The four color theorem and Thompson's *F and links*

Yuhei Inoue

Graduate School of Information Sciences, Tohoku University

Thompson's F

Def(Thompson's F)

Condition Q

- $\varphi: [0,1] \to [0,1]$ is piecewise linear homeomorphism
- φ is differentiable except at finitely $\frac{b}{2^a}$ form numbers $(a, b \in \mathbb{Z})$
- on differentiable interval of φ , the derivatives are powers of 2

 $F := \{ \varphi \mid \varphi \text{ meets condition } Q \} \text{ is a group by composition of maps.}$

$$F \cong \langle A, B \mid [AB^{-1}, A^{-1}BA] = [AB^{-1}, A^{-2}BA^{2}] = id \rangle$$

with
$$[x, y] = xyx^{-1}y^{-1}$$

Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompson's groups. Enseign. Math. (2) 42(3–4), 215–256 (1996)

Four color theorem

Four color theorem

Every planar graph has a face 4-coloring.

Let F be Thompson's F. $\forall f \in F$, f is colorable.

By Bowlin and Brin, 2013

Binary trees

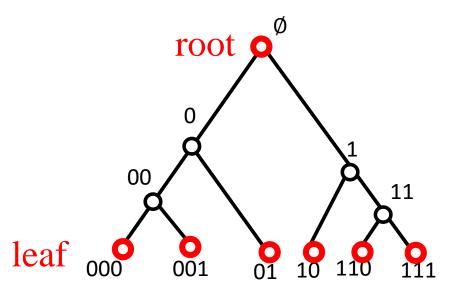
Def (Binary tree)

 $\{0,1\}^* \coloneqq \{\text{finite words in the alphabets } 0 \text{ and } 1\} \cup \{\emptyset\}$

If a finite set G satisfies these conditions as follows

- 1. $G \subset \{0,1\}^*, \emptyset \in G$,
- 2. $\forall w \in G, (w0 \in G \land w1 \in G) \lor (w0 \notin G \land w1 \notin G),$
- 3. $w0 \in G \lor w1 \in G \Rightarrow w \in G$,

then we say that G is a **binary tree**.



Ex: $G = \{\emptyset, 0, 1, 00, 01, 000, 001, 10, 11, 110, 111\}$

Binary trees

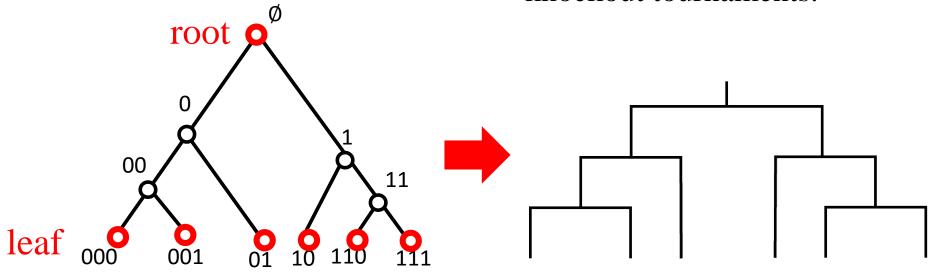
Def (Binary tree)

 $\{0,1\}^* \coloneqq \{\text{finite words in the alphabets } 0 \text{ and } 1\} \cup \{\emptyset\}$

If a finite set G satisfies these conditions as follows

- $1. \quad G \subset \{0,1\}^* , \emptyset \in G,$
- 2. $\forall w \in G, (w0 \in G \land w1 \in G) \lor (w0 \notin G \land w1 \notin G),$
- 3. $w0 \in G \lor w1 \in G \Rightarrow w \in G$, then we say that G is a **binary tree**.

We should regard binary trees as knockout tournaments.



