MDS codes with code distance at least 3 in Doob graphs.

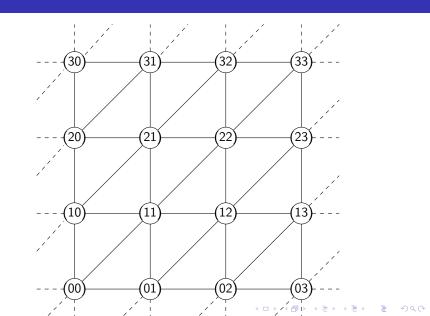
Evgeny Bespalov

Sobolev Institute of Mathematics

Shrikhande graph

- The Shrikhande graph was discovered in 1959 by S. S. Shrikhande.
- It is strongly regular graph with parametres $(v, k, \lambda, \mu) = (16, 6, 2, 2)$.
- The Shrikhande graph Sh can be considered as Cayley graph of Z_4^2 with the connecting set $\{01, 03, 10, 30, 11, 33\}$.

Shrikhande graph



The Doob graphs

- $D(m,n) = Sh^m \times K_4^n$
- If m = 0, then D(0, n) is a Hamming graph $H(n, 4) = K_4^n$.
- If m > 0, then D(m, n) is a Doob graph.
- D(m, n) is a dictance-regular graph with the same parametres as H(2m + n, 4).

MDS codes

- For any code C in D(m, n) with code distance d, $|C| < 4^k$, k = 2m + n d + 1.
- Code C in D(m, n) with code distance d we call MDS code, if $|C| = 4^k$, k = 2m + n d + 1.
- We denote such codes as $(m + n, 4^k, d)$ MDS codes, d = 2m + n - k + 1

MDS codes

- Two codes are said to be equivalent if there is a automorphism of Doob graph that maps one code to another
- $L_{m,n,k}$ number of different $(m+n,4^k,d=2m+n-k+1)$ MDS codes up to the equivalence.

Main results

Theorem

- $L_{m,n,1} = m^3/36 + 7m^2/24 + 11m/12 + 1 (m \mod 2)/8 (m \mod 3)/9;$
- if $4 \le 2m + n \le 6$ and $3 \le d \le 4$, then the values of $L_{m,n,2m+n-d+1}$ are shown in the table;
- if 2m + n = 6, then $L_{m,n,2} = 0$;
- if 2m + n > 6 and 2 < d < 2m + n, then $L_{m,n,2m+n-d+1} = 0$.

(m, n)	(2,0)	(1,2)	(2,1)	(1,3)	(2,2)	(1,4)	(3,0)
d=3	2	1	2	1	0	0	0
d=4	4	2	2	1	1	0	0

Table: Number of values $L_{m,n,2m+n-d+1}$

Lemma 1. Let graph $G_1(V, E_1)$ be either Shrikhande graph or graph K_4^2 . Ant let graph $G_2(V, E_2)$ be also either Srikhande graph or graph K_4^2 , and $E_1 \cap E_2 = \emptyset$. Then $G_3 = (V, E_3 = \overline{E_1 \cup E_2})$ is the union of 4 disjoint graph K_4 .

Maximum independent sets

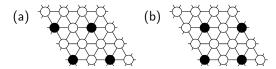


Figure: All maximum independence sets in Sh up to the equivalence

Partitions on the maximum independent sets

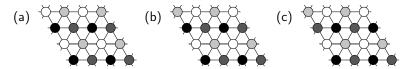


Figure: All partitions of graph Sh on the disjoint maximum independent sets up to the equivalence

MDS codes with parametres $(2+0,4^2,3)$ and $(1+2,4^2,3)$

Denote the vertices of D(m,n) as $(s_1,\ldots,s_m;h_1,\ldots,h_n)$. Let C is $(m+n,4^k,d)$ MDS code. If we fix some coordinates $(i_1,\ldots,i_r;j_1,\ldots,j_t)$ such that 2r+t=k, then we can represent any other coordinate as a function of values in fix coordinates.

MDS codes with parametres $(2+0,4^2,3)$ and $(1+2,4^2,3)$

Vertices of $(2+0,4^2,3)$ MDS codes can be represented as (a, f(a)), where a, f(a) are vertices of Sh.

From the code distance we have:

- f is a bijection;
- if d(a, b) = 1, then d(f(a), f(b)) = 2;
- if d(f(a), f(b)) = 1, then d(a, b) = 2.

MDS codes with parametres $(2+0,4^2,3)$ and $(1+2,4^2,3)$

Define graphs $G_1(V, E_1)$ and $G_2(V, E_2)$, where V is vertex set of Sh and

$$E_1 = \{(a_1, a_2) : d(a_1, a_2) = 1, a_1, a_2 \in V\},$$

$$E_2 = \{(a_1, a_2) : d(f(a_1), f(a_2)) = 1, a_1, a_2 \in V\}.$$

MDS codes with parametres $(2+1,4^3,3)$ and $(1+3,4^3,3)$

Let C is $(2+1,4^3,3)$ MDS code.

We can represent these vertices as $(f_k(a), a, k)$, $k \in \{0, 1, 2, 3\}$, $a, f_k(a)$ are vertices in Sh.

 $D_i = \{(f_i(a), a) : a \text{ is the vertex in } Sh \}$

MDS codes with parametres $(2+1,4^3,3)$ and $(1+3,4^3,3)$

Lemma 2. Let C be MDS codes with parametres $(2+1,4^3,3)$ or $(1+3,4^3,3)$. Then

- (i) for any vertex a and any different $i, j \in \{0, 1, 2, 3\}$ we have $d(f_i(a), f_j(a)) = 2$;
- (ii) for any vertex a and any i = 1, 2, 3:

$${f_k(a): k = 0, 1, 2, 3} = L^{D_0}(f_0(a)) = L^{D_i}(f_i(a));$$

(iii) for any a and for any i = 1, 2, 3:

$$R^{D_i}(a) = R^{D_0}(a);$$

(iv) for any i = 1, 2, 3 and for any pair a and b:

$$d(f_0(a), f_0(b)) = d(f_i(a), f_i(b)).$$

MDS codes with parametres $(2+1,4^3,3)$ and $(1+3,4^3,3)$

Lemma 3. Let $U = \{U_0, U_1, U_2, U_3\}$ be a partition of Shrikhande graph on the disjoint maximum independent sets.

Then there is unique set of automorphisms τ_1, τ_2, τ_3 such that for any j=0,1,2,3, any i=1,2,3 and any vertex s of Srikhande graph:

- 1) if $s \in U_j$, then $\tau_i(s) \in U_j$;
- 2) $d(\tau_i(s), s) = 2$;
- 3) $d(\tau_i(s), \tau_j(s)) = 2, i \neq j.$

Main results

Theorem

- $L_{m,n,1} = m^3/36 + 7m^2/24 + 11m/12 + 1 (m \mod 2)/8 (m \mod 3)/9$.
- if $4 \le 2m + n \le 6$ and $3 \le d \le 4$ the values of $L_{m,n,2m+n-d+1}$ are shown in the table.
- if 2m + n = 6, then $L_{m,n,2} = 0$.
- if 2m + n > 6 and 2 < d < 2m + n, then $L_{m,n,2m+n-d+1} = 0$.

(m, n)	(2,0)	(1,2)	(2,1)	(1,3)	(2,2)	(1,4)	(3,0)
d=3	2	1	2	1	0	0	0
d=4	4	2	2	1	1	0	0

Table: Number of values $L_{m,n,2m+n-d+1}$

Thank you for your attention