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1. Coverings of a graph

A Covering from a graph X to a graph Y means:

∃ a surjective p : V (X )→ V (Y ), s. t.
if p(x) = y then p|N(x) : N(x)→ N(y) is a bijection

X : covering graph: Y : base graph;

Vertex fibre: p−1(v), v ∈ V (Y ); Edge fibre: p−1(e), e ∈ E (Y );

G : the group of fibre-preserving automorphisms of X

Covering transformation group K : the kernel of G acting on
the fibres.

X is connected =⇒ K acts semiregualrly on each fibre.

Regular Cover: K acts regularly on each fibre.

K C G , G/K ≤ Aut (Y ).
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Example

X is a bipartite graph with two biparts V = U ∪W ,

U = V (n, q) \ {0}

W = {u + α
∣∣ dim(α) = n − 1, u ∈ V \ α}.

where v u + α iff v ∈ u + α.

Y is the nonincident graph of points and hyperplanes in projective
geometry PG(n − 1, p).

p: v , · · · kv , · · · , (q − 1)v → 〈v〉;

u + α, · · · ku + α, · · · , (q − 1)u + α → α;

Then X is a (q − 1)-fold cover of Y .
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Voltage graphs and Derived graphs

Gross and Tucker (1974).

J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley,
New York, 1987.

Voltage assignment f : graph Y , finite group K
a function f : A(Y )→ K s. t. fu,v = fv ,u

−1 for each
(u, v) ∈ A(Y ).

Voltage graph: (Y , f )

Derived graph Y ×f K :

vertex set V (Y )× K ,
arc-set {((u, g), (v , fv ,ug)

∣∣ (u, v) ∈ A(Y ), g ∈ K}.
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1. p: (u, k)→ u is a covering projection form Yf × K to Y ,
whose covering transformation group is isomorphic to K .

2. Each regular cover can be derived by a voltage
assignment f .
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Lifting: α ∈ Aut (Y ) lifts to an automorphism α ∈ Aut (X ) if
αp = pα.

α
X → X

p ↓ ↓ p
Y → Y

α
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General Question:

Given a graph Y , a group K and H ≤ Aut (Y ), find all the
connected regular coverings Y ×f K on which H lifts.

Note : if H lifts to G , then G/K ∼= H.

A lifting problem is essentially a group extension problem

1→ K → G → H
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Lifting Theorem

Lifting Theorem: let X = Yf × K , α ∈ Aut (Y ). Then

α lifts if and only if: fW = 1⇔ fWα = 1, for each closed walk
W in Y .

A. Malnič, Group actions, coverings and lifts of
automorphisms, Discrete Math. 182 (1998), 203-218.

A. Malnic, R. Nedela, M. Skoviera, Lifting graph
automorphisms by voltage assignments, European J. Combin.
21(2000), 927-947.
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Abelian Covers

Theorem: Let X = Y ×f K be a connected regular cover of a
graph Y , where K is abelian, If α ∈ Aut Y is an
automorphism one of whose liftings α centralizes K , then
fWα = fW for any closed W of Y .

S.F. Du, J.H.Kwak and M.Y.Xu, On 2-arc-transitive covers
of complete graphs with covering transformation group Z 3

p ,
J. Combin. Theory, B 93 (2005), 73–93.
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Elementary abelian covering: K = Zn
p .

S.F. Du, J.H. Kwak and M.Y. Xu, Linear criteria for lifting of
automorphisms in elementary abelian regular coverings,
Linear Alegebra and Its Applications, 373, 101-119(2003).

Malnic, Aleksander; Potocnik, Primoz. Invariant subspaces,
duality, and covers of the Petersen graph, European J.
Combin. 27 (2006), no. 6, 971(989)
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Abelian covers:

1. Conder, Ma, Arc-transitive abelian regular covers of the
Heawood graph. J. Algebra 387 (2013), 243-267.

2. Conder, Ma, Arc-transitive abelian regular covers of cubic
graphs. J. Algebra 387 (2013), 215-242.



2. Classifying 2-arc-transitive graphs

2-arc: (u, v ,w), s. t. (u, v) and (v ,w) are arcs and u 6= w .

2–ATG X : Aut (X ) acts trans. on 2-arcs of X .

Praeger’s Reduction Theorem

C.E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive
permutation groups and an application to 2-arc transitive graphs,
J. London Math. Soc. (2)47(1993), 227-239.



Every finite connected 2-arc-transitive graphs is one of the
following:

(1) Quasiprimitive Type: every non-trivial normal subgroup of
Aut X acts transitively on V (X ),
Bipartite Type: every non-trivial normal subgroup of Aut X
has at most two orbits on V (X ) and at least one of normal
subgroups of Aut X has exactly two orbits on V (X ).

(2) Covering Type: There exists a normal subgroup of Aut X
which has at least three orbits on V (X ) ⇒ regular covers of
graphs in (1).







Quasiprimitive Type

R.W.Baddeley, Two-arc transitive graphs and twisted wreath
products, J. Alg. Combin. 2 (1993), 215–237.

A.A. Ivanov and C.E. Praeger, On finite affine 2-arc-transitive
graphs, Europ. J. Combin. 14 (1993), 421–444.

X.G. Fang and C.E. Praeger, On graphs admitting arc-transitive
actions of almost simple groups, J. Algebra 205 (1998), 37-52.



X.G. Fang and C.E. Praeger, Finite two-arc-transitive graphs
admitting a Suzuki simple group, Comm. Algebra 27(1999),
3727-3754.

C. H. Li, The finite vertex-primitive and vertex-biprimitive
s-transitive graphs for s ≥ 4, Trans. Amer. Math. Soc. 353
(2001), 3511–3529.

Locally primitive graphs...and so on



Bipartite Type

A reduction theorem for this case was given by Praeger (1993).

C. E. Praeger, On a reduction theorem for finite, bipartite,
2-arc-transitive graphs, Australas J. Combin. 7 (1993), 21-36.



In the group theory sense, it induces two directions:

(1) Study Quasiprimitive or Bipartite type (2-ATG)

→ to study finite simple group, almost simple group, Quasisimple
group, primitive group, Quasiprimitive and so on, and to study the
suborbit structures of the related permutation representations

(G ,Gα,Gα,β)



(2) Study regular covers of Quasiprimitive or Bipartite type
(2-ATG)

→ to study the group extensions of the above groups from either
’left‘ or ‘bottom‘, in many cases, it is related central extension
theory as well as Schur Multiplier theory, (ordinary and in most
cases, modular) representations of almost simple groups and so on.



3. 2-arc-tran covers

Our long term goal is to classify the 2-arc-transitive covers by

given base graphs (2-ATG of Quasiprimitive or Bipartite type), for
instance: Kn, Kn,n − nK2, Kn,n ...

given covering transformation groups, for instance: Zn
p , ablian

groups and metacyclic groups...



3.1 Classify 2-arc-transitive regular covers of complete
graphs

Problem: Classify regular covers of complete graphs having the
covering transformation group Zk

p and whose fibre-preserving group
acts 2-arc -transitively.

For cyclic group and k = 2:
S.F.Du, D.Marušič and A.O.Waller, On 2-arc-transitive covers of
complete graphs, J. Combin. Theory, B 74 (1998), 276–290.

For k = 3:
S.F.Du, J.H.Kwak and M.Y. Xu, On 2-arc-transitive covers of
complete graphs with covering transformation group Z 3

p , J.
Combin. Theory, B 93 (2005), 73–93.

