New infinite family of Cameron-Liebler line classes

Ilia Matkin

Chelyabinsk State University (Chelyabinsk, Russia)

based on joint work with **Alexander Gavrilyuk**, USTC (Hefei, China),

and Tim Penttila,

Colorado State University (Fort-Collins, USA).

G2S2, Novosibirsk, August 2016

Projective geometry

Let
$$V = GF(q)^{n+1}$$
.

▶ PG(n,q) — n-dim. projective space over GF(q)

$$\sim : \mathbf{x} \sim \mathbf{y} \ (\mathbf{x}, \mathbf{y} \in V \setminus \{\mathbf{0}\}) \Leftrightarrow \exists \alpha \in GF(q) : \mathbf{x} = \alpha \mathbf{y}$$
$$PG(n, q) = (V \setminus \{\mathbf{0}\}) / \sim$$

- ▶ point of PG(n,q)1-dim. vector subspace of V
- ▶ line of PG(n,q)2-dim. vector subspace of V
- **...**
- ▶ hyperplane n-dim. vector subspace of V
- ▶ spread a line set partitioning the points of PG(n,q)

Projective geometry

Let
$$V = GF(q)^{n+1}$$
.

▶ PG(n,q) — n-dim. projective space over GF(q)

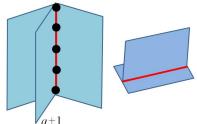
$$\sim : \mathbf{x} \sim \mathbf{y} \ (\mathbf{x}, \mathbf{y} \in V \setminus \{\mathbf{0}\}) \Leftrightarrow \exists \alpha \in GF(q) : \mathbf{x} = \alpha \mathbf{y}$$
$$PG(n, q) = (V \setminus \{\mathbf{0}\}) / \sim$$

- ▶ point of PG(n,q)1-dim. vector subspace of V
- ▶ line of PG(n,q)2-dim. vector subspace of V
- **...**
- ▶ hyperplane n-dim. vector subspace of V
- ▶ spread a line set partitioning the points of PG(n,q)

Projective geometry PG(3,q)

▶ \exists ! line through \forall pair of points with exactly q+1 points on a line, while \forall pair of lines has at most one point in common

▶ a line belongs to exactly q + 1 planes, and $\exists!$ line in the intersection of \forall pair of planes

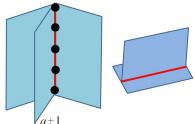


 \triangleright PG(3,q) always contains a spread (a lot of them)

Projective geometry PG(3,q)

▶ $\exists!$ line through \forall pair of points with exactly q+1points on a line, while \forall pair of lines has at most one point in common

▶ a line belongs to exactly q+1 planes, and $\exists!$ line in the intersection of \forall pair of planes



▶ PG(3,q) always contains a spread (a lot of them)

A Cameron-Liebler line class \mathcal{L} is a set of lines of PG(3,q) such that

 \exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the **parameter** of \mathcal{L} .

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leqslant \frac{q^2 + 1}{2}$.

A Cameron-Liebler line class \mathcal{L} is a set of lines of PG(3,q) such that

 \exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the **parameter** of \mathcal{L} .

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leq \frac{q^2 + 1}{2}$.

A Cameron-Liebler line class \mathcal{L} is a set of lines of PG(3,q) such that

 \exists a number x: for \forall spread S

$$|\mathcal{L} \cap S| = x$$

The number x is called the **parameter** of \mathcal{L} .

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leqslant \frac{q^2 + 1}{2}$.

A Cameron-Liebler line class \mathcal{L} is a set of lines of PG(3,q) such that

 \exists a number x: for \forall spread S

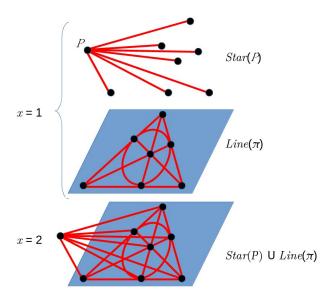
$$|\mathcal{L} \cap S| = x$$

The number x is called the **parameter** of \mathcal{L} .

One can show that $|\mathcal{L}| = x(q^2 + q + 1)$.

A line class $\overline{\mathcal{L}}$ complement to \mathcal{L} is also a Cameron – Liebler line class with $x(\overline{\mathcal{L}}) = q^2 + 1 - x(\mathcal{L}) \Rightarrow$ w.l.o.g. $x \leqslant \frac{q^2+1}{2}$.

Cameron-Liebler line class: examples



Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

▶ This problem is related to the problem of classification of the collineation groups of PG(n,q) with the same number of orbits on points and lines.

