{ccc} \bullet & 2^r - 2 & \bullet \\ 0 & L_D \end{array} $
14. Asymmetric digraphs, IIIB	Neighbour space	
	Exception	2 ⁷ -1)-• L _D

Topaz groups

Definition 7

Let D be a loopless digraph. The Topaz group of D, denoted by TG_D , is the restriction of LOG_D to the invariant subspace \mathcal{N}_D .

The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Topaz groups

Definition 7

Let D be a loopless digraph. The Topaz group of D, denoted by TG_D , is the restriction of LOG_D to the invariant subspace \mathcal{N}_D .

Theorem 8

Let D be a nonempty loopless strongly connected digraph. Then, TG_D is determined by \mathcal{N}_D and the type of D as follow.

- 1. Opal line graphs: $Sym_{dim N_D+1}$.
- 2. Emerald line graphs of rank ≥ 4 : Sym_{dim N_0+2}.
- 3. Polished cuspidal graphs: $O^+(\mathcal{N}_D)$ or $O^-(\mathcal{N}_D)$.
- 4. Unpolished cuspidal graphs: $Sp(\mathcal{N}_D)$.
- 5. Asymmetric digraphs: $SL(N_D)$.

Lit-only groups

Theorem 9

Let D be a nonempty loopless strongly connected graph. Then, LOG_D is determined by \mathcal{N}_D and the type of D as follow.

- 1. Opal line graphs: $\operatorname{Sym}_{\dim \mathcal{N}_D+1} \ltimes \mathcal{N}_D^{\operatorname{codim} \mathcal{N}_D}$.
- 2. Emerald line graphs of rank \geq 4: $\operatorname{Sym}_{\dim \mathcal{N}_D + 2} \ltimes \mathcal{N}_D^{\operatorname{codim} \mathcal{N}_D 1}$
- 3. Polished cuspidal graphs: $O^+(\mathcal{N}_D) \ltimes \mathcal{N}_D^{\operatorname{codim} \mathcal{N}_D}$ or $O^-(\mathcal{N}_D) \ltimes \mathcal{N}_D^{\operatorname{codim} \mathcal{N}_D}$.
- 4. Unpolished cuspidal graphs: $\operatorname{Sp}(\mathcal{N}_D) \ltimes \mathcal{N}_D^{\operatorname{codim} \mathcal{N}_D 1}$

Conjecture 10

Let D be a strongly connected loopless asymmetric digraph. Then, LOG_D is $SL(\mathcal{N}_D) \ltimes \mathcal{N}_D^{\operatorname{codim} \mathcal{N}_D}$.

Characterization of loopless line graphs

Theorem 11

For a loopless graph G, the following statements are equivalent.

- ► The graph G is a line graph.
- ► The graph G does not contain any graph in a set of thirty-two forbidden graphs as an induced subgraph.

Characterization of loopless line graphs

Theorem 11

For a loopless graph G, the following statements are equivalent.

- ▶ The graph G is a line graph.
- ► The graph G does not contain any graph in a set of thirty-two forbidden graphs as an induced subgraph.
- Every connected 6-vertex vertex-induced subgraph of G is a line graph.
- ► Every connected nonsingular 6-vertex vertex-induced subgraph of G is one of the eleven line graphs of 7-vertex trees.

The thirty-two forbidden graphs

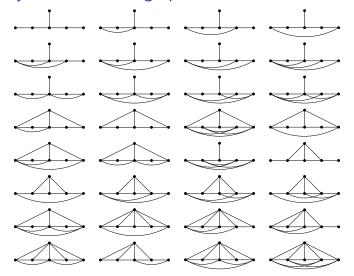


Figure: The 32 forbidden subgraphs for loopless line graphs.

The eleven line graphs of 7-vertex trees

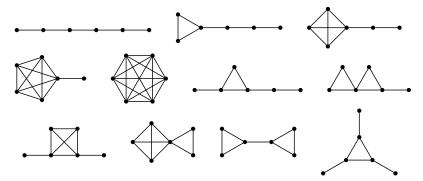
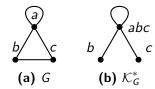


Figure: Eleven 6-vertex line graphs of trees.

