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1. Coverings of a graph

A Covering from a graph X to a graph Y means:

3 a surjective p: V(X) — V(Y), s. t.
if p(x) = y then p|y(y) : N(x) = N(y) is a bijection

X: covering graph: Y: base graph;
Vertex fibre: p~1(v), v € V(Y); Edge fibre: p~i(e), e € E(Y);
G : the group of fibre-preserving automorphisms of X

Covering transformation group K: the kernel of G acting on
the fibres.

X is connected =—> K acts semiregualrly on each fibre.
Regular Cover: K acts regularly on each fibre.
K<G, G/K<Aut(Y).
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Example
X is a bipartite graph with two biparts V = U U W,

U=V(n q)\{0}
W={u+a|dima)=n—1uec V\a}.

where v u+ « iffv € u+ .

Y is the nonincident graph of points and hyperplanes in projective
geometry PG(n — 1, p).

p: V,"'kV,"' 7(q_]')v_> <V>'.
uta,kuta,--,(g—Du+a— a;
Then X is a (q — 1)-fold cover of Y.
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Voltage graphs and Derived graphs

Gross and Tucker (1974).

J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley,
New York, 1987.

Voltage assignment f: graph Y, finite group K
a function f : A(Y) > K's. t. f,, = V,L,_l for each
(u,v) € A(Y).

Voltage graph: (Y, f)
Derived graph Y xr K:

vertex set V(Y) x K,
arc-set {((u,g),(v,f,ug) | (u,v) € A(Y), g € K}.
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1. p: (u, k) — u is a covering projection form Y; x K to Y,
whose covering transformation group is isomorphic to K.

2. Each regular cover can be derived by a voltage
assignment f.
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Lifting: o € Aut(Y) lifts to an automorphism @ € Aut (X) if
ap = pao.

o
<<+ X
° | | o
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General Question:

Given a graph Y, a group K and H < Aut (YY), find all the
connected regular coverings Y xr K on which H lifts.

Note : if H lifts to G, then G/K = H.
A lifting problem is essentially a group extension problem

1-K—-G—H
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Lifting Theorem

Lifting Theorem: let X = Y7 x K, a € Aut(Y). Then

« lifts if and only if: fiy =1 < fyy« = 1, for each closed walk
WinY.

A. Malni¢, Group actions, coverings and lifts of
automorphisms, Discrete Math. 182 (1998), 203-218.

A. Malnic, R. Nedela, M. Skoviera, Lifting graph
automorphisms by voltage assignments, European J. Combin.
21(2000), 927-947.
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Abelian Covers

Theorem: Let X = Y x¢ K be a connected regular cover of a
graph Y, where K is abelian, If o € Aut Y is an
automorphism one of whose liftings @ centralizes K, then
fwe = fy for any closed W of Y.

S.F. Du, J.H.Kwak and M.Y.Xu, On 2-arc-transitive covers
of complete graphs with covering transformation group Z3,
J. Combin. Theory, B 93 (2005), 73-93.
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Elementary abelian covering: K = Z].

S.F. Du, J.H. Kwak and M.Y. Xu, Linear criteria for lifting of
automorphisms in elementary abelian regular coverings,
Linear Alegebra and Its Applications, 373, 101-119(2003).

Malnic, Aleksander; Potocnik, Primoz. Invariant subspaces,
duality, and covers of the Petersen graph, European J.
Combin. 27 (2006), no. 6, 971(989)
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Abelian covers:

1. Conder, Ma, Arc-transitive abelian regular covers of the
Heawood graph. J. Algebra 387 (2013), 243-267.

2. Conder, Ma, Arc-transitive abelian regular covers of cubic
graphs. J. Algebra 387 (2013), 215-242.



2. Classifying 2-arc-transitive graphs

2-arc: (u,v,w), s. t. (u,v) and (v, w) are arcs and u # w.

2-ATG X: Aut(X) acts trans. on 2-arcs of X.

Praeger’s Reduction Theorem

C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive
permutation groups and an application to 2-arc transitive graphs,
J. London Math. Soc. (2)47(1993), 227-239.



