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Near-fields

An algebraic structure K = (K, 4, o) is called a (right) near-field, if
o KT = (K, +) is a group (with neutral element 0)
o K* = (K\ {0},0) is a group
o (x+y)oz=xo0z+4+yoz x,y,zeK
0 x00=0, xe K.
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An algebraic structure K = (K, 4, o) is called a (right) near-field, if
o KT = (K, +) is a group (with neutral element 0)
o K* = (K\ {0},0) is a group
o (x+y)oz=xo0z+4+yoz x,y,zeK
0 x00=0, xe K.

If K is a finite near-field, then K+ ~ Z’g.

Classification of finite near-fields (Zassenhaus, 1936)
Every finite near-field is one of the following:
@ Dickson near-fields (constructed via finite fields),

@ Zassenhaus near-fields (7 exceptional near-fields).

N
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Cyclotomic schemes over finite near-fields

Let K be a finite near-field, H < K*.
For a € K define

Ru(a) = {(x,y) € K? |y — x € Ho a}.

Set Ry = {Ru(a) | a € K} is a partition of K2.

The pair (K, Ry) is called the cyclotomic scheme C = C(K, H)
over the near-field K with the base group H.
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Cyclotomic schemes over finite near-fields

Let K be a finite near-field, H < K*.
For a € K define

Ru(a) = {(x,y) € K? |y — x € Ho a}.

Set Ry = {Ru(a) | a € K} is a partition of K2.

The pair (K, Ry) is called the cyclotomic scheme C = C(K, H)
over the near-field K with the base group H.

Aut(C) = {g € Sym(K) | R€ = R,R € Ry} is an automorphism
group of the scheme C.

Main problem

Find automorphism groups of cyclotomic schemes over finite
near-fields.
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2-closure of permutation groups

Let G be a permutation group on Q.
Action of G on Q induces the action on Q2: (a, )8 = (a8, 38)
Denote as Orby(G) the set of orbits of its action (2-orbits).

G® = Aut(Orby(G)) = {g € Sym(Q) : 08 = 0,0 € Orby(G)} is
the 2-closure of G.

Note that G < G().

2-closure problem

Given a permutation gorup G, find a set of generators of G(2).
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Let K be a finite near-field, H < K*, C = (K, Rp).

G=G(K,H):={x—xob+c|xeK,beH ceK} ~K"xH
is the cyclotomic group over K with the base group H.

Note that Orby(G) = Ry, so G = Aut(C).
In particular, G < Aut(C).
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Let K be a finite near-field, H < K*, C = (K, Rp).

G=G(K,H):={x—xob+c|xeK,beH ceK} ~K"xH
is the cyclotomic group over K with the base group H.

Note that Orby(G) = Ry, so G = Aut(C).
In particular, G < Aut(C).

Scheme C(K, H) is trivial if H = K*.
For a trivial scheme C(K,K*), Aut(C) = Sym(IK).
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Figure: trivial scheme C(K,K*)
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Figure: trivial scheme C(K,K*)

Scheme C(K, H) is nontrivial, if H < K*.
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P. Delsarte. An Algebraic Approach to the Association
Schemes of Coding Theory, 1973:

C = C(F, H), where T is a finite field, H < TF*.

C is a cyclotomic scheme over F with base group H.
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C = C(F, H), where T is a finite field, H < TF*.
C is a cyclotomic scheme over F with base group H.

Theorem (corollary from McConnel's work, 1963)

Let C = C(F, H) be a nontrivial cyclotomic scheme over a finite
field IF of order g with basis group H. Then Aut(C) < Al'L(1,q)=
{x—=x7-b+c|xeF,beF* ceFt oeAut(F)}.

Bagherian, Ponomarenko, Rahnamai Barghi, 2008:
o Cyclotomic scheme over finite near-field,
o Aut(C) < AT'L(1, q) for some cyclotomic schemes over
Dickson near-fields,
o conjecture: Aut(C) < AT'L(1, q) for all finite near-fields,
except for a finite number of near-fields.



Dickson near-fields
Finite near-field K is called Dickson near-field, if

o exists field Fy of order p? and its extension [ of degree n such
that F™ = KT,
o yox=y%-x, x,y € K o, € Aut(F/Fyp).
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Dickson near-fields
Finite near-field K is called Dickson near-field, if

o exists field Fy of order p? and its extension [ of degree n such
that F™ = KT,
o yox=y%-x, x,y € K o, € Aut(F/Fyp).

Obviously, |K| = p. For triple (p, d, n) exists Dickson near-field
of order p", if

Vren(n) rip? —1 4n= 4)p? — 1.
There are nonisomorphic near-fields of the same order.
Theorem (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let K be a Dickson near-field of order p@", and C = C(K, H), such
that |H| has sufficiently large primitive Zsigmondy's divisor of pair
(p, dn). Then Aut(C) < ATL(1, p).