For k = 4: open



3.2 Classify 2-arc-transitive circulant and dihedrant

For a Cayley graph, its automorphism group contains a
vertex-regular subgroup.

Cayley graphs of cyclic and dihedral groups are called Circulant
and Dihedrants, respectively.



2-arc tran. circulant:

B.Alspach, M.D.E.Conder, D.Marušič and M.Y.Xu, A classification
of 2-arc-transitive circulants, J. Alg. Combin., 5 (1996), 83–86.

The proof is combinatorial and is independent on CFSG.

2-arc-tran dihedrant:

D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin.
Theory, B 87 (2003), 162–196.

S.F. Du, A. Malnič and D. Marušič, Classification of
2-arc-transitive dihedrants, J. Combin. Theory, B, 98(6), (2008),
1349-1372



3.3. 2-Arc-Transitive Metacyclic Covers of Complete
Graphs

W. Q. Xu, S. F. Du, J. H. Kwak and M. Y. Xu, 2-Arc-Transitive
Metacyclic Covers of Complete Graphs, J. Combina Theory (B),
111 (2015), 54-74.



3.4. regular covers of Kn,n − nK1

1. W.Q. Xu and S.F. Du, 2-Arc-trantive cyclic covers of
Kn,n − nK2, J. Algebr. Comb. 39(2014), 883-902.

2. S.F. Du and W.Q. Xu, 2-arc-trantive regular covers of
Kn,n − nK2 having the covering transformation group Z3

p, Journal
of the Australian Mathematical Society, 2016, 28 pages, accepted.



3.5. regular covers of Kn,n

1. S.F. Du and W.Q. Xu, 2-Arc-trantive cyclic covers of Kn,n,
submitted.

2. S.F. Du, W.Q. Xu, G.Y Yan, 2-arc-trantive regular covers of
Kn,n having the covering transformation group Z2

p, Combinatorics,
accepted, 2016, 21 pages.



1-arc tran. (not necessarily 2-arc tran)

1 Pan, Huang and Liu, Arc-transitive regular cyclic covers of the
complete bipartite graph Kp,p , J. Algebraic Combin. 42 (2015),
no. 2, 619-633.



4. Relationship between topological lifting theorem and
group extensions

Sabidussi Coset graph–one of basic tools for studying vertex
transitive graphs:

given a group G , H ≤ G , a ∈ G , s. t. HaH = Ha−1H,
〈H, a〉 = G .

Define a graph Cos(G ,H,HaH):

Vertex set {Hg
∣∣ g ∈ G}, Edge set {H,Ha}G .

Note: Every arc transitive graph can be represented by a Coset
graph.



A Coset graph gives more information of groups

A voltage graph gives more clearly adjacent relations, but the
properties of the groups are hidden

Except for very few cases, Lifting Theorem can be only used to
determine the voltage graphs for some small base graphs

For most cases, Group Extension (group theoretical method) may
be applied to determine Coset graphs.

For some cases, combining voltage graph, lifting theorem, group
extension together, we may get surprising results !!!



Routine idea from group theory (coset graphs):

Try to classify the covers of Y with given group K and with a
given symmetric property (*)

1. find all the some subgroups H ≤ Aut (Y ), insuring this (*)

2. determine the group extension 1→ K → G → H

3. determine coset graphs from G



Three possibilities in group theory:

1. There exists such classification for H and also it is feasible to
determine the extension 1→ K → G → H

2. we do have such classification for H but it is very complicated
and almost infeasible to determine the extension

3. such classification does not exist



New Idea by joining Lifting Theorem:

Instead of using the classification of H, pick up a subgroup H1 of
H, which is easy to work on (1→ K → G1 → H1 → 1), where H1

does not need to insure (∗)

find all Coset graphs from G1, from which we construct voltage
graphs X (sometimes a very few graphs are obtained, also their
voltage assignment is very simple and nice)

for each X , choose a subgroup H2 which insuring (*) (do not need
to a classification for all such H2), usually H2 is bigger than H1.

using Lifting Theorem we show H2 lifts.

Then we find all covers.



5. Examples

By exhibiting some examples, show some applications of group
theoretical tools and lifting theorem in determination of regular
covers.



5.1 Applications of Lifting Theorem

Example

Problem: Y = K5, V = {0, 1, 2, 3, 4}

K = (V (3, p),+) find all covers s. t. the fibre preserving group
acts 2-arc-tran.

Answer:

X (p) = K5 ×f K , either p = 5 or p = ±1( mod 10) :

f0,j = (0, 0, 0) for 1 ≤ j ≤ 4, f1,2 = (1, 0, 0), f1,3 = (0, 1, 0),
f2,3 = (0, 0, 1), f1,4 = (a, b, c), f2,4 = (−b,−c , a) and

f3,4 = (c ,−a,−b), where a = 1+
√
5

4 , b = 1−
√
5

4 and c =
√
5
2 .



Proof:

1. To insure 2-arc-transitivity, A5 should be lifted, G/Z 3
p = A5.

2. Choose a span tree, while there are 6 cotree arcs. Assign trivial
voltages on tree arcs, a (3-dimensional) base to 3 cotree arcs (all
possibilities), while the voltages on other 3 cotree arcs are a linely
combination of the base.

3. Choose some elements of A5, use Lifting Theorem to determine
all the voltages on cotree arcs.

Note: 1. All the proof just depends on Lifting Theorem, no
involving the group extensions.

2. The presentation of this voltage assignment f is not simple and
nice.



Lemma

X must be isomorphic to X (p).

Proof Let X = (K5)f × K with a voltage assignment f :
A(K5)→ K and let V (K5) = {0, 1, 2, 3, 4}. We identify K with the
additive group of the 3-dimensional vector space V (3, p) over
GF (p), where the identity element in K is identified with zero
vector 0. Take a basis {x, y, z} in K . Take the star Y0 with the
base vertex 0 as a spanning tree of K5. Then we may assume that
f0,i = 0 for any i ∈ V1 := {1, 2, 3, 4}.
It is easy to check that for the induced subgraph K5[V1] of V1 in
K5, if the voltages assigned to the respective arcs in any triangle
and in any claw are linearly dependent in K = V (3, p), then the
group generated by all voltages has order less than p3. This
contradicts the connectedness of (K5)f × K . So we have the
following two different cases:



(1) In K5[V1], the three voltages on the respective arcs in any
triangle are linearly dependent, but there exists a claw such that
the three voltages on the arcs in this claw are linearly independent.
Hereafter, for any three distinct vertices i , j , k in V (K5), we use

(i , j , k)n to denote the walk (

n times︷ ︸︸ ︷
i , j , k , i , j , k , · · · i , j , k).

Without loss of generality we may assume that f1,2 = x, f1,3 = y,
f1,4 = z and f2,3 = ax + by. Take a closed walk
W = ((0, 1, 2)a, (0, 1, 3)b, 0, 3, 2, 0). We have
fW = af1,2 + bf1,3− f2,3 + (a + b)f0,1 + (1− a)f0,2− (b− 1)f0,3 = 0.
Since A5 lifts, fWα = 0 for each α ∈ A5 by Proposition ??. Since
fW (243) = af1,4+bf1,2−f4,2+(a+b)f0,1+(1−a)f0,4−(b−1)f0,2 = 0,
we have f2,4 = −bx− az. Since fW (12)(34) = 0 and fW (012) = 0
respectively, we have

−ax− z + bf2,4 = 0 and (a + b)x + (1− b)y + bf2,3 = 0. (3.1)



Substituting the values of f2,3 and f2,4 in (3.1), we get the
following equation system in GF (p):

a + b2 = 0, 1 + ab = 0 and a + b + ab = 0.