Every finite connected 2-arc-transitive graphs is one of the
following;:

(1) Quasiprimitive Type: every non-trivial normal subgroup of
Aut X acts transitively on V/(X),
Bipartite Type: every non-trivial normal subgroup of Aut X
has at most two orbits on V/(X) and at least one of normal
subgroups of Aut X has exactly two orbits on V/(X).

(2) Covering Type: There exists a normal subgroup of Aut X
which has at least three orbits on V/(X) = regular covers of
graphs in (1).









Quasiprimitive Type

R.W.Baddeley, Two-arc transitive graphs and twisted wreath
products, J. Alg. Combin. 2 (1993), 215-237.

A.A. lvanov and C.E. Praeger, On finite affine 2-arc-transitive
graphs, Europ. J. Combin. 14 (1993), 421-444.

X.G. Fang and C.E. Praeger, On graphs admitting arc-transitive
actions of almost simple groups, J. Algebra 205 (1998), 37-52.



X.G. Fang and C.E. Praeger, Finite two-arc-transitive graphs
admitting a Suzuki simple group, Comm. Algebra 27(1999),
3727-3754.

C. H. Li, The finite vertex-primitive and vertex-biprimitive
s-transitive graphs for s > 4, Trans. Amer. Math. Soc. 353
(2001), 3511-3529.

Locally primitive graphs...and so on



Bipartite Type

A reduction theorem for this case was given by Praeger (1993).

C. E. Praeger, On a reduction theorem for finite, bipartite,
2-arc-transitive graphs, Australas J. Combin. 7 (1993), 21-36.



In the group theory sense, it induces two directions:
(1) Study Quasiprimitive or Bipartite type (2-ATG)

— to study finite simple group, almost simple group, Quasisimple
group, primitive group, Quasiprimitive and so on, and to study the
suborbit structures of the related permutation representations

(G7 GOM Ga,ﬁ)



(2) Study regular covers of Quasiprimitive or Bipartite type
(2-ATG)

— to study the group extensions of the above groups from either
'left’ or ‘bottom’, in many cases, it is related central extension
theory as well as Schur Multiplier theory, (ordinary and in most
cases, modular) representations of almost simple groups and so on.



3. 2-arc-tran covers

Our long term goal is to classify the 2-arc-transitive covers by

given base graphs (2-ATG of Quasiprimitive or Bipartite type), for
instance: K,, Knn — nKo, K ...

given covering transformation groups, for instance: Z, ablian
groups and metacyclic groups...



3.1 Classify 2-arc-transitive regular covers of complete

graphs

Problem: Classify regular covers of complete graphs having the
covering transformation group Z’; and whose fibre-preserving group
acts 2-arc -transitively.

For cyclic group and k = 2:
S.F.Du, D.Marusi¢ and A.O.Waller, On 2-arc-transitive covers of
complete graphs, J. Combin. Theory, B 74 (1998), 276-290.

For k = 3:

S.F.Du, J.H.Kwak and M.Y. Xu, On 2-arc-transitive covers of
complete graphs with covering transformation group ZS’, J.
Combin. Theory, B 93 (2005), 73-93.

For k = 4: open



3.2 Classify 2-arc-transitive circulant and dihedrant

For a Cayley graph, its automorphism group contains a
vertex-regular subgroup.

Cayley graphs of cyclic and dihedral groups are called Circulant
and Dihedrants, respectively.



2-arc tran. circulant:

B.Alspach, M.D.E.Conder, D.Marugi¢ and M.Y .Xu, A classification
of 2-arc-transitive circulants, J. Alg. Combin., 5 (1996), 83-86.

The proof is combinatorial and is independent on CFSG.
2-arc-tran dihedrant:

D. Marusi¢, On 2-arc-transitivity of Cayley graphs, J. Combin.
Theory, B 87 (2003), 162-196.

S.F. Du, A. Malni¢ and D. Marugi¢, Classification of
2-arc-transitive dihedrants, J. Combin. Theory, B, 98(6), (2008),
1349-1372



3.3. 2-Arc-Transitive Metacyclic Covers of Complete

Graphs

W. Q. Xu, S. F. Du, J. H. Kwak and M. Y. Xu, 2-Arc-Transitive
Metacyclic Covers of Complete Graphs, J. Combina Theory (B),
111 (2015), 54-74.