- ▶ The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs $J_q(4,2)$.
- The Cameron-Liebler line classes give rise to some point sets in PG(5,q) with two intersection numbers with respect to planes \Rightarrow projective 2-weight codes \Rightarrow strongly regular graphs.

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

▶ This problem is related to the problem of classification of the collineation groups of PG(n,q) with the same number of orbits on points and lines.

- ▶ The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs $J_q(4,2)$.
- The Cameron-Liebler line classes give rise to some point sets in PG(5,q) with two intersection numbers with respect to planes \Rightarrow projective 2-weight codes \Rightarrow strongly regular graphs.

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

▶ This problem is related to the problem of classification of the collineation groups of PG(n,q) with the same number of orbits on points and lines.

- ▶ The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs $J_q(4,2)$.
- The Cameron-Liebler line classes give rise to some point sets in PG(5,q) with two intersection numbers with respect to planes \Rightarrow projective 2-weight codes \Rightarrow strongly regular graphs.

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

▶ This problem is related to the problem of classification of the collineation groups of PG(n,q) with the same number of orbits on points and lines.

- ▶ The Cameron-Liebler line classes give rise to completely regular codes of strength 1 in the Grassmann graphs $J_q(4,2)$.
- The Cameron-Liebler line classes give rise to some point sets in PG(5,q) with two intersection numbers with respect to planes \Rightarrow projective 2-weight codes \Rightarrow strongly regular graphs.

Counterexample

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

The conjecture was disproved by Bruen and Drudge (1999). They constructed an infinite family of Cameron-Liebler line classes with parameter $x = \frac{q^2+1}{2}$ for all odd q.

Counterexample

Conjecture (Cameron, Liebler, 1982)

The only Cameron-Liebler line classes are those shown above (i.e., $x \notin \{3, \ldots, \frac{q^2+1}{2}\}$?).

The conjecture was disproved by Bruen and Drudge (1999). They constructed an infinite family of Cameron-Liebler line classes with parameter $x=\frac{q^2+1}{2}$ for all odd q.

Counterexamples

x = 7 in PG(3,4).

(Govaerts, Penttila'05)

▶ In 2011 M. Rodgers constructed new Cameron – Liebler line classes for many odd values of q (q < 200) satisfying $q \equiv 1 \mod 4$ and $q \equiv 1 \mod 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.

These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.

Rodgers, 2011.

x = 10 in PG(3,5).

G. and Metsch, 2013.

▶ a new infinite family in PG(3,q), $q \equiv 5$ or 9 mod 4, $x = (q^2 - 1)/2 \Rightarrow x = (q^2 + 1)/2$.

Momihara, Feng, Xiang, 2014.

De Beule, Demeyer, Metsch, Rodgers, 2014

Counterexamples

x = 7 in PG(3,4).

(Govaerts, Penttila'05)

▶ In 2011 M. Rodgers constructed new Cameron – Liebler line classes for many odd values of q (q < 200) satisfying $q \equiv 1 \mod 4$ and $q \equiv 1 \mod 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.

These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.

Rodgers, 2011.

x = 10 in PG(3,5).

G. and Metsch, 2013.

▶ a new infinite family in PG(3,q), $q \equiv 5$ or 9 mod 4, $x = (q^2 - 1)/2 \Rightarrow x = (q^2 + 1)/2$.

Momihara, Feng, Xiang, 2014

Counterexamples

x = 7 in PG(3,4).

(Govaerts, Penttila'05)

▶ In 2011 M. Rodgers constructed new Cameron – Liebler line classes for many odd values of q (q < 200) satisfying $q \equiv 1 \mod 4$ and $q \equiv 1 \mod 3$, having parameter $x = \frac{1}{2}(q^2 - 1)$.

These new examples are made up of a union of orbits of a cyclic collineation group having order $q^2 + q + 1$.

Rodgers, 2011.

x = 10 in PG(3,5).

G. and Metsch, 2013.

▶ a new infinite family in PG(3,q), $q \equiv 5$ or 9 mod 4, $x = (q^2 - 1)/2 \Rightarrow x = (q^2 + 1)/2$.

Momihara, Feng, Xiang, 2014.

De Beule, Demeyer, Metsch, Rodgers, 2014.

It seems that the right question is about the lower bound for x.

 $x \neq 3, 4 \text{ if } q \geqslant 5.$

Penttila'91)

 $x \notin \{3, \dots, \sqrt{q}\}.$

- (Bruen, Drudge'98)
- ▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).
 - (Drudge'99)

 $x \notin \{3, \dots, q\}.$

(Metsch'10)

 $> cq^{4/3}$ (with some constant c).