However, it is easy to check that this equation system has no
solutions.

(2) In K5[V1], there exists a triangle such that three voltages
assigned to its arcs are linearly independent.
Without loss generality we may assume that f1,2 = x, f1,3 = y,
f2,3 = z and f1,4 = ax + by + cz. Take a closed walk
W = ((0, 1, 2)a, (0, 1, 3)b, (0, 2, 3)c , 0, 4, 1, 0). Then
fW = af1,2 + bf1,3 + cf2,3− f1,4 + (a + b− 1)f0,1 + (c − a)f0,2− (b +
c)f0,3 + f0,4 = 0. Similar to (1), since fW (132) = 0 and fW (123) = 0
respectively, we have f3,4 = cx− ay− bz and f2,4 = −bx− cy + az.
Since fW (12)(34) = 0 and fW (02)(13) = 0 respectively,



we have

−ax−z+cf1,4+bf2,4 = 0 and (b+c)x−by+(a+b−1)z+f2,4−f3,4 = 0.
(3.2)

Substituting the values of f1,4, f2,4 and f3,4 in (3.2), we get the
following equation system in GF (p):

−a+ac−b2 = 0, −1+c2+ab = 0, a−b−c = 0 and 2a+2b−1 = 0.

Solving this equation system, we get
4a2 − 2a− 1 = 0, b = 1

2 − a and c = 2a− 1
2 . However, the

first equation has a solution if and only if p = 5 or p ≡ ±1(
mod 10). If p ≡ ±1( mod 10), we have two solutions;

(a, b, c) = (1+
√
5

4 , 1−
√
5

4 ,
√
5
2 ) and (a, b, c) = (1−

√
5

4 , 1+
√
5

4 , −
√
5

2 ).
The graph determined by the first solution for (a, b, c) is precisely
X2(p). It is easy to see that the graph determined by the second
solution for (a, b, c) is isomorphic to X2(p) if we assume f1,2 = y
and f1,3 = x. If p = 5, we have (a, b, c) = (−1,−1, 0). �



Lemma

For a graph X (p), the fibre-preserving group of automorphisms
acts 2-arc-transitively on the graph.

Proof Since A is isomorphic to either A5 or S5, it suffices to show
that A5 lifts. Since A5 is generated by (13)(24) and (012), A5 lifts
if and only if these two generators lift.
Let W be a closed walk in K5 with fW = 0. We may assume that
the arc (i , j) (resp. (j , i)) appears `i ,j (resp. `j ,i ) times in W and
let ti ,j = `i ,j − `j ,i . Since fi ,j = −fj ,i , we get ti ,j = −tj ,i . Then
fW =

∑
0≤i<j≤4 ti ,j fi ,j = 0.



Substituting the values of fi ,j in it, we get the following three
relations between {ti ,j};

t1,2 = −at1,4 + bt2,4 − ct3,4,
t1,3 = −bt1,4 + ct2,4 + at3,4,
t2,3 = −ct1,4 − at2,4 + bt3,4.

(3.3)

Since W is a closed walk, the numbers of arcs in W coming from i
and going into i are equal for any vertex i in V (K5). So we get

t0,1 = t1,2 + t1,3 + t1,4 = (1− a− b)t1,4 + (b + c)t2,4 + (a− c)t3,4,
t0,2 = t2,1 + t2,3 + t2,4 = (a− c)t1,4 + (1− a− b)t2,4 + (c + b)t3,4,
t0,3 = t3,1 + t3,2 + t3,4 = (b + c)t1,4 + (a− c)t2,4 + (1− a− b)t3,4,
t0,4 = t4,1 + t4,2 + t4,3 = −t1,4 − t2,4 − t3,4.

(3.4)



Let α = (13)(24). Then

fWα =
∑

0≤i<j≤4
ti ,j fiα,jα

= t1,2f3,4 + t1,3f3,1 + t2,3f4,1 + t1,4f3,2 + t2,4f4,2 + t3,4f1,2.
Substituting the values of fi ,j in it and by using (3.3), we get

fWα = (ct1,2 − at2,3 + bt2,4 + t3,4)x
+(−at1,2 − t1,3 − bt2,3 + ct2,4)y
+(−bt1,2 − ct2,3 − t1,4 − at2,4)z

=
(
(bc + a2 + b)t2,4 − (c2 + ab − 1)t3,4

)
x

+
(
(a2 + b + bc)t1,4 + (ac − a− b2)t3,4

)
y

+
(
−(1− ab − c2)t1,4 + (−b2 + ac − a)t2,4

)
z.

(3.5)

Since (a, b, c) = (1+
√
5

4 , 1−
√
5

4 ,
√
5
2 ), it is easy to check that

bc + a2 + b = c2 + ab− 1 = ac − b− b2 = 0. Hence fWα = 0 and
so α lifts by Lifting Theorem.



Let β = (012). Similarly, we may prove that fW β = 0. (Here (3.3)
and (3.4) are used again and the details are omitted.) Thus we
prove that β also lifts by Lifting Theorem. Since the two
generators α and β of A5 lift, A5 also lifts. �



Essentially, it is group extension problem: G/Z3
p = A5.

Where is the group theory and representation theory ?
Hidden !!

There must be a deep relation between group theory and
topological method (Lifting Theorem), under the combinatorial
frame.



Example 5.2: Construct voltage graphs from abstract
groups

Main idea:

We may determine the group extension 1→ K → G → H → 1,
depending on a lots of group theoretical tools, including central
extension theory and modular representations of groups.

Study the permutation representations of G

Find the coset graphs

Find the voltage graphs from the known coset graphs, with simple
and nice f

Use Lifting Theorem to show a subgroup (insuring your properties,
as bigger as possible) of Aut (Y ) lifts.



Example

Let Y = K1+p where V (Y ) = PG (1, p) = GF (p) ∪ {∞} and let
K = (V (3, p),+). Find all the regular coverings X = Y ×f K such
that PGL(2, p) ≤ Aut (Y ) = Sp+1 lifts.

Solution: (1) Define X (p) =: K1+p ×f Z 3
p as follows:

f∞,j = (0, 1, 2j),

fi ,j =
(

1
i−j ,

i+j
i−j ,

2ij
i−j

)
for all i 6= j in GF (p).

(2) X ′(5) = K6 ×f Z 3
p as follows:

....