3.4. regular covers of K, , — nK;

1. W.Q. Xu and S.F. Du, 2-Arc-trantive cyclic covers of
Knn — nKy, J. Algebr. Comb. 39(2014), 8383-902.

2. S.F. Du and W.Q. Xu, 2-arc-trantive regular covers of
Kn,n — nK> having the covering transformation group Zf‘,, Journal
of the Australian Mathematical Society, 2016, 28 pages, accepted.



3.5. regular covers of K, ,

1. S.F. Du and W.Q. Xu, 2-Arc-trantive cyclic covers of K, ,
submitted.

2. S.F. Du, W.Q. Xu, G.Y Yan, 2-arc-trantive regular covers of
Kn,n having the covering transformation group Z%, Combinatorics,
accepted, 2016, 21 pages.



1-arc tran. (not necessarily 2-arc tran)

1 Pan, Huang and Liu, Arc-transitive regular cyclic covers of the
complete bipartite graph K, , , J. Algebraic Combin. 42 (2015),
no. 2, 619-633.



4. Relationship between topological lifting theorem and

group extensions

Sabidussi Coset graph—one of basic tools for studying vertex
transitive graphs:

givenagroup G, H< G, a€ G,s. t. HaH = Ha lH,
(H,a) = G.

Define a graph Cos(G, H, HaH):
Vertex set {Hg | g € G}, Edge set {H, Ha}®.

Note: Every arc transitive graph can be represented by a Coset
graph.



A Coset graph gives more information of groups

A voltage graph gives more clearly adjacent relations, but the
properties of the groups are hidden

Except for very few cases, Lifting Theorem can be only used to
determine the voltage graphs for some small base graphs

For most cases, Group Extension (group theoretical method) may
be applied to determine Coset graphs.

For some cases, combining voltage graph, lifting theorem, group
extension together, we may get surprising results !!!



Routine idea from group theory (coset graphs):

Try to classify the covers of Y with given group K and with a
given symmetric property (*)

1. find all the some subgroups H < Aut (YY), insuring this (*)
2. determine the group extension 1l - K — G — H

3. determine coset graphs from G



Three possibilities in group theory:

1. There exists such classification for H and also it is feasible to
determine the extension1 - K —- G — H

2. we do have such classification for H but it is very complicated
and almost infeasible to determine the extension

3. such classification does not exist



New lIdea by joining Lifting Theorem:

Instead of using the classification of H, pick up a subgroup H; of
H, which is easy to work on (1 - K — G; — Hy — 1), where H;
does not need to insure (x)

find all Coset graphs from Gj, from which we construct voltage
graphs X (sometimes a very few graphs are obtained, also their
voltage assignment is very simple and nice)

for each X, choose a subgroup H, which insuring (*) (do not need
to a classification for all such H,), usually H, is bigger than H;.

using Lifting Theorem we show H» lifts.

Then we find all covers.



5. Examples

By exhibiting some examples, show some applications of group
theoretical tools and lifting theorem in determination of regular
covers.



5.1 Applications of Lifting Theorem

Example
Problem: 'Y =Ks, V =1{0,1,2,3,4}

K = (V(3,p),+) find all covers s. t. the fibre preserving group
acts 2-arc-tran.

Answer:
X(p) = Ks x¢ K, either p=>5 or p=£1( mod 10) :

foj = (0,0,0) for1 <j <4, f1,=(1,0,0), f13=(0,1,0),
3 =(0,0,1), 14 = (a,b,c), 4 = (—b,—c,a) and
%,4 = (c, —a, —b), where a = 1%\/5, b= % and c = %




Proof:
1. To insure 2-arc-transitivity, As should be lifted, G/ZI:;3 = As.

2. Choose a span tree, while there are 6 cotree arcs. Assign trivial
voltages on tree arcs, a (3-dimensional) base to 3 cotree arcs (all
possibilities), while the voltages on other 3 cotree arcs are a linely
combination of the base.