- (Metsch'14)
- ▶ about a half of values from $\{3, \ldots, \frac{q^2+1}{2}\}$ cannot be the parameters of Cameron-Liebler line classes.

It seems that the right question is about the lower bound for x.

 $x \neq 3, 4 \text{ if } q \geqslant 5.$

(Penttila'91)

$$x \notin \{3, \dots, \sqrt{q}\}.$$

(Bruen, Drudge'98)

▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).

(Drudge'99)

$$x \notin \{3, \dots, q\}.$$

(Metsch'10)

$$> x > cq^{4/3}$$
 (with some constant c).

Metsch'14)

$$(G., Metsch'15)$$

It seems that the right question is about the lower bound for x.

 $x \neq 3, 4 \text{ if } q \geqslant 5.$

(Penttila'91)

 $x \notin \{3, \dots, \sqrt{q}\}.$

(Bruen, Drudge'98)

▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).

Drudge'99)

 $x \notin \{3, \dots, q\}.$

(Metsch'10)

 $> cq^{4/3}$ (with some constant c).

(Metsch'14)

It seems that the right question is about the lower bound for x.

 $x \neq 3, 4 \text{ if } q \geqslant 5.$

(Penttila'91)

 $x \notin \{3, \dots, \sqrt{q}\}.$

(Bruen, Drudge'98)

▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).

(Drudge'99)

 $x \notin \{3, \dots, q\}.$

Metsch'10)

 $> x > cq^{4/3}$ (with some constant c).

(Metsch'14)

It seems that the right question is about the lower bound for x.

 $x \neq 3, 4 \text{ if } q \geqslant 5.$

(Penttila'91)

 $x \notin \{3, \dots, \sqrt{q}\}.$

(Bruen, Drudge'98)

▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).

(Drudge'99)

▶ $x \notin \{3, ..., q\}$.

(Metsch'10)

 $> cq^{4/3}$ (with some constant c).

(Metsch'14)

It seems that the right question is about the lower bound for x.

 $x \neq 3, 4 \text{ if } q \geqslant 5.$

(Penttila'91)

 $x \notin \{3, \dots, \sqrt{q}\}.$

(Bruen, Drudge'98)

▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).

(Drudge'99)

▶ $x \notin \{3, ..., q\}$.

(Metsch'10)

• $x > cq^{4/3}$ (with some constant c).

(Metsch'14)

It seems that the right question is about the lower bound for x.

▶ $x \neq 3, 4 \text{ if } q \geqslant 5.$

(Penttila'91)

 $x \notin \{3, \dots, \sqrt{q}\}.$

(Bruen, Drudge'98)

▶ $x \notin \{3, ..., e(q)\}$ where q + 1 + e(q) is the size of the smallest non-trivial blocking set in PG(2, q).

(Drudge'99)

 $x \notin \{3, \dots, q\}.$

(Metsch'10)

• $x > cq^{4/3}$ (with some constant c).

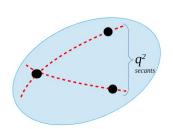
(Metsch'14)

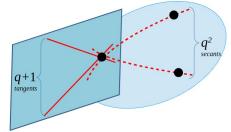
Elliptic quadric, q odd

The elliptic quadric Q is the set of zeros of the equation

$$Q(x_0, x_1, x_2, x_3) = -ax_0^2 + x_1^2 + x_2x_3 = 0,$$

where a is any non-square in GF(q).

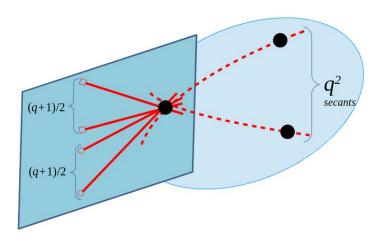




- $ightharpoonup q^2 + 1$ points;
- \triangleright any line intersects Q in at most 2 points;
- \blacktriangleright there exists a unique tangent plane to any point of Q;

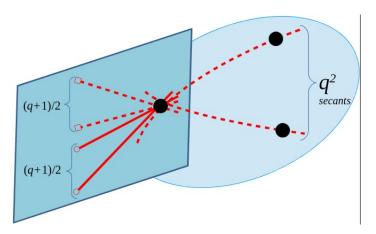
Bruen-Drudge family of C.-L. line classes

The set of q + 1 tangents to a point of Q can be partitioned into two groups, depending on whether there exists a point P on a tangent with Q(P) a square or non-square in GF(q).



Bruen-Drudge family of C.-L. line classes

A Cameron-Liebler line class of the Bruen-Drudge family consists of all secants to Q, and a half of tangents that all correspond to squares (or non-squares).