Proof of Example 5.2

A/K ∼= PGL(2, p) for p ≥ 5 and n = 1 + p.
Take a fibre F and a vertex v ∈ F . Then AF = AvK .
Since (|A : AF |, |K |) = (1 + p, p3) = 1 and K is an abelian normal
subgroup of A, we know that K has a complement in A which is
isomorphic to PGL(2, p), that is

A ∼= Z 3
p o PGL(2, p)



Step 1: Determination of structure of the group A

Modular p- Representations of 2-dimensional linear groups:

1. Brauer and C. Nesbitt, On the modular characters of groups,
Annals of Math, 42(2), 556-590.

2.R. Burkhardt, Die Zerlegungsmartrizen de Gruppen PSL(2, pf ),
J. Algebra of Algebra, 40(1976), 75-96

SL(2, p) has p irreducible modular p- Representations

PSL(2, p) has p+1
2 irreducible modular p- Representations with

degrees 1, 3, 5, · · · , p



Degree 3:
V3 = 〈x iy j

∣∣ i + j = 2〉 homogeneous space over Fp

g =

(
a11 a12
a21 a22

)
Define G = PSL(2, p)-module V3 extended by
g(x iy j) = (a11x + a12y)i (a21 + a22y)j

Let G = PGL(2, p). Define two G -modules V3 extended by
g(x iy j) = det(g)−1(a11x + a12y)i (a21 + a22y)j

and
g(x iy j) = det(g)

p−1
2
−1(a11x + a12y)i (a21 + a22y)j



Take a base in V3, we get two homomorphisms φ of PGL(2, p)
into GL(3, p)

φ :

(
a b
c d

)
7→ (ad − bc)−1

 a2 2ab 2b2

ac ad + bc 2bd
c2/2 cd d2

 .

φ :

(
a b
c d

)
7→ (ad − bc)

p−1
2
−1

 a2 2ab 2b2

ac ad + bc 2bd
c2/2 cd d2

 .

Note: The first case will give the covers X (p)
the second will gives the covers X ′(5).



Step 2: Determination of conjugacy class of point
stabilizers

Take a subgroup H1 = 〈t1〉o 〈a1〉 ∼= Zp o Zp−1 of PGL(2, p),
where

t1 =

(
1 1
0 1

)
and a1 =

(
θ 0
0 1

)
for a generator θ of GF (p)∗. Let PG (1, p) = {∞, 0, 1, . . . , p − 1}
be the projective line over GF (p), where we identify 〈(0, 1)〉 and
〈(1, `)〉 with ∞ and `, respectively. Then, H1 fixes ∞ ∈ PG (1, p)
and t i1 maps ` into `+ i . Furthermore, we have
H := φ(H1) = 〈t〉o 〈a〉, where t = φ(t1) and a = φ(a1), and for
any i ,

t i = φ(t i1) =

 1 2i 2i2

0 1 2i
0 0 1

 and ai = φ(ai1) =

 θi 0 0
0 1 0
0 0 θ−i

 .



Lemma

Let M = K o H. Then, M has only one conjugate class of
subgroups L satisfying 〈a〉 ≤ L ∼= H and L ∩ K = 1.



Proof Note that |M| = |K o H| = |(K o 〈t〉) o 〈a〉| = p4(p − 1).
Let P = K o 〈t〉. Then, P is a p-group of order p4. Since p ≥ 5
by assumption, P is a regular p-group (for the definition of regular
p-groups. Since Φ(P) ≤ K and the order of t is p, P has exponent
p. Clearly, M has only one conjugacy class of subgroups
isomorphic to 〈a〉. Assume that L is a subgroup of M such that
〈a〉 ≤ L ∼= H and L ∩ K = 1. Then, we may assume that
L = 〈kt〉o 〈a〉 for some k = (x , y , z) ∈ K . Suppose that
(kt)a = (kt)i . Then, we have (kt)a = kata = (θx , y , θ−1z)tθ

−1



(kt)i = (kkt−1
kt−2 · · · kt−i+1

)t i

= ((x , y , z) + (x ,−2x + y , 2x − 2y + z) + · · ·
+ (x ,−2(i − 1)x + y , 2(i − 1)2x − 2(i − 1)y + z))t i

= (ix ,−(i − 1)ix + iy , (i−1)i(2i−1)3 x − (i − 1)iy + iz)t i .

Thus, we get i = θ−1 and

(θx , y , θ−1z) = (ix ,−(i−1)ix +iy ,
(i − 1)i(2i − 1)

3
x−(i−1)y +iz).

From these two equations, we have θx = ix = θ−1x and so
θ2x = x . Since p ≥ 5, we get θ2 6= 1, and so x = 0 and y = 0 by
the second equation again. Hence, k = (0, 0, z) for any
z ∈ GF (p), that means k has p possibilities. For each k , we get an
L = 〈kt〉o 〈a〉; in particular, L = H when z = 0. Furthermore,
these p subgroups are conjugate in M.



In fact, for any k = (0, 0, z), by taking k ′ = (0, z2 , 0), we have

(kt)k
′

= k(k ′)−1tk ′ = k(k ′)−1(k ′)t
−1

t
= ((0, 0, z)− (0, z2 , 0) + (0, z2 ,−z))t = (0, 0, 0)t = t

ak
′

= k ′
−1

ak ′ = k ′
−1

(k ′)a
−1

a =
(

(0,−z

2
, 0) + (0,

z

2
0)
)

a = a,

which forces Lk ′ = H, completing the proof.



Step 3: Determination of suborbits of A relative to H

Lemma

Let [A : H] be the set of right cosets of H in A. Then, in its right
multiplication action on [A : H], A has p − 1 suborbits of length p
not contained in [M : H], which correspond to the p − 1 double
cosets Hg(0, y , 0)H for any y ∈ GF (p)∗ and g = φ(g1), where

g1 =

(
0 1
−1 0

)
.



Proof Suppose that the double coset D corresponds to a suborbit
of A of length p relative to H not contained in [M : H]. Since H
has only one conjugacy class of subgroups of order p − 1, a must
fix a point in this suborbit.
Noting that T is 2-transitive on [T : H], we may choose
D = HgkH such that Hgk = Hgka, in other words,
Hg = Hga−1ka, which forces that Hg = Hga−1 and ka = k .
Hence, we may fix g = φ(g1). Assume k = (x , y , z). From
(θx , y , θ−1z) = ka = k = (x , y , z), we have x = z = 0 as θ 6= ±1,
and so k = (0, y , 0), where y 6= 0. Therefore, we get p − 1 choices
for k and so for D.



Step 4: Determination of Coset graphs

Now, M = K o H = AF for a fibre F . For any u ∈ F , we have
Mu
∼= H and Mu ∩K = 1. Since M has only one conjugacy class of

subgroups isomorphic to 〈a〉, there exists a vertex v ∈ F such that
〈a〉 ≤ Mv . By Lemma ??, Mv is conjugate to H in M. It follows
that H fixes a vertex in F . Therefore, X is isomorphic to one of
X (A,H,D), where D = Hg(0, y , 0)H is as in Lemma 0.6.
Moreover, it is easy to see that the p − 1 graphs corresponding to
the p − 1 choices for D are isomorphic to each other, by changing
the basis of V (3, p). Now, we may choose k = (0, 1, 0). Note that

g = φ(g1) =

 0 0 2
0 −1 0

1/2 0 0

 .

Since (gk)2 = 1, we get D = HgkH = H(gk)−1H = D−1. So,
X (A,H,D) is an undirected graph. Clearly, A acts
2-arc-transitively on X (A,H,D), because T is 3-transitive on
V (Kn).



Step 5: Determination of the voltage assignment

Lemma

X (A,H,D) ∼= X (p), and its group of fibre-preserving
automorphisms acts 2-arc-transitively.

