Automorphism groups of cyclotomic schemes over finite near-fields

Dmitry Churikov (based on joint paper with Andrey Vasil'ev)

Novosibirsk State University

August 23, 2016

Near-fields

An algebraic structure $\mathbb{K}=\langle\mathbb{K},+,\circ\rangle$ is called a (right) near-field, if

- $\mathbb{K}^+ = \langle \mathbb{K}, + \rangle$ is a group (with neutral element 0)
- $\bullet \ \mathbb{K}^\times = \langle \mathbb{K} \setminus \{0\}, \circ \rangle$ is a group
- $(x+y) \circ z = x \circ z + y \circ z, \ x,y,z \in \mathbb{K}$
- $\bullet \ x \circ 0 = 0, \ x \in \mathbb{K}.$

Near-fields

An algebraic structure $\mathbb{K}=\langle\mathbb{K},+,\circ\rangle$ is called a (right) near-field, if

- $\mathbb{K}^+ = \langle \mathbb{K}, + \rangle$ is a group (with neutral element 0)
- ullet $\mathbb{K}^{\times}=\langle\mathbb{K}\setminus\{0\},\circ\rangle$ is a group
- $(x+y) \circ z = x \circ z + y \circ z, \ x,y,z \in \mathbb{K}$
- $x \circ 0 = 0, x \in \mathbb{K}$.

If \mathbb{K} is a finite near-field, then $\mathbb{K}^+ \simeq \mathbb{Z}_p^k$.

Classification of finite near-fields (Zassenhaus, 1936)

Every finite near-field is one of the following:

- 1 Dickson near-fields (constructed via finite fields),
- 2 Zassenhaus near-fields (7 exceptional near-fields).

Cyclotomic schemes over finite near-fields

Let \mathbb{K} be a finite near-field, $H \leq \mathbb{K}^{\times}$. For $a \in \mathbb{K}$ define

$$R_H(a) = \{(x,y) \in \mathbb{K}^2 \mid y - x \in H \circ a\}.$$

Set $\mathcal{R}_H = \{R_H(a) \mid a \in \mathbb{K}\}$ is a partition of \mathbb{K}^2 .

The pair $\langle \mathbb{K}, \mathcal{R}_H \rangle$ is called the cyclotomic scheme $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ over the near-field \mathbb{K} with the base group H.

Cyclotomic schemes over finite near-fields

Let \mathbb{K} be a finite near-field, $H \leq \mathbb{K}^{\times}$. For $a \in \mathbb{K}$ define

$$R_H(a) = \{(x,y) \in \mathbb{K}^2 \mid y - x \in H \circ a\}.$$

Set $\mathcal{R}_H = \{R_H(a) \mid a \in \mathbb{K}\}$ is a partition of \mathbb{K}^2 .

The pair $\langle \mathbb{K}, \mathcal{R}_H \rangle$ is called the cyclotomic scheme $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ over the near-field \mathbb{K} with the base group H.

 $\operatorname{Aut}(\mathcal{C}) = \{g \in \operatorname{Sym}(\mathbb{K}) \mid R^g = R, R \in \mathcal{R}_H\}$ is an automorphism group of the scheme \mathcal{C} .

Main problem

Find automorphism groups of cyclotomic schemes over finite near-fields.

2-closure of permutation groups

Let G be a permutation group on Ω .

Action of G on Ω induces the action on Ω^2 : $(\alpha, \beta)^g = (\alpha^g, \beta^g)$

Denote as $Orb_2(G)$ the set of orbits of its action (2-orbits).

$$G^{(2)} = \operatorname{Aut}(\operatorname{Orb}_2(G)) = \{g \in \operatorname{Sym}(\Omega) : O^g = O, O \in \operatorname{Orb}_2(G)\}$$
 is the 2-closure of G .

Note that $G \leq G^{(2)}$.

2-closure problem

Given a permutation gorup G, find a set of generators of $G^{(2)}$.