Switching

Lemma (Penttila)

Let \mathcal{L} be a Cameron-Liebler line class such that there exists an incident point-plane pair (P, π) satisfying the following conditions:

- ▶ Line (π) \ Star $(P) \not\subseteq \mathcal{L}$,
- ▶ $Star(P) \setminus Line(\pi) \subseteq \mathcal{L}$.

Then

$$\mathcal{L} \cup (\mathsf{Line}(\pi) \setminus \mathsf{Star}(P)) \setminus (\mathsf{Star}(P) \setminus \mathsf{Line}(\pi))$$

is a Cameron-Liebler line class \mathcal{L}' with the same parameter.

Switching

Lemma (Penttila)

Let \mathcal{L} be a Cameron-Liebler line class such that there exists an incident point-plane pair (P, π) satisfying the following conditions:

- ▶ Line (π) \ Star $(P) \not\subseteq \mathcal{L}$,
- ▶ $Star(P) \setminus Line(\pi) \subseteq \mathcal{L}$.

Then

$$\mathcal{L} \cup (\mathsf{Line}(\pi) \setminus \mathsf{Star}(P)) \setminus (\mathsf{Star}(P) \setminus \mathsf{Line}(\pi))$$

is a Cameron-Liebler line class \mathcal{L}' with the same parameter.

Switching: proof

$$\mathcal{L}' := \mathcal{L} \cup (\mathsf{Line}(\pi) \setminus \mathsf{Star}(P)) \setminus (\mathsf{Star}(P) \setminus \mathsf{Line}(\pi))$$

Proof:

For any spread S: either

S contains a line on P and in $\pi \Rightarrow S \cap \mathcal{L}' = S \cap \mathcal{L}$,

01

S contains a line
$$\ell \in \pi$$
, $P \notin \ell$, and a line $m \ni P$, $m \notin \pi \Rightarrow S \cap \mathcal{L}' = (S \cap \mathcal{L}) \cup \{m\} \setminus \{\ell\}$.

Thus

$$|S \cap \mathcal{L}'| = |S \cap \mathcal{L}| = x.$$

Switching: proof

$$\mathcal{L}' := \mathcal{L} \cup (\mathsf{Line}(\pi) \setminus \mathsf{Star}(P)) \setminus (\mathsf{Star}(P) \setminus \mathsf{Line}(\pi))$$

Proof:

For any spread S: either

S contains a line on P and in $\pi \Rightarrow S \cap \mathcal{L}' = S \cap \mathcal{L}$,

or

S contains a line
$$\underline{\ell \in \pi, P \notin \ell}$$
, and a line $\underline{m \ni P, m \notin \pi} \Rightarrow S \cap \underline{\mathcal{L}'} = (S \cap \underline{\mathcal{L}}) \cup \{\underline{m}\} \setminus \{\underline{\ell}\}.$

Thus

$$|S \cap \mathcal{L}'| = |S \cap \mathcal{L}| = x.$$

Switching: proof

$$\mathcal{L}' := \mathcal{L} \cup (\mathsf{Line}(\pi) \setminus \mathsf{Star}(P)) \setminus (\mathsf{Star}(P) \setminus \mathsf{Line}(\pi))$$

Proof:

For any spread S: either

S contains a line on P and in $\pi \Rightarrow S \cap \mathcal{L}' = S \cap \mathcal{L}$,

or

S contains a line
$$\underline{\ell \in \pi, P \notin \ell}$$
, and a line $m \ni P, m \notin \underline{\pi} \Rightarrow S \cap \underline{\mathcal{L}'} = (S \cap \underline{\mathcal{L}}) \cup \{m\} \setminus \{\underline{\ell}\}.$

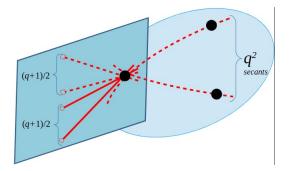
Thus,

$$|S \cap \mathcal{L}'| = |S \cap \mathcal{L}| = x.$$

Switching: application

There exists an incident point-plane pair (P, π) satisfying the following conditions:

- ▶ Line (π) \ Star $(P) \not\subseteq \mathcal{L}$,
- ▶ $Star(P) \setminus Line(\pi) \subseteq \mathcal{L}$.



Switching with respect to a point of Q and its tangent plane produces a new Cameron-Liebler line class with $x = \frac{q^2+1}{2}$.

Switching
$$\Rightarrow x = \frac{q^2 + 1}{2}$$

Lemma

Let \mathcal{L} be a Cameron-Liebler line class such that there exists an incident point-plane pair (P, π) satisfying the following conditions:

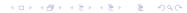
- ▶ Line (π) \ Star $(P) \not\subseteq \mathcal{L}$,
- ▶ $Star(P) \setminus Line(\pi) \subseteq \mathcal{L}$.