Ex: $G = \{\emptyset, 0, 1, 00, 01, 000, 001, 10, 11, 110, 111\}$

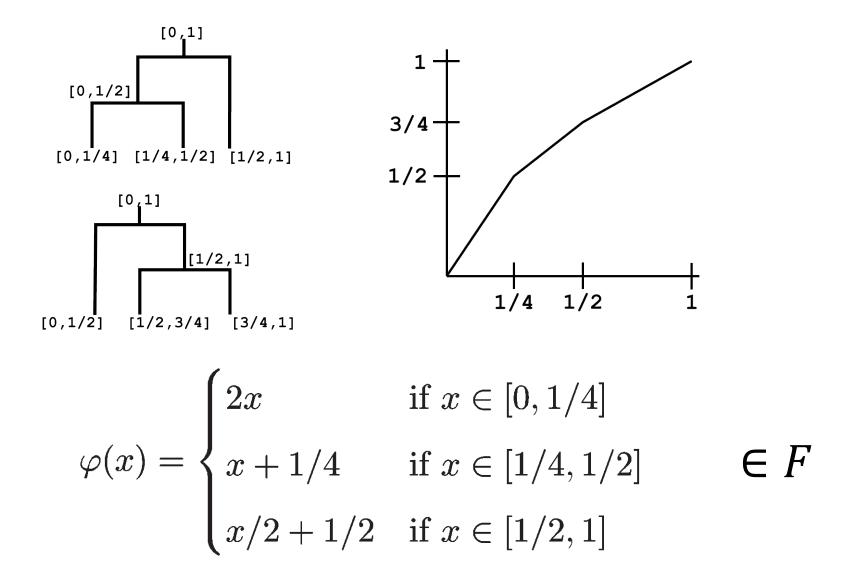
Binary trees

 $T_n \coloneqq \{binary\ trees\ having\ n\ leaves\}$

$$T_1 = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$$
 $T_2 = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$
 $T_3 = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$
 $T_4 = \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$

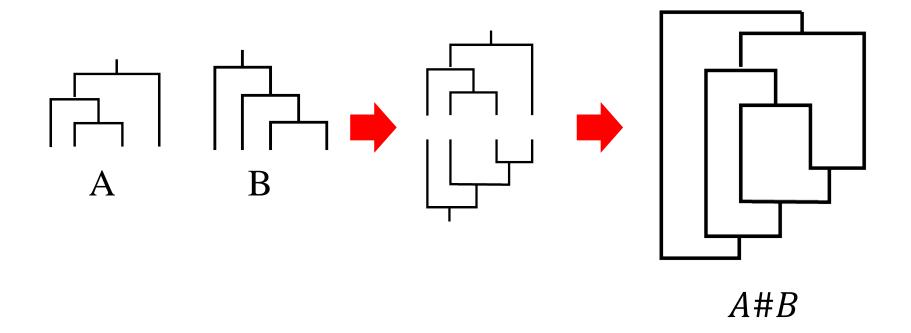
Thompson's F

We can get a map $\varphi: [0,1] \to [0,1]$ from a pair of binary trees.



A#B

 $\forall A, B \in T_n$, we get 3 regular graph when connect A and B.



Thompson's F

Def(Reduced pair)

Let $A, B \in T_n$. If A # B has no C_2 , then we say the pair (A, B) is *reduced*.

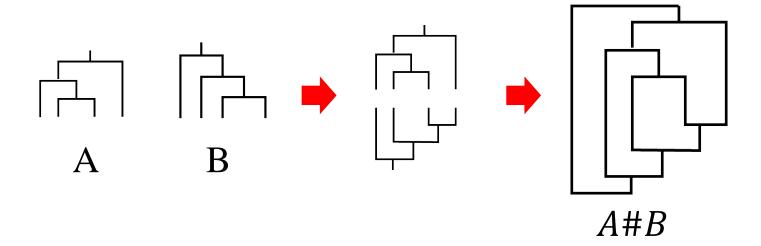
$$r(T_n^2) \coloneqq \{(A, B) \in T_n \times T_n \mid (A, B) \text{ is } reduced\}$$

Theorem (Bowlin, Brin, 2013)

Let F be Thompson's F. There exists a bijection

$$g: F \longrightarrow \bigcup_{n \in \mathbb{N}} r(T_n^2)$$
.

Colorable



Def

Let $f \in F$ and g(f) = (A, B).