Let \mathbb{K} be a finite near-field, $H \leq \mathbb{K}^{\times}$, $C = \langle \mathbb{K}, \mathcal{R}_H \rangle$.

 $G = G(\mathbb{K}, H) := \{x \mapsto x \circ b + c \mid x \in \mathbb{K}, b \in H, c \in \mathbb{K}^+\} \simeq \mathbb{K}^+ \rtimes H$ is the cyclotomic group over \mathbb{K} with the base group H.

Note that $Orb_2(G) = \mathcal{R}_H$, so $G^{(2)} = Aut(\mathcal{C})$.

In particular, $G \leq Aut(C)$.

Let \mathbb{K} be a finite near-field, $H \leq \mathbb{K}^{\times}$, $C = \langle \mathbb{K}, \mathcal{R}_H \rangle$.

 $G = G(\mathbb{K}, H) := \{x \mapsto x \circ b + c \mid x \in \mathbb{K}, b \in H, c \in \mathbb{K}^+\} \simeq \mathbb{K}^+ \rtimes H$ is the cyclotomic group over \mathbb{K} with the base group H.

Note that $Orb_2(G) = \mathcal{R}_H$, so $G^{(2)} = Aut(\mathcal{C})$.

In particular, $G \leq Aut(C)$.

Scheme $\mathcal{C}(\mathbb{K}, H)$ is trivial if $H = \mathbb{K}^{\times}$.

For a trivial scheme $\mathcal{C}(\mathbb{K}, \mathbb{K}^{\times})$, $\operatorname{\mathsf{Aut}}(\mathcal{C}) = \operatorname{\mathsf{Sym}}(\mathbb{K})$.

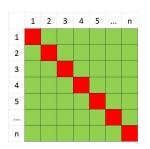


Figure: trivial scheme $\mathcal{C}(\mathbb{K}, \mathbb{K}^{\times})$

Let \mathbb{K} be a finite near-field, $H \leq \mathbb{K}^{\times}$, $C = \langle \mathbb{K}, \mathcal{R}_H \rangle$.

 $G = G(\mathbb{K}, H) := \{x \mapsto x \circ b + c \mid x \in \mathbb{K}, b \in H, c \in \mathbb{K}^+\} \simeq \mathbb{K}^+ \rtimes H$ is the cyclotomic group over \mathbb{K} with the base group H.

Note that $Orb_2(G) = \mathcal{R}_H$, so $G^{(2)} = Aut(\mathcal{C})$.

In particular, $G \leq Aut(C)$.

Scheme $\mathcal{C}(\mathbb{K}, H)$ is trivial if $H = \mathbb{K}^{\times}$.

For a trivial scheme $\mathcal{C}(\mathbb{K}, \mathbb{K}^{\times})$, $\operatorname{\mathsf{Aut}}(\mathcal{C}) = \operatorname{\mathsf{Sym}}(\mathbb{K})$.

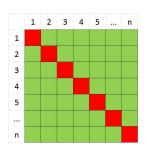


Figure: trivial scheme $\mathcal{C}(\mathbb{K}, \mathbb{K}^{\times})$

Scheme $\mathcal{C}(\mathbb{K}, H)$ is nontrivial, if $H < \mathbb{K}^{\times}$.

P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory, 1973:

 $\mathcal{C} = \mathcal{C}(\mathbb{F}, H)$, where \mathbb{F} is a finite field, $H \leq \mathbb{F}^{\times}$. \mathcal{C} is a cyclotomic scheme over \mathbb{F} with base group H.

P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory, 1973:

 $\mathcal{C} = \mathcal{C}(\mathbb{F}, H)$, where \mathbb{F} is a finite field, $H \leq \mathbb{F}^{\times}$. \mathcal{C} is a cyclotomic scheme over \mathbb{F} with base group H.