3. Choose some elements of As, use Lifting Theorem to determine
all the voltages on cotree arcs.

Note: 1. All the proof just depends on Lifting Theorem, no
involving the group extensions.

2. The presentation of this voltage assignment f is not simple and
nice.



X must be isomorphic to X(p).

Proof Let X = (Ks)f x K with a voltage assignment f :

A(Ks) — K and let V(Ks) = {0,1,2,3,4}. We identify K with the
additive group of the 3-dimensional vector space V/(3, p) over
GF(p), where the identity element in K is identified with zero
vector 0. Take a basis {x,y,z} in K. Take the star Yy with the
base vertex 0 as a spanning tree of Ks. Then we may assume that
foi =0 forany i € Vi :={1,2,3,4}.

It is easy to check that for the induced subgraph Ks[V4] of V4 in
Ks, if the voltages assigned to the respective arcs in any triangle
and in any claw are linearly dependent in K = V/(3, p), then the
group generated by all voltages has order less than p3. This
contradicts the connectedness of (Ks)f x K. So we have the
following two different cases:



(1) In Ks[V1], the three voltages on the respective arcs in any

triangle are linearly dependent, but there exists a claw such that

the three voltages on the arcs in this claw are linearly independent.

Hereafter, for any three distinct vertices 7, j, k in V(Ks), we use
ntimes

(i,j, k)" to denote the walk (i,/, k,i,j, k,---i,j, k).

Without loss of generality we may assume that f; 5 = x, fi3 =y,

fia =z and 3 = ax + by. Take a closed walk

W = ((0,1,2)?,(0,1,3)%,0,3,2,0). We have

fW = af1,2 + bf173 — 1(2,3 + (a + b)fb71 + (1 — a)fb72 — (b — 1)/’{)73 =0.

Since Ag lifts, fiye = 0 for each a € Ag by Proposition ??. Since

fuas) = afia+bfio—fao+(a+b)fo1+(1—a)fos—(b—1)foo =0,

we have f, 4 = —bx — az. Since fia2)349 = 0 and fy 12 =0

respectively, we have

—ax—z+bfhs =0 and (a+b)x+(1—b)y+bhsz=0.(3.1)



Substituting the values of 3 and £, 4 in (3.1), we get the
following equation system in GF(p):

a+b>=0 1+ab=0 and a+b+ab=0.

However, it is easy to check that this equation system has no
solutions.

(2) In Ks[V1], there exists a triangle such that three voltages
assigned to its arcs are linearly independent.

Without loss generality we may assume that f; > = x, f13 =,

fr3 =1z and fi4 = ax + by + cz. Take a closed walk

W = ((0,1,2)2,(0,1,3),(0,2,3),0,4,1,0). Then

fw =afp+bhsz+chs—fas+(a+b—1)fo1+(c—a)for—(b+
c)fo3 + foa = 0. Similar to (1), since fiyas2) = 0 and fy23 = 0
respectively, we have f3 4 = cx —ay — bz and 4 = —bx — cy + az.
Since fiya2)e49 = 0 and fy 0203 = 0 respectively,



we have

—ax—z+cfia+bha =0 and (b+c)x—by+(a+b—1)z+hHs—F4 =0.

(3.2)
Substituting the values of fi 4, f>4 and f34 in (3.2), we get the
following equation system in GF(p):

—atac—b?> =0, —1+c’*+ab=0, a—b—c=0 and 2a+2b—1=0

Solving this equation system, we get
43> —2a—1=0, b:%—a and c:2a—%. However, the
first equation has a solution if and only if p =5 or p = +1(

mod 10). If p = £1( mod 10), we have two solutions;

(a,b,¢) = (M5 1=V5 V5) and (a, b, c) = (1505, 11V5 =V5)
The graph determined by the first solution for (a, b, ¢) is precisely
Xa(p). It is easy to see that the graph determined by the second
solution for (a, b, ¢) is isomorphic to X»(p) if we assume f1o =y

and fi3 =x. If p=5, we have (a,b,c) = (—-1,-1,0). O




For a graph X(p), the fibre-preserving group of automorphisms
acts 2-arc-transitively on the graph.