Three observations

- ► There are 43 connected nonsingular 6-vertex graphs. They consist of the 32 forbidden graphs and the 11 line graphs of 7-vertex trees.
- All the 32 forbidden graphs are connected loopless polished cuspidal graphs with Arf invariant 1 and have a lit-only group isomorphic to $W(E_6)$.
- ► All those 11 line graphs are connected loopless opal line graphs and have Sym₇ as their lit-only group.

Edge clique partition


For a hypergraph $\mathcal{K} \subseteq 2^V$ with vertex set V, let $d_{\mathcal{K}}(v)$ be $\{k \in \mathcal{K} \colon v \in k\}$ for all $v \in V$. The dual hypergraph of \mathcal{K} is $\mathcal{K}^* = \{d_{\mathcal{K}}(v) \colon v \in V\}$ on the vertex set \mathcal{K} .

Definition 12

Let G be a graph without isolated vertices. An edge clique partition of G is a simple hypergraph $\mathcal{K} \subseteq 2^{V_G} \setminus \{\emptyset\}$ such that the following conditions hold:

- 1. For every $v \in V_G \setminus L_G$, it holds $d_{\mathcal{K}}(v) \in \binom{\mathcal{K}}{2}$;
- 2. For every $v \in L_G$, it holds $d_K(v) \in \binom{K}{1}$;
- 3. The edge set E_G is the disjoint union of $(k \cap L_G) \cup {k \choose 2}$ where k runs through all elements of \mathcal{K} ;
- 4. For each $k \in \mathcal{K}$, it happens $|k \cap L_G| \le 1$.

Examples

Examples

Lit-only Cayley digraph

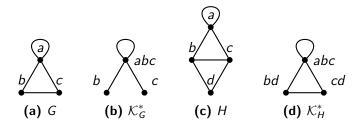


Figure: Graphs, edge clique partitions and root graphs.

$$G = \mathfrak{L}(\mathcal{K}_G^*), H = \mathfrak{L}(\mathcal{K}_H^*)$$

Generalization of Whitney's theorem

Theorem 13 (Whitney's theorem)

A connected loopless ordinary line graph has an edge clique partition.

Generalization of Whitney's theorem

Theorem 13 (Whitney's theorem)

A connected loopless ordinary line graph has an edge clique partition.

Theorem 14 (Generalization of Whitney's theorem)

Except the four graphs, a connected ordinary line graph has a unique edge clique partition.

We can design a very simple linear-time algorithm to reconstruct the root graph of a line graph.

Graphs having two edge clique partitions

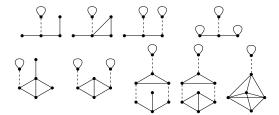

	Graph	Type A ECP	Type B ECP
$X = \emptyset$ $Y = \emptyset$ $Z = \emptyset$	<i>b c</i>	b abc c	ab ac
$X = \{x\}$ $Y = \emptyset$ $Z = \emptyset$	b c	bx _abc cx	ab ac
$X = \emptyset$ $Y = \{y\}$ $Z = \{z\}$	z a y	ayz bz abc cy	abz acy
$X = \{x\}$ $Y = \{y\}$ $Z = \{z\}$	Z a y	bxz abc cxy	abz acy

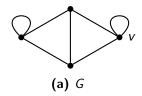
Table: Graphs and the dual hypergraphs of their two edge clique partitions.

Characterization of loop-linked line graphs

Theorem 15

A loop-linked graph is a line graph if and only if it does not contain any graph below as a vertex-induced subgraph.

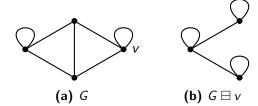
Figure: The 9 classes of forbidden vertex-induced subgraphs of loop-linked graphs. Dashed lines stand for paths of length zero or more.


Box minus

Let G be a graph and v be a loop vertex of G.

Box minus

Let G be a graph and v be a loop vertex of G.


Let $G \boxminus v$ be the graph with vertex set $V_G \setminus \{v\}$ and edge set $E_G \triangle \binom{N_G(v)}{1} \triangle \binom{N_G(v)}{2}$.

Box minus

Let G be a graph and v be a loop vertex of G.

Let $G \boxminus v$ be the graph with vertex set $V_G \setminus \{v\}$ and edge set $E_G \triangle \binom{N_G(v)}{1} \triangle \binom{N_G(v)}{2}$.

Another characterization of loop-linked line graphs

Theorem 16

A loop-linked graphs is cuspidal if and only if it can be reduced to one of the following graphs by a sequence of - and \Box operations through loop-linked graphs.