Theorem (corollary from McConnel's work, 1963)

Let $\mathcal{C} = \mathcal{C}(\mathbb{F}, H)$ be a nontrivial cyclotomic scheme over a finite field \mathbb{F} of order q with basis group H. Then $\operatorname{Aut}(\mathcal{C}) \leq \operatorname{A}\Gamma\operatorname{L}(1, q) = \{x \mapsto x^{\sigma} \cdot b + c \mid x \in \mathbb{F}, b \in \mathbb{F}^{\times}, c \in \mathbb{F}^{+}, \sigma \in \operatorname{Aut}(\mathbb{F})\}.$

P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory, 1973:

 $\mathcal{C} = \mathcal{C}(\mathbb{F}, H)$, where \mathbb{F} is a finite field, $H \leq \mathbb{F}^{\times}$. \mathcal{C} is a cyclotomic scheme over \mathbb{F} with base group H.

Theorem (corollary from McConnel's work, 1963)

Let $\mathcal{C} = \mathcal{C}(\mathbb{F}, H)$ be a nontrivial cyclotomic scheme over a finite field \mathbb{F} of order q with basis group H. Then $\operatorname{Aut}(\mathcal{C}) \leq \operatorname{A}\Gamma\operatorname{L}(1, q) = \{x \mapsto x^{\sigma} \cdot b + c \mid x \in \mathbb{F}, b \in \mathbb{F}^{\times}, c \in \mathbb{F}^{+}, \sigma \in \operatorname{Aut}(\mathbb{F})\}.$

Bagherian, Ponomarenko, Rahnamai Barghi, 2008:

- Cyclotomic scheme over finite near-field,
- $Aut(C) \le A\Gamma L(1, q)$ for some cyclotomic schemes over Dickson near-fields,
- conjecture: $Aut(C) \le A\Gamma L(1, q)$ for all finite near-fields, except for a finite number of near-fields.

Dickson near-fields

Finite near-field \mathbb{K} is called Dickson near-field, if

- exists field \mathbb{F}_0 of order p^d and its extension \mathbb{F} of degree n such that $\mathbb{F}^+ = \mathbb{K}^+$,
- $y \circ x = y^{\sigma_x} \cdot x$, $x, y \in \mathbb{K}, \sigma_x \in \operatorname{Aut}(\mathbb{F}/\mathbb{F}_0)$.

Dickson near-fields

Finite near-field \mathbb{K} is called Dickson near-field, if

- exists field \mathbb{F}_0 of order p^d and its extension \mathbb{F} of degree n such that $\mathbb{F}^+ = \mathbb{K}^+$,
- $y \circ x = y^{\sigma_x} \cdot x$, $x, y \in \mathbb{K}, \sigma_x \in \operatorname{Aut}(\mathbb{F}/\mathbb{F}_0)$.

Obviously, $|\mathbb{K}|=p^{dn}$. For triple $\langle p,d,n\rangle$ exists Dickson near-field of order p^{dn} , if

$$\forall r \in \pi(n) \ r|p^d-1 \ 4|n \Rightarrow 4|p^d-1.$$

There are nonisomorphic near-fields of the same order.

Dickson near-fields

Finite near-field \mathbb{K} is called Dickson near-field, if

- exists field \mathbb{F}_0 of order p^d and its extension \mathbb{F} of degree n such that $\mathbb{F}^+ = \mathbb{K}^+$,
- $y \circ x = y^{\sigma_X} \cdot x$, $x, y \in \mathbb{K}, \sigma_X \in \operatorname{Aut}(\mathbb{F}/\mathbb{F}_0)$.

Obviously, $|\mathbb{K}|=p^{dn}$. For triple $\langle p,d,n\rangle$ exists Dickson near-field of order p^{dn} , if

$$\forall r \in \pi(n) \ r | p^d - 1 \ 4 | n \Rightarrow 4 | p^d - 1.$$

There are nonisomorphic near-fields of the same order.

Theorem (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let \mathbb{K} be a Dickson near-field of order p^{dn} , and $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$, such that |H| has sufficiently large primitive Zsigmondy's divisor of pair (p, dn). Then $\operatorname{Aut}(\mathcal{C}) \leq \operatorname{AFL}(1, p^{dn})$.