Then the parameter x of \mathcal{L} is equal to $\frac{q^2+1}{2}$.

In
$$PG(3,5)$$
 with $x = \frac{q^2+1}{2}$:

- ► the Bruen-Drudge example;

 ↑
- ▶ the switched Bruen-Drudge example;
- ▶ the Rodgers example;



Switching
$$\Rightarrow x = \frac{q^2 + 1}{2}$$

Lemma

Let \mathcal{L} be a Cameron-Liebler line class such that there exists an incident point-plane pair (P, π) satisfying the following conditions:

- ▶ Line (π) \ Star $(P) \not\subseteq \mathcal{L}$,
- ▶ $Star(P) \setminus Line(\pi) \subseteq \mathcal{L}$.

Then the parameter x of \mathcal{L} is equal to $\frac{q^2+1}{2}$.

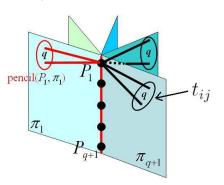
In
$$PG(3,5)$$
 with $x = \frac{q^2+1}{2}$:

- ▶ the Bruen-Drudge example;

 ↑
- ▶ the switched Bruen-Drudge example;
- ▶ the Rodgers example;

Patterns (G. & Mogilnykh, 2012)

Let l be a line of PG(3, q), \mathcal{L} a Cameron – Liebler line class. Consider all the points P_i , $i = 1, \ldots, q + 1$ that are on l, and all the planes π_j , $j = 1, \ldots, q + 1$ that contain l.



Define a square matrix T of order q+1 whose (i, j)-element is $|\operatorname{pencil}(P_i, \pi_i) \cap \mathcal{L} \setminus \{l\}|$

We will call such matrix a pattern w.r.t. l.

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

▶
$$t_{ij} \in \mathbb{N}, 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, ..., q+1\}$$
;

$$\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1) ;$$

$$\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \forall k, l ;$$

$$\sum_{i,j=1}^{q+1} t_{ij}^2 = (x-\chi)^2 + q(x-\chi) + \chi q^2(q+1).$$

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

▶
$$t_{ij} \in \mathbb{N}, 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, ..., q+1\}$$
;

$$\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1) ;$$

$$\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \forall k, l ;$$

$$\sum_{i,j=1}^{q+1} t_{ij}^2 = (x-\chi)^2 + q(x-\chi) + \chi q^2(q+1).$$

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

▶
$$t_{ij} \in \mathbb{N}, 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, ..., q+1\}$$
;

$$\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1) ;$$

$$\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \forall k, l ;$$

$$\sum_{i,j=1}^{q+1} t_{ij}^2 = (x-\chi)^2 + q(x-\chi) + \chi q^2(q+1).$$

Let $T := (t_{ij})$ be a pattern w.r.t. a line l, and define

$$\chi := \begin{cases} 0 \text{ if } l \notin \mathcal{L}, \\ 1 \text{ if } l \in \mathcal{L}, \end{cases}$$

▶
$$t_{ij} \in \mathbb{N}, 0 \le t_{ij} \le q \text{ for all } i, j \in \{1, ..., q+1\}$$
;

$$\sum_{i,j=1}^{q+1} t_{ij} = x(q+1) + \chi(q^2 - 1) ;$$

$$\sum_{j=1}^{q+1} t_{kj} + \sum_{i=1}^{q+1} t_{il} = x + (q+1)(t_{kl} + \chi), \, \forall k, l ;$$

$$\sum_{i,j=1}^{q+1} t_{ij}^2 = (x-\chi)^2 + q(x-\chi) + \chi q^2(q+1).$$

- ▶ This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.
- ▶ With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).
- After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.
- ► Then we contacted Tim and decided to write this result jointly.

- ▶ This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.
- ▶ With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).
- After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.
- ▶ Then we contacted Tim and decided to write this result jointly.

- ▶ This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.
- ▶ With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).
- ▶ After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.
- ► Then we contacted Tim and decided to write this result jointly.

- ▶ This family of Cameron-Liebler line classes together with the switching was found by Tim Penttila about 10 years ago, but it has not been published.
- ▶ With Ilia Matkin, we re-discovered this family during his visit at USTC (May of 2016).
- ▶ After that I realised that in 2015 during the CoCoA (Combinatorics and Comp. Algebra) conference organised by Anton Betten, Tim told me that there was a C.-L. line class arising from the Bruen-Drudge example by something like switching operation.
- ► Then we contacted Tim and decided to write this result jointly.