If A # B has edge 3-coloring, we say f is **colorable.**

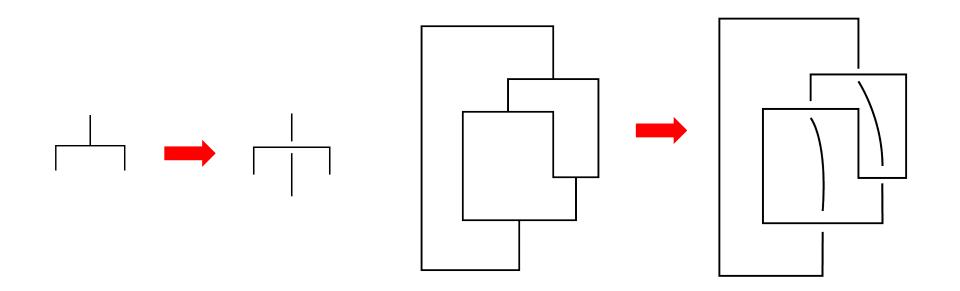
Four color theorem

Four color theorem

Every planar graph has a face 4-coloring.

Let F be Thompson's F. $\forall f \in F$, f is colorable.

It is known that we can make a link with a pair of binary trees.



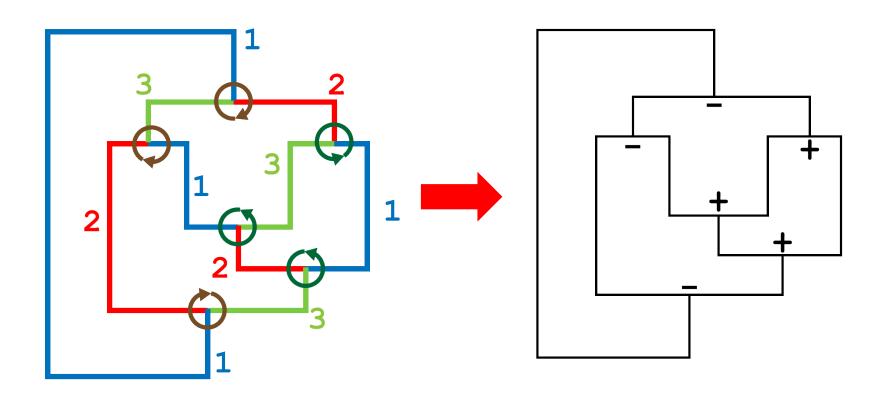
Question:

What will happen if we append information about colorings?

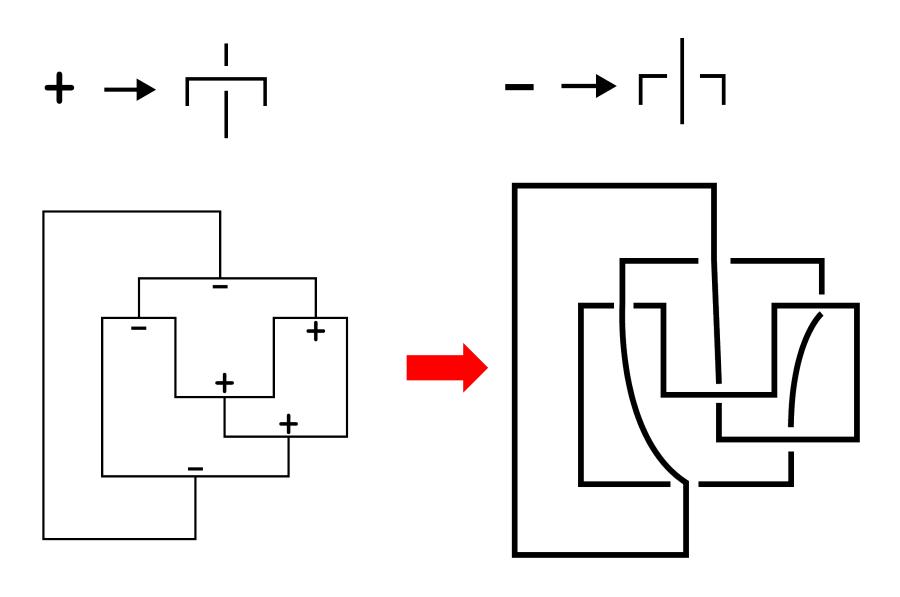
How to append

How do we append it?

We can attach + or - sign to each vertices with a coloring.