Proof Considering the action of PGL(2, p) on PG (1, p), one can

easily check that for ` ∈ GF (p)∗ both g1t`1g1t i1 and g1t i−`
−1

1 map
∞ to i − `−1, respectively. Since (PGL(2, p))∞ = H1, we have
that for any i ∈ GF (p), H1g1t`1g1t i1 = H1g1t i−`

−1
and so under the

homomorphism φ mentioned before Hgt`gt i = Hgt i−`
−1
. In

addition, (Hg)gt i = H.
By the arguments before the lemma, we know that in the coset
graph X (A,H,D), H is adjacent to Hgkt` for any ` ∈ GF (p).
Hence, for any i ∈ GF (p), Hgt i is adjacent to

Hgkt`gt i = Hgt`gt ik(t`gt i ) for any ` ∈ GF (p).



If ` = 0, then

Hgt`gt ik(t`gt i ) = H(0, 1, 0)gt i = H(0,−1,−2i).

Hence, Hgt i is adjacent to H(0,−1,−2i) for any i ∈ GF (p), or
equivalently, H is adjacent to Hgt j(0, 1, 2j) for any j ∈ GF (p).
Assume ` ∈ GF (p)∗ and let i − `−1 = j . Then,

Hgt`gt ik(t`gt i ) = Hgt i−`
−1

(0, 1, 0)t`gt i

= Hgt i−`
−1

(`, 2i`− 1, 2i2`− 2i) = Hgt j
(

1
i−j ,

i+j
i−j ,

2ij
i−j

)
.

Hence, Hgt i is adjacent to Hgt j
(

1
i−j ,

i+j
i−j ,

2ij
i−j

)
for any

i 6= j ∈ GF (p).
Considering the action of PGL(2, p) on PG (1, p), we may define a
bijection from [PGL(2, p) : H1] to PG (1, p) by sending H1 to ∞
and H1g1t i to i . Accordingly, we may define a bijection from
[T : H] to PG (1, p) by sending H to ∞ and Hgt i to i .



Finally, we may define a map σ from V (X (A,H,D)) to
V (X (p)) = PG (1, p)× K by sending Hk to (∞, k) and Hgt ik to
(i , k). In viewing the above arguments and the definition of X (p),
we find that σ is an isomorphism from X (A,H,D) to X (p).
Moreover, since A acts 2-arc-transitively on X (A,H,D), it follows
that for the graph X (p), its group of fibre-preserving
automorphisms acts 2-arc-transitively.



Step 6: Generalize to X (p) to X (q), using Lifting Theorem

Lemma

For each cover in X (q), the group of fibre-preserving
automorphisms acts 2-arc-transitively.

Proof Recall that V (K1+q) is identified with the projective line
PG (1, q) = GF (q) ∪{∞}. We will adopt the usual computations
between ∞ and the elements in GF (q), that is, ∞+ i =∞ for
i ∈ GF (q); ∞i =∞ for i ∈ GF (q)∗; and ∞∞ = 1. Let K be the
corresponding additive group of V (3, q). Then, X (q) = K1+q ×f K

is defined by fi ,j =
(

1
i−j ,

i+j
i−j ,

2ij
i−j

)
for all i 6= j in PG (1, q).

To prove the lemma, it suffices to show that PGL(2, q) lifts. For a
computation, we identify the element ∞ and any i ∈ GF (q) in
PG (1, q) with 〈(1, 0)〉 and 〈(i , 1)〉 respectively. For a matrix g in
GL(2, q), we denote by g the image of g in PGL(2, p`) under the
natural homomorphism.



Then, the action of g ∈ PGL(2, p`) on ∞ and any i ∈ PG (1, p`)
can be written respectively as follows:

∞g := 〈g(1, 0)〉 and ig := 〈g(i , 1)〉.

Let

g1 =

(
x 0
0 x−1

)
, g2 =

(
1 0
0 1

)
, g3 =

(
1 0
1 1

)
, g4 =

(
x 0
0 1

)
,

where x is a primitive element in GF (q). Then, all of these
elements generate PGL(2, q). In addition, it is easy to check that

ig1 = ix2, ig2 = i + 1, ig3 =
i

i + 1
, ig4 = ix ,

where i ∈ PG (1, q). In what follows, we show that for 1 ≤ k ≤ 4,
gk lifts.
Let W be a closed walk in Y with fW = 0, and for any arc
(i , j) ∈ A(Y ), let `i ,j has the same notation as above.



Now, we get

fW =
∑

(i ,j)∈A(Y )

`i ,j fi ,j =
∑

(i ,j)∈A(Y )

`i ,j(
1

i − j
,

i + j

i − j
,

2ij

i − j
) = 0.

Therefore, we have∑
(i ,j)∈A(Y )

`i ,j
i − j

= 0,
∑

(i ,j)∈A(Y )

(i + j)`i ,j
i − j

= 0,
∑

(i ,j)∈A(Y )

2ij`i ,j
i − j

= 0.

Also, we have



Now, we get

fW g1 =
∑

(i ,j)∈A(Y )

`i ,j fig1 ,jg1

=
∑

(i ,j)∈A(Y )

`i ,j fix2,ix2

=
∑

(i ,j)∈A(Y )

`i ,j

(
1

ix2 − jx2
,

ix2 + jx2

ix2 − jx2
,

2ix2jx2

ix2 − jx2

)

=

x−2
∑

(i ,j)∈A(Y )

`i ,j
i − j

,
∑

(i ,j)∈A(Y )

(i + j)`i ,j
i − j

, x2
∑

(i ,j)∈A(Y )

2ij`i ,j
i − j


= 0.

Similarly, we get that fW gk = 0, for k = 2, 3 and 4. Then gk lifts,
and so PGL(2, q) lifts.



Example 5.3: Jump obstacles of group theories

Main Idea:

When meeting some difficulties from usual group theoretical
analysis, we try to start from a small subgroup of Aut (Y ), to find
nice voltage assignments f , so that Lifting Theorem can be
possibly and easily used to show our desired groups (insuring our
symmetrical properties) lift.



Question: Y = Kn,n, K = Z2
p, find the covers X = Yf × K such

that the fibre-preserving subgroup acts 2-arc-transitively

V (Y ) = U ∪ V

Aut (Y ) = (Sn × Sn) o Z2.

A : a 2-arc-transitive subgroup, G ≤ A: fixing two biparts

Ã/K ∼= A, G̃/K ∼= G

Gu acts 2-tran. on W =⇒ G is a 2-transitive group of X on W
and so on U.



Here consider a special case:

GU is an affine group: GU ≤ AGL(s, p) = Zs
p oGL(s, p)

Y = Kps ,ps , s ≥ 2, K = Z2
p, V = U ∪W

U = {α
∣∣ α ∈ V (s, p)}, W = {α′

∣∣ α ∈ V (s, p)},

TU
∼= TW

∼= Zs
p:

T̃U/K = TU , T̃W /K = TW , T̃/K = (TU × TW )/K .

G = (TU × TW ) o H, H ≤ GL(s, p)×GL(s, p)

A = G 〈σ〉, σ exchanges two biparts of Kn,n.



Group problem:

G̃/Z2
p = (Zs

p × Zs
p) o H, H ≤ GL(s, p)×GL(s, p),

where H is tran on V (s, p) \ {0}.

Usual Way:

1. Determine p-subgroups P of G̃ such that P/Z2
p = Zs

p × Zs
p;

2. Determine G̃ = P.H̃, where H̃/K = H.



P/Z2
p = Zs

p × Zs
p.

c = 2, exp(P) = p, Z (P) = P ′ = Z2
p.