Prime r is a primitive Zsigmondy's divisor of pair (p, dn), if $r|p^{dn} - 1$ and $r \nmid p^i - 1$ for i < dn.

Properties of $G(\mathbb{K}, H)$

$$G = G(\mathbb{K}, H) = \{x \mapsto x \circ b + c \mid x \in \mathbb{K}, b \in H, c \in \mathbb{K}^+\}$$

Properties of $G(\mathbb{K}, H)$

$$G = G(\mathbb{K}, H) = \{x \mapsto x \circ b + c \mid x \in \mathbb{K}, b \in H, c \in \mathbb{K}^+\}$$

Permutation group on Ω is $\frac{1}{2}$ -transitive, if its orbits on Ω have the same size.

Permutation group on Ω is $\frac{3}{2}$ -transitive, if it is transitive, and stabilizer of point α is $\frac{1}{2}$ -transitive on $\Omega \setminus \{\alpha\}$.

Lemma

Let \mathbb{K} be a finite near-field, $H < \mathbb{K}^{\times}$, $G = G(\mathbb{K}, H)$.

Then both G and $G^{(2)}$ are $\frac{3}{2}$ -transitive.

Properties of $G(\mathbb{K}, H)$

$$G = G(\mathbb{K}, H) = \{x \mapsto x \circ b + c \mid x \in \mathbb{K}, b \in H, c \in \mathbb{K}^+\}$$

Permutation group on Ω is $\frac{1}{2}$ -transitive, if its orbits on Ω have the same size.

Permutation group on Ω is $\frac{3}{2}$ -transitive, if it is transitive, and stabilizer of point α is $\frac{1}{2}$ -transitive on $\Omega \setminus \{\alpha\}$.

Lemma

Let \mathbb{K} be a finite near-field, $H < \mathbb{K}^{\times}$, $G = G(\mathbb{K}, H)$. Then both G and $G^{(2)}$ are $\frac{3}{2}$ -transitive.

Liebeck, Praeger, Saxl, 2015

The classification of $\frac{3}{2}$ -transitive permutation groups and $\frac{1}{2}$ -transitive linear groups.

Dickson near-field case

Lemma (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let \mathbb{K} be a Dickson near-field, $H < \mathbb{K}^{\times}$, $G = G(\mathbb{K}, H)$. Then $G^{(2)}$ is $\frac{3}{2}$ -transitive group of affine type, i. e. $G^{(2)} = \mathbb{K}^+ \times L$, $H \leq L$.

Dickson near-field case

Lemma (Bagherian, Ponomarenko, Rahnamai Barghi, 2008)

Let \mathbb{K} be a Dickson near-field, $H < \mathbb{K}^{\times}$, $G = G(\mathbb{K}, H)$. Then $G^{(2)}$ is $\frac{3}{2}$ -transitive group of affine type, i. e. $G^{(2)} = \mathbb{K}^+ \rtimes L$, $H \leq L$.

Classification of $\frac{3}{2}$ -transitive permutation groups

Let X be a $\frac{3}{2}$ -transitive permutation group. Then one of the following holds.

- 1. X is 2-transitive.
- 2. X is a Frobenius group.
- 3. X is almost simple.
- 4. X is affine, $X = N \rtimes L \leq AGL(V)$, where $L \leq GL(V)$, and L is a $\frac{1}{2}$ -transitive linear group.

Then $G^{(2)} = \mathbb{K}^+ \rtimes L$, L is a $\frac{1}{2}$ -transitive linear group.

Classification of $\frac{1}{2}$ -transitive linear groups

If $L \leq \operatorname{GL}(V) = \operatorname{GL}(d,p)$ is $\frac{1}{2}$ -transitive on $V^{\sharp} = V \setminus \{\overline{0}\}$, then one of the following holds:

1. L transitive on V^{\sharp} .

Classification of $\frac{1}{2}$ -transitive linear groups

If $L \leq \operatorname{GL}(V) = \operatorname{GL}(d,p)$ is $\frac{1}{2}$ -transitive on $V^{\sharp} = V \setminus \{\overline{0}\}$, then one of the following holds:

1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$.