Proof Since A is isomorphic to either As or Ss, it suffices to show
that As lifts. Since As is generated by (13)(24) and (012), As lifts
if and only if these two generators lift.

Let W be a closed walk in Kg with fiy = 0. We may assume that
the arc (i,/) (resp. (j, 7)) appears ¢; (resp. ¢;;) times in W and
let tij = €;J — fJ";. Since f,"j = —f;",', we get t;; = —t; ;. Then

fw = 2o<icjca tijfij = 0.



Substituting the values of f;; in it, we get the following three
relations between {t;;};

tip = —atia + btr s — ctza,
13 = —bt1,4 + ctr 4 + at3 4, (3.3)
tpy3 = —Ctyq— atr4+ bt374.

Since W is a closed walk, the numbers of arcs in W coming from i
and going into i are equal for any vertex i in V(Ks). So we get

ton =tipot+tiztta=(l—a—btia+(b+c)tsa+(a—c)tsa,
thy =ti1+tz+thas=(a—c)tia+(l—a—b)trs+ (c+ b)tsa,
to3 =t31+ 132+ t34 = (b + C)tl 4+ (a — C)t24 + (1 —a-— b)t374,
tog =ta1+tap+1ta3=—t14—tra— t34.

(3.4)



Let & = (13)(24). Then

fwe = Z tij f;'aJa

0<i<j<4

=t12f34 + t13f31 + t23fa1 + t1aBp + taafsp + t3afip.
Substituting the values of f;; in it and by using (3.3), we get

fwe = (ctip — ato3 + bto 4 + t34)x
+(—at172 —t13 — btr3z + Ct2’4)y
+(—btip — ctrz — t1 4 — atr4)z
= ((bc + a®> + b)tr.4 — (c? + ab — 1)t34) X
+((a® + b+ bc)t1a+ (ac — a— b?)t34) y
+(—(1—ab—c?)tig+ (—b*+ac — a)tr4) z.

(3.5)

Since (a, b, c) = (1+T‘/§, 174‘/5, é) it is easy to check that
bc+a®+b=c?+ab—1=ac—b—b>=0. Hence fiy= =0 and

so « lifts by Lifting Theorem.



Let 5 = (012). Similarly, we may prove that fs = 0. (Here (3.3)
and (3.4) are used again and the details are omitted.) Thus we
prove that 3 also lifts by Lifting Theorem. Since the two
generators « and 3 of Asg lift, As also lifts. O



Essentially, it is group extension problem: G/Z?J = As.

Where is the group theory and representation theory ?
Hidden !l

There must be a deep relation between group theory and
topological method (Lifting Theorem), under the combinatorial
frame.



Example 5.2: Construct voltage graphs from abstract

groups

Main idea:

We may determine the group extension1 - K - G — H — 1,
depending on a lots of group theoretical tools, including central
extension theory and modular representations of groups.

Study the permutation representations of G
Find the coset graphs

Find the voltage graphs from the known coset graphs, with simple
and nice f

Use Lifting Theorem to show a subgroup (insuring your properties,
as bigger as possible) of Aut (Y) lifts.



Let Y = Ki4p where V(Y) = PG(1, p) = GF(p) U {oo} and let
K = (V(3,p),+). Find all the regular coverings X = Y x¢ K such
that PGL(2, p) < Aut(Y) = Spyq lifts.

Solution: (1) Define X(p) =: K14 x¢ Z3 as follows:
fooj = (0,1, 2)),

fii= (% a2 %) for all i # j in GF(p).

(2) X'(5) = Ke xf Z3 as follows:



Proof of Example 5.2

A/K = PGL(2,p) for p>5and n=1+p.

Take a fibre F and a vertex v € F. Then Ar = A K.

