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Near-fields

An algebraic structure K = 〈K,+, ◦〉 is called a (right) near-field, if

K+ = 〈K,+〉 is a group (with neutral element 0)

K× = 〈K \ {0}, ◦〉 is a group

(x + y) ◦ z = x ◦ z + y ◦ z , x , y , z ∈ K
x ◦ 0 = 0, x ∈ K.

If K is a finite near-field, then K+ ' Zk
p .

Classification of finite near-fields (Zassenhaus, 1936)

Every finite near-field is one of the following:

1 Dickson near-fields (constructed via finite fields),

2 Zassenhaus near-fields (7 exceptional near-fields).
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Cyclotomic schemes over finite near-fields

Let K be a finite near-field, H ≤ K×.
For a ∈ K define

RH(a) = {(x , y) ∈ K2 | y − x ∈ H ◦ a}.

Set RH = {RH(a) | a ∈ K} is a partition of K2.

The pair 〈K,RH〉 is called the cyclotomic scheme C = C(K,H)
over the near-field K with the base group H.

Aut(C) = {g ∈ Sym(K) | Rg = R,R ∈ RH} is an automorphism
group of the scheme C.

Main problem

Find automorphism groups of cyclotomic schemes over finite
near-fields.
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2-closure of permutation groups

Let G be a permutation group on Ω.

Action of G on Ω induces the action on Ω2: (α, β)g = (αg , βg )

Denote as Orb2(G ) the set of orbits of its action (2-orbits).

G (2) = Aut(Orb2(G )) = {g ∈ Sym(Ω) : Og = O,O ∈ Orb2(G )} is
the 2-closure of G .

Note that G ≤ G (2).

2-closure problem

Given a permutation gorup G , find a set of generators of G (2).
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Let K be a finite near-field, H ≤ K×, C = 〈K,RH〉.
G = G (K,H) := {x 7→ x ◦b+c | x ∈ K, b ∈ H, c ∈ K+} ' K+oH
is the cyclotomic group over K with the base group H.

Note that Orb2(G ) = RH , so G (2) = Aut(C).

In particular, G ≤ Aut(C).

Scheme C(K,H) is trivial if H = K×.
For a trivial scheme C(K,K×), Aut(C) = Sym(K).

Figure: trivial scheme C(K,K×)

Scheme C(K,H) is nontrivial, if H < K×.
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P. Delsarte. An Algebraic Approach to the Association
Schemes of Coding Theory, 1973:

C = C(F,H), where F is a finite field, H ≤ F×.
C is a cyclotomic scheme over F with base group H.

Theorem (corollary from McConnel’s work, 1963)

Let C = C(F,H) be a nontrivial cyclotomic scheme over a finite
field F of order q with basis group H. Then Aut(C) ≤ AΓL(1, q) =
{x 7→ xσ · b + c | x ∈ F, b ∈ F×, c ∈ F+, σ ∈ Aut(F)}.

Bagherian, Ponomarenko, Rahnamai Barghi, 2008:

Cyclotomic scheme over finite near-field,

Aut(C) ≤ AΓL(1, q) for some cyclotomic schemes over
Dickson near-fields,

conjecture: Aut(C) ≤ AΓL(1, q) for all finite near-fields,
except for a finite number of near-fields.
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Dickson near-fields
Finite near-field K is called Dickson near-field, if

exists field F0 of order pd and its extension F of degree n such
that F+ = K+,

y ◦ x = yσx · x , x , y ∈ K, σx ∈ Aut(F/F0).

Obviously, |K| = pdn. For triple 〈p, d , n〉 exists Dickson near-field
of order pdn, if

∀r ∈ π(n) r |pd − 1 4|n⇒ 4|pd − 1.

There are nonisomorphic near-fields of the same order.

Theorem (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let K be a Dickson near-field of order pdn, and C = C(K,H), such
that |H| has sufficiently large primitive Zsigmondy’s divisor of pair
(p, dn). Then Aut(C) ≤ AΓL(1, pdn).

Prime r is a primitive Zsigmondy’s divisor of pair (p, dn), if
r |pdn − 1 and r - pi − 1 for i < dn.
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Properties of G (K,H)

G = G (K,H) = {x 7→ x ◦ b + c | x ∈ K, b ∈ H, c ∈ K+}

Permutation group on Ω is 1
2 -transitive, if its orbits on Ω have the

same size.

Permutation group on Ω is 3
2 -transitive, if it is transitive, and

stabilizer of point α is 1
2 -transitive on Ω \ {α}.

Lemma

Let K be a finite near-field, H < K×, G = G (K,H).
Then both G and G (2) are 3

2 -transitive.

Liebeck, Praeger, Saxl, 2015

The classification of 3
2 -transitive permutation groups and

1
2 -transitive linear groups.
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Dickson near-field case

Lemma (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let K be a Dickson near-field, H < K×, G = G (K,H). Then G (2)

is 3
2 -transitive group of affine type, i. e. G (2) = K+ o L,H ≤ L.

Classification of 3
2
-transitive permutation groups

Let X be a 3
2 -transitive permutation group. Then one of the

following holds.

1. X is 2-transitive.

2. X is a Frobenius group.

3. X is almost simple.

4. X is affine, X = N o L ≤ AGL(V ), where
L ≤ GL(V ), and L is a 1

2 -transitive linear group.

Then G (2) = K+ o L, L is a 1
2 -transitive linear group.
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K is a Dickson near-field, H < K×, G = G (K,H),
G (2) = K+ o L, L — 1

2 -transitive linear group.

Classification of 1
2
-transitive linear groups

If L ≤ GL(V ) = GL(d , p) is 1
2 -transitive on V ] = V \ {0̄}, then

one of the following holds:

1. L transitive on V ]. ⇒ G (K,H) = K+ oK× ⇒ H = K×.
⊗

2. L ≤ ΓL(1, pd). ⇒ G (2) ≤ AΓL(1, q). X

3. L is a Frobenius complement acting semiregularily on V ].
⇒ G (2) = G ≤ AΓL(1, q). X

4. L ≤ GL(2, p
d
2 ), L is a group of all monomial matrices of

determinant ±1.
⊗

5. L solvable and pd = 32, 52, 72, 112, 172 or 34. (GAP, MAGMA)
If pd = 72, H ' Q8 × Z3, then G (2) � AΓL(1, 72).

6. SL(2, 5) / L ≤ ΓL(2, p
d
2 ), where p

d
2 = 9, 11, 19, 29 or 169.

⊗
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G (2) = K+ o L, L — 1

2 -transitive linear group.
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Main theorem

K is a finite near-field of order q, C = C(K,H) is a nontrivial
cyclotomic scheme over K with base group H. Then one of the
following statements hold.

1. Aut(C) ≤ AΓL(1, q).

2. K is a Dickson near-field of order 72, H ' Q8 × Z3 and
Aut(C) = Z2

7 o (SL(2, 3)× Z3).

3. K is a Zassenhaus near-field, H is a solvable subgroup of K×,
Aut(C) ≤ K+ o L, where H ≤ L, and L is a known solvable
group.

4. K is a Zassenhaus near-field of order either 292 or 592,
H ' SL(2, 5), and either Aut(C) = Z2

29 o (SL(2, 5)o Z2) or
Aut(C) = Z2

59 o SL(2, 5).

In particular, if H is solvable, then so is Aut(C).
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