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$.

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.
- 3. L is a Frobenius complement acting semiregularily on V^{\sharp} .

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.
- 3. L is a Frobenius complement acting semiregularily on V^{\sharp} . $\Rightarrow G^{(2)} = G \leq \mathsf{A}\mathsf{\Gamma}\mathsf{L}(1,q)$.

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.
- 3. L is a Frobenius complement acting semiregularily on V^{\sharp} . $\Rightarrow G^{(2)} = G \leq \mathsf{A}\mathsf{\Gamma}\mathsf{L}(1,q)$.
- 4. $L \leq GL(2, p^{\frac{d}{2}})$, L is a group of all monomial matrices of determinant ± 1 .

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.
- 3. L is a Frobenius complement acting semiregularily on V^{\sharp} . $\Rightarrow G^{(2)} = G \leq \mathsf{A}\mathsf{\Gamma}\mathsf{L}(1,q)$.
- 4. $L \leq GL(2, p^{\frac{d}{2}})$, L is a group of all monomial matrices of determinant ± 1 . \bigotimes
- 5. L solvable and $p^d = 3^2, 5^2, 7^2, 11^2, 17^2$ or 3^4 . (GAP, MAGMA)

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.
- 3. L is a Frobenius complement acting semiregularily on V^{\sharp} . $\Rightarrow G^{(2)} = G \leq \mathsf{A}\mathsf{\Gamma}\mathsf{L}(1,q)$.
- 4. $L \leq GL(2, p^{\frac{d}{2}})$, L is a group of all monomial matrices of determinant ± 1 .
- 5. L solvable and $p^d = 3^2, 5^2, 7^2, 11^2, 17^2$ or 3^4 . (GAP, MAGMA) If $p^d = 7^2$, $H \simeq Q_8 \times \mathbb{Z}_3$, then $G^{(2)} \nleq A\Gamma L(1, 7^2)$.

Classification of $\frac{1}{2}$ -transitive linear groups

- 1. L transitive on V^{\sharp} . $\Rightarrow G(\mathbb{K}, H) = \mathbb{K}^+ \rtimes \mathbb{K}^{\times} \Rightarrow H = \mathbb{K}^{\times}$. \bigotimes
- 2. $L \leq \Gamma L(1, p^d)$. $\Rightarrow G^{(2)} \leq A\Gamma L(1, q)$.
- 3. L is a Frobenius complement acting semiregularily on V^{\sharp} . $\Rightarrow G^{(2)} = G \leq \mathsf{A}\mathsf{\Gamma}\mathsf{L}(1,q)$.
- 4. $L \leq GL(2, p^{\frac{d}{2}})$, L is a group of all monomial matrices of determinant ± 1 .
- 5. L solvable and $p^d = 3^2, 5^2, 7^2, 11^2, 17^2$ or 3^4 . (GAP, MAGMA) If $p^d = 7^2$, $H \simeq Q_8 \times \mathbb{Z}_3$, then $G^{(2)} \not \leq A\Gamma L(1, 7^2)$.
- 6. $SL(2,5) \triangleleft L \leq \Gamma L(2, p^{\frac{d}{2}})$, where $p^{\frac{d}{2}} = 9, 11, 19, 29$ or 169. \bigotimes

 \mathbb{K} is a finite near-field of order q, $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ is a nontrivial cyclotomic scheme over \mathbb{K} with base group H. Then one of the following statements hold.

1. $Aut(C) \leq A\Gamma L(1, q)$.

 \mathbb{K} is a finite near-field of order q, $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ is a nontrivial cyclotomic scheme over \mathbb{K} with base group H. Then one of the following statements hold.