About meta-abelian p-groups,

1. P ′ = Zp, extra-special p-group

2. P ′ = Zk
p ,

Sergeicuk, V. V. The classification of metabelian p -groups.
(Russian) Matrix problems (Russian), pp. 150-161. Akad. Nauk
Ukrain. SSR Inst. Mat., Kiev, 1977.

Visneveckii, A. L., Groups class 2 and exponent p with
commutator group Z2

p, Doll, Akad. Nauk Ukrain. SSR Ser, 1980,
No 9, 9-11. 1980.

Scharlau, Rudolf, Paare alternierender Formen. Math. Z. 147
(1976), no. 1, 13-19.



G̃/Z2
p = (Zs

p × Zs
p) o H, H ≤ GL(s, p)×GL(s, p), G̃ = P.H̃

Transitive subgroups H1 of GL(s, p):

SL(d , q) ≤ H1 ≤ PΓL(d , q), qd = ps

Sp(d , q)C H1, q2d

G2(q)C H1, q6

SL(2, 3)C H1, q = 52, 72, 112, 232

A6, 24

A7, 24

PSU(3, 3), 26

SL(2, 13), 33.



1. Huppert, Bertram Zweifach transitive, auflsbare
Permutationsgruppen. (German) Math. Z. 68 1957 126-150.

2. Hering, Christoph, Transitive linear groups and linear groups
which contain irreducible subgroups of prime order. Geometriae
Dedicata 2 (1974), 425-460.

3. Hering, Christoph Zweifach transitive Permutationsgruppen, in
denen 2 die maximale Anzahl von Fixpunkten von Involutionen ist.
(German) Math. Z. 104 1968 150-174.



T̃/K = Zs
p × Zs

p,

T̃ = 〈T̃w̃ , T̃ũ〉 = (K × T̃w̃ ) o T̃ũ,

K = 〈z1, z2〉 = T̃ ′ = Z (T̃ ) ∼= Z2
p,

L := T̃w̃ = 〈ai
∣∣ 1 ≤ i ≤ s〉, R := T̃ũ = 〈bi

∣∣ 1 ≤ j ≤ s〉,

[ai , bj ] = z
αij

1 z
βij
2 , αij , βij ∈ Fp,

A := (αij)s×s and B := (βij)s×s .

For any ` = Πs
i=1aαi

i ∈ L and r = Πs
i=1bβii ∈ R,

[`, r ] = zαAβ
T

1 zαBβ
T

2 ,



Theorem

We may take A = I and B = M,

Md =


0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −ad−1


d×d

M =


Md 0 0 . . . 0
0 Md 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Md


s×s

,

where d ≥ 2, d
∣∣ s and ϕ(x) = xd + ad−1xd−1 + · · ·+ a1x + a0 is

an irreducible polynomial of degree d over Fp.

X ∼= X (s, p, ϕ(x)) = Y ×f K : fα,β′ = (βαT, βMαT),



Proof

Step 1: Show that |A|, |B| 6= 0.

Consider the quotient graph induced by 〈z i
1z j

2〉 of order p, which is
a p-fold cover of Kps ,ps .

Then T̃/〈z i
1z j

2〉 is an extraspecial p-group and Z (T̃/〈z i
1z j

2〉) is of
order p.

Take i = 1 and j = 0. In T̃/〈z1〉, we have [`, r ] = z2
αBβT

If |B| = 0, them take β1 6= 0 such that BβT1 = 0, which implies
αBβT1 = 0 for any α. Therefore, for the corresponding element r1,
we have [`, r1] = 1 for any `.

Now, r1 ∈ Z (T̃/〈z1〉) \ (K/〈z1〉) and so Z (T̃/〈z1〉) is of order at
least p2, a contradiction.

Hence, |B| 6= 0. Similarly, |A| 6= 0.



Step 2: Show that A = I.

For P = (pij)s×s , Q = (qij)s×s ∈ GL(s, p), set
a′i = Πs

`=1ap`i` and b′j = Πs
`=1b

q`j
` .

[a′i , b
′
j ] = z

α′ij
1 z

β′ij
2 ,

where (α′ij)s×s = PTAQ, (β′ij)s×s = PTBQ.

Take P = (A−1)T and Q = I. Then we get (α′ij)s×s = I.
Hence, assume

[`, r ] = zαβ
T

1 zαBβ
T

2 .



Step 3: Find the conditions for the matrix B.

Recall H lifts to H̃ and G̃ = ((K × L) o R)H̃. Then for any h̃ ∈ H̃,
set

ah̃i = (Πs
j=1a

pji
j )ki1, bh̃

i = (Πs
j=1b

qji
j )ki2, z h̃

1 = za
1zb

2 , z h̃
2 = zc

1 zd
2 ,

(1)
where i = 1, 2, · · · s, ki1, ki2 ∈ K and moreover, set

P = (pij)s×s , Q = (qij)s×s ∈ GL(s, p).

Since [`, r ] = zαβ
T

1 zαBβ
T

2 , we have

[`h̃, r h̃] = zαP
TQβT

1 zαP
TBQβT

2 = zaαβT+cαBβT

1 zbαβT+dαBβT

2 ,

which forces that

PTQ = aI + cB, PTBQ = bI + dB.

Then we have

(aI + cB)Q−1BQ = (bI + dB). (2)



ε : h̃→ Q gives an homomorphism from H̃ to H := ε(H̃). Then H
acts transitively on V \{0}.

Let L = {f (B)
∣∣ f (x) ∈ Fp[x ]}, a subalgebra of HomFp(V ,V ).

Let L∗ = {f (B) ∈ L
∣∣ |f (B)| 6= 0} ⊂ L.

Then L∗ forms a group of GL(s, p) (finiteness of L) .

Since PTQ = aI + cB ∈ L∗, we have (aI + cB)−1 is contained in
L∗.

Q−1BQ = (aI + cB)−1(bI + dB) ∈ L∗.

That is, H normalizes L.



Step 4: Show L is a field.

Consider L-right module V . For any v ∈ V , vL is irreducible.

In fact, let V1 be an irreducible L-submodule of vL.
Take g ∈ H such that vg ∈ V1. Then
dim(V1) ≤ dim(vL) = dim(vLg) = dim(vgL) ≤ dim(V1L) =
dim(V1).
Hence, dim(V1) = dim(vL), that is vL = V1.

Take any ` ∈ L \ L∗. Then v` = 0 for some v ∈ V \ {0} and so
(vL)` = v`L = 0. For any w ∈ V \ vL, we have vL 6= wL If
wL = (v + w)L, then v ∈ wL forcing wL = vL, a contradiction.
Therefore, wL 6= (v + w)L, which means wL ∩ (v + w)L = {0}.
Since v` = 0, we have
w` = v`+ w` = (v + w)` ∈ wL ∩ (v + w)L = {0}. By the
arbitrary of w ∈ V \ vL and (vL)` = 0, we get u` = 0 for any
vector u ∈ V and so ` = 0.

Therefore, L is a field



Step 5: Determination of B.

Let p(x) =
∑d

i=0 aix
i be the minimal monic polynomial for B.

Since L = Fp(B) is a field, p(x) is irreducible, and
I,B,B2, · · ·Bd−1 is a base of L over Fp.

Set V =
⊕

iviL, where every viL is an irreducible L-module of
dimension d . Clearly, d

∣∣ s so that 1 ≤ i ≤ s
d .