How to append



Result

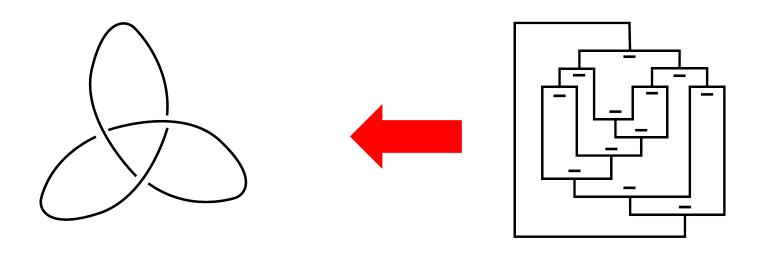
Def

$$h: (\cup T_n \times T_n) \times \{signs\} \rightarrow \{links\}$$

Theorem(2 weeks ago)

h is surjective.

Especially, for any **knot** K, there exists $f \in F$ and a sign σ s.t $h(g(f), \sigma) = K$.



Result

Def

$$h: (\cup T_n \times T_n) \times \{signs\} \rightarrow \{links\}$$

Theorem(This morning, 7:30) *h* is surjective.

Especially, for any **link** L, there exists $f \in F$ and a sign σ s.t $h(g(f), \sigma) = L$.

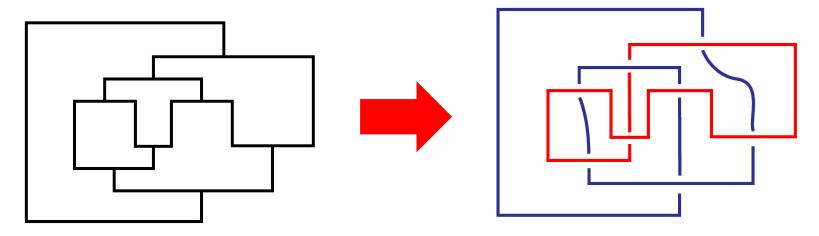
Lemma

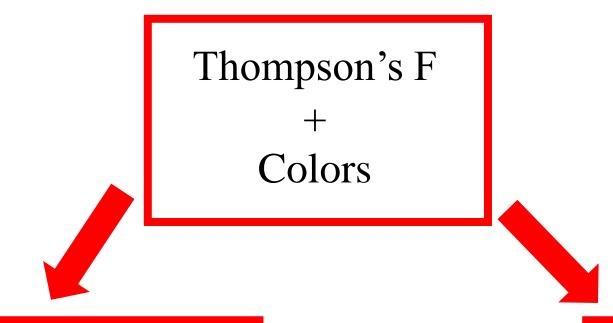
Let $A, B \in T_n$.

The number of components of $h((A, B), \sigma)$ does not depend on signs.

Question

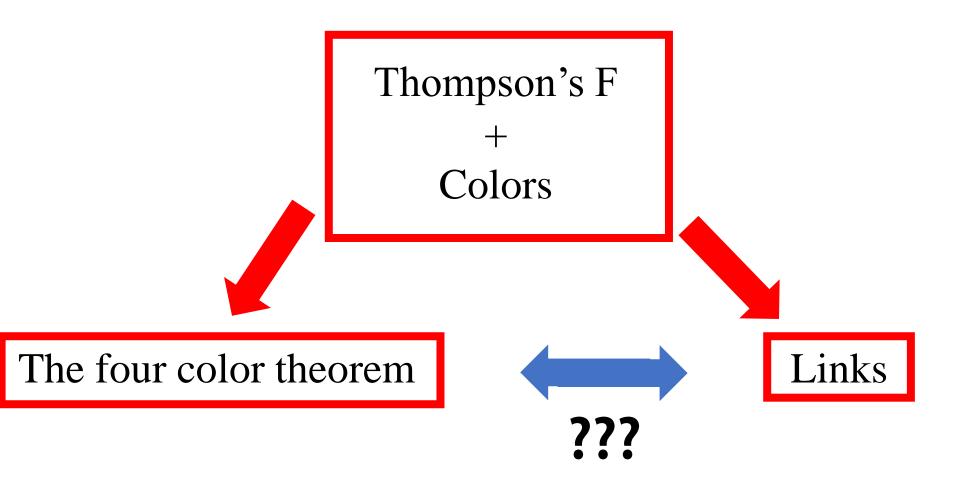
What kind of relationships are there between the number of components of a link and the element of Thompson's F?





The four color theorem

Links



Thompson's F +

Thank you for your attention!

The four color theorem

Links