- 1. $Aut(C) \leq A\Gamma L(1, q)$.
- 2. \mathbb{K} is a Dickson near-field of order 7^2 , $H \simeq Q_8 \times \mathbb{Z}_3$ and $\operatorname{Aut}(\mathcal{C}) = \mathbb{Z}_7^2 \rtimes (\operatorname{SL}(2,3) \times \mathbb{Z}_3)$.

 \mathbb{K} is a finite near-field of order q, $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ is a nontrivial cyclotomic scheme over \mathbb{K} with base group H. Then one of the following statements hold.

- 1. $Aut(C) \leq A\Gamma L(1, q)$.
- 2. \mathbb{K} is a Dickson near-field of order 7^2 , $H \simeq Q_8 \times \mathbb{Z}_3$ and $\operatorname{Aut}(\mathcal{C}) = \mathbb{Z}_7^2 \rtimes (\operatorname{SL}(2,3) \times \mathbb{Z}_3)$.
- 3. \mathbb{K} is a Zassenhaus near-field, H is a solvable subgroup of \mathbb{K}^{\times} , $\operatorname{Aut}(\mathcal{C}) \leq \mathbb{K}^{+} \rtimes L$, where $H \leq L$, and L is a known solvable group.

 \mathbb{K} is a finite near-field of order q, $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ is a nontrivial cyclotomic scheme over \mathbb{K} with base group H. Then one of the following statements hold.

- 1. $Aut(C) \leq A\Gamma L(1, q)$.
- 2. \mathbb{K} is a Dickson near-field of order 7^2 , $H \simeq Q_8 \times \mathbb{Z}_3$ and $\operatorname{Aut}(\mathcal{C}) = \mathbb{Z}_7^2 \times (\operatorname{SL}(2,3) \times \mathbb{Z}_3)$.
- 3. \mathbb{K} is a Zassenhaus near-field, H is a solvable subgroup of \mathbb{K}^{\times} , $\operatorname{Aut}(\mathcal{C}) \leq \mathbb{K}^{+} \rtimes L$, where $H \leq L$, and L is a known solvable group.
- 4. \mathbb{K} is a Zassenhaus near-field of order either 29^2 or 59^2 , $H \simeq SL(2,5)$, and either $Aut(\mathcal{C}) = \mathbb{Z}_{29}^2 \rtimes (SL(2,5) \rtimes \mathbb{Z}_2)$ or $Aut(\mathcal{C}) = \mathbb{Z}_{59}^2 \rtimes SL(2,5)$.

 \mathbb{K} is a finite near-field of order q, $\mathcal{C} = \mathcal{C}(\mathbb{K}, H)$ is a nontrivial cyclotomic scheme over \mathbb{K} with base group H. Then one of the following statements hold.

- 1. $Aut(C) \leq A\Gamma L(1, q)$.
- 2. \mathbb{K} is a Dickson near-field of order 7^2 , $H \simeq Q_8 \times \mathbb{Z}_3$ and $\operatorname{Aut}(\mathcal{C}) = \mathbb{Z}_7^2 \rtimes (\operatorname{SL}(2,3) \times \mathbb{Z}_3)$.
- 3. \mathbb{K} is a Zassenhaus near-field, H is a solvable subgroup of \mathbb{K}^{\times} , $\operatorname{Aut}(\mathcal{C}) \leq \mathbb{K}^{+} \rtimes L$, where $H \leq L$, and L is a known solvable group.
- 4. \mathbb{K} is a Zassenhaus near-field of order either 29^2 or 59^2 , $H \simeq \mathsf{SL}(2,5)$, and either $\mathsf{Aut}(\mathcal{C}) = \mathbb{Z}_{29}^2 \rtimes (\mathsf{SL}(2,5) \rtimes \mathbb{Z}_2)$ or $\mathsf{Aut}(\mathcal{C}) = \mathbb{Z}_{59}^2 \rtimes \mathsf{SL}(2,5)$.

In particular, if H is solvable, then so is Aut(C).