Minimum supports of eigenfunctions of Hamming graphs

Alexandr Valyuzhenich

Sobolev Institute of Mathematics, Novosibirsk

Workshop on Algebraic combinatorics, Novosibirsk, 30 August, 2016

Basic definitions

$$\Sigma_q = \{0, 1, \dots, q-1\}.$$

Definition

The Hamming distance d(x, y) between vectors $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ from Σ_q^n is the number of positions i such that $x_i \neq y_i$.

Definition

The Hamming graph H(n,q) is a graph whose vertex set is Σ_q^n and two vertices are adjacent if the Hamming distance between them equals 1.

Basic definitions

G = (V, E) — is a simple graph.

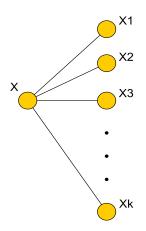
Definition

A function $f:V\longrightarrow \mathbb{R}$ is called an *eigenfunction* of the graph G corresponding to an eigenvalue λ if

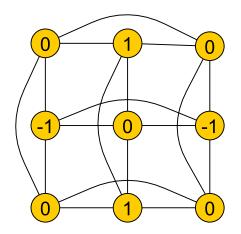
$$\lambda \cdot f(x) = \sum_{y \in N(x)} f(y)$$

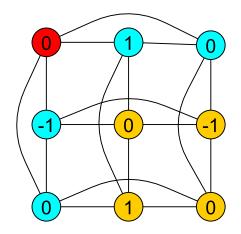
for any vertex x.

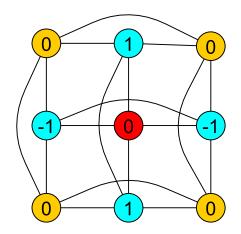
Basic definitions

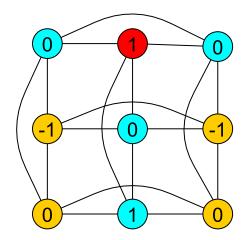


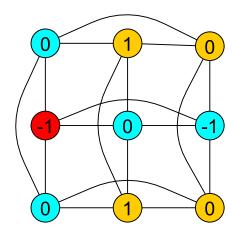
$$\lambda \cdot f(x) = f(x_1) + f(x_2) + \ldots + f(x_k)$$











Minimum support

Definition

The set $S(f) = \{x \in V \mid f(x) \neq 0\}$ is called the support of f.

Problem

To find the minimum cardinality of the support of eigenfunctions in the Hamming graphs.

Example.

$$x = (x_1, x_2)$$
 is a vertex of $H(2, q)$.

Let
$$f(x) = 1$$
 for $x_1 = i$ and $x_2 \neq j$;

$$f(x) = -1$$
 for $x_2 = j$ and $x_1 \neq i$;

and f(x) = 0 otherwise.

Then f is an eigenfunction with $\lambda_1 = q - 2$.

The set of vertices $x = (x_1, x_2, \dots, x_n)$ of H(n, q) such that $x_i = k$ is denoted by $T_k(i, n)$.

Example. Let

$$f(x) = \begin{cases} 1, & \text{for } x \in T_k(i, n) \setminus T_m(j, n); \\ -1, & \text{for } x \in T_m(j, n) \setminus T_k(i, n); \\ 0, & \text{otherwise.} \end{cases}$$

Then f is an eigenfunction corresponding to $\lambda_1 = n(q-1) - q$ in H(n,q).

Some results

The spectrum of H(n, q) is $\{\lambda_m = n(q-1) - qm \mid m = 0, 1, \dots, n\}.$

Theorem (Potapov, 2012)

Let $f: H(n,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to the eigenvalue λ_m and $f \not\equiv 0$. Then the following statements are true:

- $|S(f)| \ge 2^m$.
- If q = 2, then the minimum cardinality of the support f equals $\max(2^m, 2^{n-m})$.

Some results

Theorem (Vorob'ev, Krotov, 2014)

Let $f: H(n,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to the eigenvalue λ_m and $f \not\equiv 0$. Then

$$|S(f)| \ge 2^m (q-2)^{n-m}$$

for $\frac{mq^2}{2n(q-1)} > 2$ and

$$|S(f)| \ge q^n (\frac{1}{q-1})^{m/2} (\frac{m}{n-m})^{m/2} (1 - \frac{m}{n})^{n/2}$$

for $\frac{mq^2}{2n(q-1)} \le 2$.

Main theorem

The set of vertices $x = (x_1, x_2, \dots, x_n)$ of H(n, q) such that $x_i = k$ is denoted by $T_k(i, n)$.

Theorem (V., 2016)

Let $f: H(n,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to λ_1 , $f \not\equiv 0$ and q>2. Then $|S(f)| \geq 2(q-1)q^{n-2}$. Moreover, if $|S(f)| = 2(q-1)q^{n-2}$, then

$$f(x) = \begin{cases} c, & \text{for } x \in T_k(i, n) \setminus T_m(j, n); \\ -c, & \text{for } x \in T_m(j, n) \setminus T_k(i, n); \\ 0, & \text{otherwise.} \end{cases}$$

where $c \neq 0$ is a constant, i, j, k, m are some numbers and $i \neq j$.

Example.

(x, y, z) is a vertex of H(3, q).

Let f(x) = 1 for (0,0,z) with $z \neq 0$ and (q,y,0) with $y \neq 0$;

f(x) = -1 for (0, y, 0) with $y \neq 0$ and (q, 0, z) with $z \neq 0$;

and f(x) = 0 otherwise.

Then f is an eigenfunction with $\lambda_2 = q - 3$.

Main theorem

Theorem (V., 2016)

Let $f: H(3,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to λ_2 , $f \not\equiv 0$ and q > 4. Then $|S(f)| \ge 4(q-1)$.

References

- 1. K. Vorob'ev and D. Krotov. Bounds for the size of a minimal 1-perfect bitrade in a Hamming graph. J. Appl. Ind. Math., 9(1):141-146, 2015. translated from Diskretn. Anal. Issled. Oper. 6(21):3-10, 2014.
- 2. D. Krotov. The extended 1-perfect trades in small hypercubes. arXiv:1512.03421v2.
- 3. D. Krotov, I. Mogilnykh, V. Potapov. To the theory of q-ary Steiner and other-type trade. Discrete Mathematics. 2016. V. 339, N 3. P. 1150-1157.
- 4. V. Potapov. On perfect 2-colorings of the q-ary n-cube // Discrete Mathematics. 2012. Vol. 312, N8. P. 1269–1272.