Figure: The two minimal (with respect to operators - and \square) loop-linked cuspidal graphs.

▶ Loopless line graphs have 32 forbidden subgraphs.

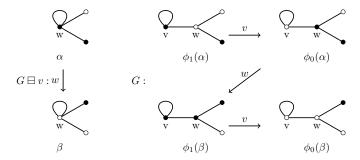
- ▶ Loopless line graphs have 32 forbidden subgraphs.
- ► Loop-linked line graphs have 9 classes of forbidden subgraphs.

- ▶ Loopless line graphs have 32 forbidden subgraphs.
- ▶ Loop-linked line graphs have 9 classes of forbidden subgraphs.
- ▶ Loop-linked cuspidal graphs can be reduced to two graphs.

- ▶ Loopless line graphs have 32 forbidden subgraphs.
- Loop-linked line graphs have 9 classes of forbidden subgraphs.
- ▶ Loop-linked cuspidal graphs can be reduced to two graphs.
- ▶ Most line graphs have unique edge clique partitions.

The problem Lit-only Cayley digraph Phase space classification The groups Line graph Double covering

Summary


- ► Loopless line graphs have 32 forbidden subgraphs.
- ► Loop-linked line graphs have 9 classes of forbidden subgraphs.
- ► Loop-linked cuspidal graphs can be reduced to two graphs.
- ▶ Most line graphs have unique edge clique partitions.

Problem 17

Why do they happen?

A double covering from PS_G to $PS_{G \vdash v}$: $wv \in E_G$

$$\phi_0(\alpha)|_{\mathsf{V}_{\mathsf{G} \boxminus \mathsf{v}}} = \alpha, \phi_0 + \phi_1 = \mathsf{N}_{\mathsf{G}}(\mathsf{v}), \mathsf{v}^* \circ \phi_i = i, \forall \alpha \in 2^{\mathsf{V}_{\mathsf{D} \boxminus \mathsf{v}}}, i \in \mathbb{F}_2.$$

Figure: For $w \in N_G(v) \setminus \{v\}$, a *w*-arc in $\mathcal{PS}_{G \boxminus v}$ is lifted to two length-two walks in \mathcal{PS}_G .

The problem

Double covering

A double covering from \mathcal{PS}_G to $\mathcal{PS}_{G \boxminus v}$: $wv \notin \mathsf{E}_G$

$$\phi_0(\alpha)|_{\mathsf{V}_{G\square_{\mathsf{V}}}} = \alpha, \phi_0 + \phi_1 = \mathsf{N}_{\mathsf{G}}(\mathsf{v}), \mathsf{v}^* \circ \phi_i = i, \forall \alpha \in 2^{\mathsf{V}_{\mathsf{D}\square_{\mathsf{V}}}}, i \in \mathbb{F}_2.$$

Figure: For $w \in V_G \setminus N_G(v)$, a *w*-arc in $\mathcal{PS}_{G \boxminus v}$ is lifted to two *w*-arcs in \mathcal{PS}_G .

A generalization of Sutner's Theorem

Theorem 18 (Sutner's Theorem)

 $L_G \in \mathcal{N}_G$.

A generalization of Sutner's Theorem

Theorem 18 (Sutner's Theorem)

 $L_G \in \mathcal{N}_G$.

Theorem 19 (A generalization of Sutner's Theorem)

 $L_G \stackrel{*}{\rightarrow}_G \mathbf{0}$.

A generalization of Sutner's Theorem

Theorem 18 (Sutner's Theorem)

 $L_G \in \mathcal{N}_G$.

Theorem 19 (A generalization of Sutner's Theorem)

 $L_G \stackrel{*}{\rightarrow}_G \mathbf{0}$.

Proof.

Induct on the number of vertices.

Pick a loop vertex $v \in L_G$. By induction hypothesis,

$$L_{G \boxminus v} \stackrel{*}{\rightarrow}_{G \boxminus v} \mathbf{0}.$$

$$\mathsf{L}_G = \phi_1(\mathsf{L}_{G \boxminus_V}) \stackrel{\mathsf{v}}{\to}_G \phi_0(\mathsf{L}_{G \boxminus_V}) \stackrel{*}{\to}_G \phi_0(\mathbf{0}) = \mathbf{0}$$
.