
Minimum supports of eigenfunctions of Hamming

graphs

Alexandr Valyuzhenich

Sobolev Institute of Mathematics,

Novosibirsk

Workshop on Algebraic combinatorics, Novosibirsk, 30 August,
2016

Alexandr Valyuzhenich Minimum supports



Basic definitions

Σq = {0, 1, . . . , q − 1}.

Definition

The Hamming distance d(x , y) between vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) from Σn

q is the number of positions i such
that xi 6= yi .

Definition

The Hamming graph H(n, q) is a graph whose vertex set is Σn
q and

two vertices are adjacent if the Hamming distance between them
equals 1.
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Basic definitions

G = (V ,E ) — is a simple graph.

Definition

A function f : V −→ R is called an eigenfunction of the graph G

corresponding to an eigenvalue λ if

λ · f (x) =
∑

y∈N(x)

f (y)

for any vertex x .
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Basic definitions

λ · f (x) = f (x1) + f (x2) + . . .+ f (xk)
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Minimum support

Definition

The set S(f ) = {x ∈ V | f (x) 6= 0)} is called the support of f .

Problem

To find the minimum cardinality of the support of eigenfunctions in
the Hamming graphs.
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Example

Example.

x = (x1, x2) is a vertex of H(2, q).

Let f (x) = 1 for x1 = i and x2 6= j ;

f (x) = −1 for x2 = j and x1 6= i ;

and f (x) = 0 otherwise.

Then f is an eigenfunction with λ1 = q − 2.
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Example

The set of vertices x = (x1, x2, . . . , xn) of H(n, q) such that xi = k

is denoted by Tk(i , n).

Example. Let

f (x) =











1, for x ∈ Tk(i , n) \ Tm(j , n);

−1, for x ∈ Tm(j , n) \ Tk(i , n);

0, otherwise.

Then f is an eigenfunction corresponding to λ1 = n(q − 1)− q in
H(n, q).
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Some results

The spectrum of H(n, q) is
{λm = n(q − 1)− qm | m = 0, 1, . . . , n}.

Theorem (Potapov, 2012)

Let f : H(n, q) −→ R be an eigenfunction corresponding to the
eigenvalue λm and f 6≡ 0. Then the following statements are true:

|S(f )| ≥ 2m.

If q = 2, then the minimum cardinality of the support f equals
max(2m, 2n−m).
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Some results

Theorem (Vorob’ev, Krotov, 2014)

Let f : H(n, q) −→ R be an eigenfunction corresponding to the
eigenvalue λm and f 6≡ 0. Then

|S(f )| ≥ 2m(q − 2)n−m

for mq2

2n(q−1) > 2 and

|S(f )| ≥ qn(
1

q − 1
)m/2(

m

n −m
)m/2(1 −

m

n
)n/2

for mq2

2n(q−1) ≤ 2.
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Main theorem

The set of vertices x = (x1, x2, . . . , xn) of H(n, q) such that xi = k

is denoted by Tk(i , n).

Theorem (V., 2016)

Let f : H(n, q) −→ R be an eigenfunction corresponding to λ1,
f 6≡ 0 and q > 2. Then |S(f )| ≥ 2(q − 1)qn−2. Moreover, if
|S(f )| = 2(q − 1)qn−2, then

f (x) =











c , for x ∈ Tk(i , n) \ Tm(j , n);

−c , for x ∈ Tm(j , n) \ Tk(i , n);

0, otherwise.

,

where c 6= 0 is a constant, i , j , k ,m are some numbers and i 6= j .
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Example

Example.

(x , y , z) is a vertex of H(3, q).

Let f (x) = 1 for (0, 0, z) with z 6= 0 and (q, y , 0) with y 6= 0;

f (x) = −1 for (0, y , 0) with y 6= 0 and (q, 0, z) with z 6= 0;

and f (x) = 0 otherwise.

Then f is an eigenfunction with λ2 = q − 3.
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Main theorem

Theorem (V., 2016)

Let f : H(3, q) −→ R be an eigenfunction corresponding to λ2,
f 6≡ 0 and q > 4. Then |S(f )| ≥ 4(q − 1).
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