Define B(v) = vB for any v ∈ V . Then
(e1, · · · , es)B = (e1, · · · es)BT, e1, · · · es are unit vectors.

V has a base:

v1, v1B, · · · , v1Bd−1; v2, v2B, · · · , v2Bd−1; · · · ; v s
d
, v s

d
B, · · · , v s

d
Bd−1.

Under this base, the matrix of B is exactly M. Therefore,
B ∼ BT ∼ M, and we may let B = M.



Step 6: Show X is isomorphic to X (s, p, ϕ(x)) = Y ×f K ,
fα,β′ = (βαT, βMαT).

X ∼= X1 := B(T̃ , L,R; RL), recall T̃ = (K × L) o R.

Connectedness and valency: 〈(LR)(LR)−1〉 = 〈L,R〉 = T̃ and
|RL : L| = ps

Cover: the quotient graph X 1 induced by the center K is Kps ,ps .

For any ` = aα1
1 aα2

2 · · · aαs
s ∈ L and r = bβ11 bβ22 · · · b

βs
s ∈ R,

define φ(`) = (αi ) and φ(r) = (βi ).
L is adjacent to {R`

∣∣ ` ∈ L}; Lr is adjacent to

{R`[`, r ]
∣∣ ` ∈ L} = {R`zφ(`)φ(r)

T

1 z
φ(`)Mφ(r)T

2

∣∣ ` ∈ L}.

Then X1
∼= X (s, p, ϕ(x)) by the map ψ:

ψ(Lrz i
1z j

2) = (φ(r), (i , j)), ψ(R`z i
1z j

2) = (φ(`)′, (i , j)),

where r ∈ R, ` ∈ L and z i
1z j

2 ∈ K . �



Step 7: Show that for X (s, p, ϕ(x)), its fibre-preserving
automorphism group acts 2-arc-transitively.

For Y = Kps ,ps , let T1
∼= T2

∼= Zs
p such that T1 (resp. T2)

translates the vectors in U (resp. W ) and fixes W (resp. U)
pointwise.

(i) Clearly, for the graph X (s, p, ϕ(x)), both T1 and T2 lifts.



(ii) V is a space over L = Fp(M), where M = B.

Let C be the centralizer of L∗ in GL(s, p). Then L∗ ≤ C and for
any c ∈ C, ` ∈ L and v ∈ V , we have (v`)c = (vc)`, that is c
induces a linear transformation on the L-space V . Therefore,
C ≤ GL(V , L) ∼= GL( s

d , |L|). In particular, C is transitive on V (C
contains a Single-subgroup).

For any P ∈ C, define a map ρP on V (Y ) by

αρP = αPτ and (α′)ρP = (αP)′

for any α ∈ V (s, p), where τ denotes the inverse transpose
automorphism of GL(s, p). Set

H := 〈ρP
∣∣ P ∈ C〉 ≤ Aut (Y ).

Then H ∼= C and H acts transitively on nonzero vectors on both
biparts of Y .



For any ρP ∈ H, we have

fαρP ,(β′)ρP = fαPτ ,(βP)′ = (βP(αPτ )T, βPM(αPτ )T)
= (βαT, βPMP−1αT) = (βαT, βMαT) = fα,β′ .

Thus, we get fW ρP = fW for any closed walk W in Y . By Lifting
Theorem, ρP lifts and so H lifts.



(iii) Take a matrix Q such that QMQ−1 = MT. Define
σ ∈ Aut (Y ): ασ = (αQ)′ and β′σ = βQτ

for any α, β ∈ V (s, p). Then

fασ ,(β′)σ = f(αQ)′,βQτ = −fβQτ ,(αQ)′

= −(αQ(βQτ )T, αQM(βQτ )T)
= −(αβT, αQMQ−1βT) = −(βαT, αMTβT)
= −(βαT, βMαT) = −fα,β′ .

Thus, fW σ = −fW for any closed walk W . So σ lifts.



(iv) Check:

(tα)σ1 = (tαQ)2 ∈ T2, (tβ)σ2 = (tβQτ )1 ∈ T1, (ρP)σ = ρQ−1PτQ.

Set
A := ((T1 × T2) o H)〈σ〉 ≤ Aut (Y ).

Then, A acts 2-arc-transitively on Y . By (i)-(iii), we know that A
lifts so that the fibre-preserving automorphism group of the graph
X (s, p, ϕ(x)) acts 2-arc-transitively. �



Examples 5.4: Application of permutation modules of
groups

Permutation Module:
G =trans group on Ω, V =F -space with the base Ω
G -permutation module V induced by natural action of G
X =repres, X (g) is permutation matrix, χ(g)=numbet of fixed
points of g .



Theorem: Let H = Gα. T =1-repers of H. Then TG = KG
⊗

T is
the permutation reper.

Theorem: (1) rank r(G ) = [χ, χ], where F = C
(2) G is 2-tran iff χ = 1 + φ, where φ ∈ Irr(G ).

Theorem: Let G be a primitive group of degree n and rank r on Ω,
and let π be the permutation character of G associated with its
action on Ω. Assume that π = χ0 + Σs−1

i=1 eiχi , where χ0 is the
principal character, χi is the irreducible constituent of degree fi ,
and ei is the multiplicity of χi . Then

(1) r = 1 + Σs−1
i=1 e2i and 1 + Σs−1

i=1 ei fi = n.

(2) If r ≤ 5, then π is multiplicity-free.

(3) The suborbits of G are all self-paired if and only if π is
multiplicity-free and every irreducible constituent χi is real-valued.



Permutation Modules of 2-trans groups:

1. Brain Mortimer, The modular of permu repres of the 2-tran
groups, Proc. London Math. Soc (3) 41(1980), 1-20



Examples of Permutation Modules

G/K = AGL(3, 2) ∼= Z 3
2 oGL(3, 2), where K = Z 3

2

Special case: G = Z 6
2 o PSL(2, 7)

T := PSL(2, 7) ≤ GL(6, 2) ,

Ω = PG(2, 2);

V = V (Ω): the characteristic functions χ(∆), ∆ ∈ P(Ω);

V is a 7-dimensional PSL(2, 7)-module by natural action;

V1: the subspaces of V generated by {i , j , i + j
∣∣ i , j ∈ Ω, i 6= j}

I = χ(Ω)



Y = K8, V (Y ) = V (3, 2), K = (V1/I ,+)

The cover K8 ×f K as follows: f0,j = 0 := I

fi ,j = χ{i ,j ,i+j} := χ{i ,j ,i+j} + I for all i 6= j in Ω.



Example

Y = K8,8, G ∼= AGL(3, 2), K = Z2
r . Show there exists no cover.

Proof Let K = 〈z1, z2〉 ∼= Z2
r , G ∼= AGL(3, 2) and A = G o Z2.

Write G = T o H, where T ∼= Z3
2 and H = Gu

∼= GL(3, 2) for

some u ∈ V (Y ). Let G̃ be the lift of G so that G̃/K = G .

Step 1: Show CA(T ) ∼= Z4
2.

From A/CA(T ) ≤ GL(3, 2) we know that |CA(T ) : T | = 2 and
CA(T ) is abelian, where CA(T ) is isomorphic to either Z4

2 or
Z2
2 × Z4. Suppose that CA(T ) ∼= Z2

2 × Z4. Take σ ∈ CA(T ) \ T
such that |σ| = 4. Then, 〈σ2〉 is characteristic in CA(T ) so that it
is normal in A. Thus, σ2 ∈ Z (A) ∩ T = 1, a contradiction.
Therefore, CA(T ) ∼= Z4

2 so that A = G o 〈σ〉 and Y is a Cayley
graph of the elementary abelian group Z4

2.