Prime r is a primitive Zsigmondy's divisor of pair (p, dn), if
rlp? —1and r{p' —1 for i < dn.
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Properties of G(K, H)
G=G(K H)={x—xob+c|xeK,beH,cecKt}
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Properties of G(K, H)

G=G(K,H) ={x—xob+c|xeKbeH,cecK"}

Permutation group on Q is %—transitive, if its orbits on Q have the
same size.

Permutation group on Q is %—transitive, if it is transitive, and

stabilizer of point « is -transitive on Q\ {a}.

Lemma
Let K be a finite near-field, H < K*, G = G(K, H).
Then both G and G®) are %-transitive.
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Permutation group on Q is %—transitive, if its orbits on Q have the
same size.
Permutation group on Q is %—transitive, if it is transitive, and

stabilizer of point « is -transitive on Q\ {a}.

Lemma

Let K be a finite near-field, H < K*, G = G(K, H).
Then both G and G®) are %-transitive.

Liebeck, Praeger, Saxl, 2015

The classification of %—transitive permutation groups and

1 . .
5-transitive linear groups.
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Dickson near-field case

Lemma (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let K be a Dickson near-field, H < K*, G = G(K, H). Then G
is %—transitive group of affine type, i.e. G@ =K+t x L, H < L.
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Dickson near-field case

Lemma (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let K be a Dickson near-field, H < K*, G = G(K, H). Then G
is %—transitive group of affine type, i.e. G@ =K+t x L, H < L.

Classification of %—transitive permutation groups
Let X be a %—transitive permutation group. Then one of the
following holds.

1. X is 2-transitive.

2. X is a Frobenius group.
3. X is almost simple.
4

. X is affine, X = N x L < AGL(V), where
L < GL(V), and L is a 3-transitive linear group.

Then G@ =K+ x L, Lisa 1-transitive linear group.
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K is a Dickson near-field, H < K*, G = G(K, H),
GO =KtxlL L— %—transitive linear group.
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Classification of %—transitive linear groups

If L < GL(V) = GL(d, p) is 3-transitive on V¥ = V\ {0}, then
one of the following holds:

1
2.
3.

L transitive on V¥, = G(K,H) = Kt xK* = H=K*. ®
L<TL(1,p9). = GP® <ATL(1,q). v
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= 6@ =G <ATL(1,q). v

L< GL(2,p%), L is a group of all monomial matrices of
determinant £1. )

L solvable and p9 = 32,52 72,112,172 or 3*. (GAP, MAGMA)
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L<TL(1,p9). = GP® <ATL(1,q). v

L is a Frobenius complement acting semiregularily on V2.

= G =G <ArL(1,q). v

L< GL(2,p%), L is a group of all monomial matrices of

determinant £1. &

L solvable and p9 = 32,52 72,112,172 or 3*. (GAP, MAGMA)
If p9 = 72, H ~ Qg x Z3, then G(?) £ ATL(1,7).
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K is a Dickson near-field, H < K*, G = G(K, H),
GO =KtxlL L— %—transitive linear group.
Classification of %—transitive linear groups

If L < GL(V) = GL(d, p) is 3-transitive on V¥ = V\ {0}, then
one of the following holds:

1. L transitive on V& = G(K,H) =Kt xK* = H=K*. ®

2. L<TL(,p?). =GP <ATL(1,q). v

3. L is a Frobenius complement acting semiregularily on V.
= G? =G <ATL(1,q). v

4. L < GL(2,p%), L is a group of all monomial matrices of
determinant £1. &

5. L solvable and p9 = 32,52 72,112,172 or 3*. (GAP, MAGMA)

If p? =72, H ~ Qg x Zs3, then G®) £ ATL(1,7).
d

6. SL(2,5)<L < I'L(2,p%), where p2 =9,11,19,29 or 169. &
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Main theorem

K is a finite near-field of order q, C = C(K, H) is a nontrivial
cyclotomic scheme over K with base group H. Then one of the
following statements hold.

1. Aut(C) < ATL(L, q).
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Main theorem

K is a finite near-field of order g, C = C(K, H) is a nontrivial
cyclotomic scheme over K with base group H. Then one of the
following statements hold.

1. Aut(C) < ATL(1, q).

2. K is a Dickson near-field of order 72, H ~ Qg x Z3 and
Aut(C) = Z32 = (SL(2,3) x Z3).

3. K is a Zassenhaus near-field, H is a solvable subgroup of K*,
Aut(C) <K' x L, where H < L, and L is a known solvable
group.

4. K is a Zassenhaus near-field of order either 292 or 592,

H ~ SL(2,5), and either Aut(C) = Z34 x (SL(2,5) x Z2) or
Aut(C) = Z324 x SL(2,5).
In particular, if H is solvable, then so is Aut(C).
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