Step 2: Show K ≤ Z (G̃ ).

Let T̃ , τ and Ã be the respective lifts of T , σ and A so that
T̃/K = T and Ã = G̃ 〈τ〉, where τ2 ∈ K . Then G̃ = T̃ o G̃ũ for
some ũ ∈ V (X ). Since

C
G̃

(K )/K C G̃/K ∼= Z3
2 oGL(3, 2),

we get C
G̃

(K )/K ∼= 1,Z3
2 or G̃/K . Since

G̃/C
G̃

(K ) ≤ Aut (K ) ∼= GL(2, r) and since GL(2, r) contains no

nonabelian simple subgroup, we get G̃ = C
G̃

(K ), namely

K ≤ Z (G̃ ).



Step 3: Show r = 2.

Suppose that r 6= 2. Let F be a fibre and take a vertex ṽ ∈ F .
Then, G̃F = K × G̃ṽ . Since (|G̃ : G̃F |, |K |) = (8, r2) = 1 and K is
an abelian normal subgroup of G̃ , by Proposition ??, K has a
complement in G̃ , say S . Thus, G̃ = K × S , where S ∼= G . For
any GL(3, 2) ∼= L ≤ G̃ , since L ∩ S D L, we have L ∩ S = 1 or L. If
L ∩ S = 1, then L ∼= LS/S ≤ KS/S ∼= K , a contradiction. So
L ≤ S . Thus, for an edge ũw̃ ∈ E (X ), both G̃ũ and G̃w̃ are
contained in S so that 〈G̃ũ, G̃w̃ 〉 ≤ S 6= G̃ , which follows that X is
disconnected. Therefore, r = 2.



Step 4: Show T̃ ∼= Z5
2.

Suppose that T̃/K = 〈x1, x2, x3〉 ∼= Z3
2. Taking into account,

G̃ = T̃ o H̃, where H̃ := G̃ũ
∼= GL(3, 2), acting 2-transitively on

T̃/K = 〈x1, x2, x3〉 \ {1} by conjugacy. Then H̃ acts transitively on

{[t, t ′]
∣∣ t, t ′ ∈ T̃ \ K , tK 6= t ′K}.

Take h such that [x1, x2]h = [x1, x3]. Since T̃ ′ ≤ K ≤ Z (G̃ ), we get
[x1, x2] = [x1, x3]. Similarly, we have [x1, x2] = [x2, x3] = [x1, x2x3].
However, [x1, x2x3] = [x1, x2][x1, x3] = [x1, x3]2 = 1 and then
[x1, x2] = [x2, x3] = 1. Therefore, T̃ is abelian. Further, let g ∈ H̃
such that xg

1 = x1x2. Then, we have xg
1 = x1x2k for some k ∈ K ,

which deduces that x2
1 = (x2

1 )g = x2
1x2

2k2 = x2
1x2

2 so that x2
2 = 1.

With the same discussion as above, one may get x2
1 = x2

3 = 1.

Therefore, T̃ = 〈x1, x2, x3, z1, z2〉 ∼= Z5
2.



Step 5: Show T̃ 〈τ〉 ∼= Z6
2.

Recall that τ is a lift of σ ∈ CA(T ). Since T̃ 〈τ〉 acts regularly on
V (X ), we may assume that X ∼= Cay(T̃ 〈τ〉,S) for some subset S
of T̃ 〈τ〉. Write S := 〈τ`i |`i ∈ T̃ , 1 ≤ i ≤ 8〉.

As X is undirected, we have S−1 = S , that is,

(τ`i )
−1 = (τ`i )

−2τ`i ∈ S ,

where 1 ≤ i ≤ 8. Since (τ`i )
2 = 1, we get (τ`i )

−2 ∈ K . Suppose
that k = (τ`i )

−2 6= 1. Then the vertex 1 in Cay(T̃ 〈τ〉,S) is
adjacent to two different vertices (τ`i )

−1 = kτ`i and τ`i , which
are contained in the same fibre, a contradiction. So
k = (τ`i )

−2 = 1, that is

(τ`i )
2 = 1 for any 1 ≤ i ≤ 8. (3)



From 1 = (τ`i )
2 = τ−2`τi `i , we get

`τi = τ2`i for any 1 ≤ i ≤ 8, (4)

recalling τ2 ∈ K .
By Eq(4) and τ2 ∈ K , we get

[τ`i , τ`j ] = `iτ
−1`jτ

−1τ`iτ`j = `i`
τ
i `
τ
j `j = `iτ

2`iτ
2`j`j = 1, (5)

for any 1 ≤ i , j ≤ 8.
Since X is connected, we get T̃ 〈τ〉 = 〈S〉 = 〈τ`i |1 ≤ i ≤ 8〉, which
is an elementary abelian group by Eq(3) and Eq(5).



Step 6: Show the nonexistence of the covering graph.

Now, since T̃ × 〈τ〉 ∼= Z6
2, which acts regularly on X , we may

identify V (X ) with V (6, 2). Let H̃ = Ã0, where
0 ∈ V (X ) = V (6, 2). Then, H̃ acts 2-transitively on the
neighborhood S = X1(0) of 0 with cardinality 8. As X is
connected, T̃ × 〈τ〉 is generated by S . Since CA(T )C A, we know
that (T̃ × 〈τ〉)/K C Ã/K . Thus, T̃ × 〈τ〉C Ã so that

Ã = (T̃ × 〈τ〉) o H̃ ∼= Z6
2 o PSL(2, 7).



For S , let V = V (S) be the corresponding permutation H̃-module.

Also, consider T̃ × 〈τ〉 = Z6
2 as an H̃-module in the conjugacy

action.

Thus we get two H̃-modules, that is, the 8-dimensional module V
and the 6-dimensional module T̃ × 〈τ〉. Furthermore, define a map
φ : V → T̃ × 〈τ〉 by the rule∑

i∈S
kiχ{i} 7→

∑
i∈S

ki i , ki ∈ Z2.

Obviously, φ is an H̃-module epimorphism, where the kernel Kerφ
should be an H̃-module with dimension 2. Note that Kerφ
contains four elements, we know that H̃ ∼= PSL(2, 7) acts trivially
on Kerφ. Then H fixes at least three 1 dimensional subspaces.
However, it was proved that 〈1〉 is the only 1-dimensional
H̃-subspace, where 1 denotes the constant function. Therefore,
our covering graph X does not exist. �



6 Further Researches

1. Elementary covers:

G = Z k
p .T , where T may be simple group, affine group and so on,

depending on your base graph. If we want to go further in this
problem, we have to understand more from the related tools, such
as

(1). Classical group extension theory, Central extension theory, as
well as Cohomology Theory

(2). p-group theory

(3). (ordinary and modular)-representation theory, permutation
modular (in particular, that of 2-tran groups) theory

(4). Investigate new methods from different branches.



2. Covers of regular maps:

Study the covers of regular maps.

Gareth Jones Classified all elementary abelian Z k
p regular covers of

platonic maps (ordinary case, p 6= 2, 3 5). The modular case is
still in preparation.



End

Thank You Very Much !