Since (|A: Af|,|K|) = (L + p,p3) = 1 and K is an abelian normal
subgroup of A, we know that K has a complement in A which is
isomorphic to PGL(2, p), that is

~ 73
A= Z3 % PGL(2, p)



Step 1: Determination of structure of the group A

Modular p- Representations of 2-dimensional linear groups:

1. Brauer and C. Nesbitt, On the modular characters of groups,
Annals of Math, 42(2), 556-590.

2.R. Burkhardt, Die Zerlegungsmartrizen de Gruppen PSL(2, pf),
J. Algebra of Algebra, 40(1976), 75-96

SL(2, p) has p irreducible modular p- Representations

PSL(2, p) has ”TH irreducible modular p- Representations with
degrees 1,3,5,--- ,p



Degree 3:
V3 = (x'y/ | i 4+ j = 2) homogeneous space over F,

g = < a1l an >

a1 ax
Define G = PSL(2, p)-module V3 extended by
g(x'y’) = (a11x + a12y)'(az1 + az2yy

Let G = PGL(2, p) Define two G-modules V3 extended by

g(x'y)) = det(g)~Y(a11x + a1ay)(a21 + any )Y
and

P —1 . .
g(x'yl) = det(g)*z ~Na11x + a12y) (a1 + anyy



Take a base in V3, we get two homomorphisms ¢ of PGL(2, p)
into GL(3, p)

2 b a? 2ab 2b2
¢;<C d>f—>(adbc)_1 ac ad+ bc 2bd
c?/2 cd d?

2 b » a? 2ab 2b2
b ( i d>}—>(adbc)p2_1 ac ad+ bc 2bd
c?/2 cd d?

Note: The first case will give the covers X(p)
the second will gives the covers X’(5).



Step 2: Determination of conjugacy class of point

stabilizers

Take a subgroup Hy = (t1) % (a1) = Zp X Zp—1 of PGL(2, p),

where
11 6 0
t1—<01> and 81—<01>

for a generator 6 of GF(p)*. Let PG(1,p) = {>0,0,1,...,p— 1}
be the projective line over GF(p), where we identify ((0,1)) and
((1,£)) with oo and ¢, respectively. Then, H; fixes oo € PG(1, p)
and t{ maps £ into ¢ + i. Furthermore, we have

H = ¢(H1) = (t) x (a), where t = ¢(t1) and a = ¢(a1), and for

any 1,
_ 1 20 27° ' 6 0 0
t'=¢(t;)=| 0 1 2i and a' =¢(a;)=|( 0 1 0
0 0 1 0 0 ¢/



Let M= K x H. Then, M has only one conjugate class of
subgroups L satisfying (a) <L~ H and LN K = 1.




Proof Note that |[M| = |K x H| = |(K x (t)) x (a)| = p*(p — 1).
Let P = K x (t). Then, P is a p-group of order p*. Since p >5
by assumption, P is a regular p-group (for the definition of regular
p-groups. Since ®(P) < K and the order of t is p, P has exponent
p. Clearly, M has only one conjugacy class of subgroups
isomorphic to (a). Assume that L is a subgroup of M such that
(a) < L=Hand LN K = 1. Then, we may assume that

L = (kt) x (a) for some k = (x,y, z) € K. Suppose that

(kt)? = (kt)'. Then, we have (kt)? = k?t® = (0x,y, 9_1z)t6_1



(kt)i — (kktflktfz o ktiiﬂ)t’.
=((xy,2)+(x,—2x+y,2x =2y +z) + - - - |
+ (%, —2(i = )x +y,2(i — 1)2%x = 2(i — 1)y + z))¢’

= (ix, (i — 1)ix + iy, EREED (i 1)y + i)t

ThuS, we get I: 9_1 and

(0x,y,07'2) = (ix, =(i—1)ix+1y, (i —1)i(2i—1)

x—(i—1)y+iz).
From these two equations, we have fx = ix = #~!x and so
62x = x. Since p > 5, we get #2 # 1, and so x =0 and y = 0 by
the second equation again. Hence, k = (0,0, z) for any

z € GF(p), that means k has p possibilities. For each k, we get an
L = (kt) x (a); in particular, L = H when z = 0. Furthermore,
these p subgroups are conjugate in M.



In fact, for any k = (0,0, z), by taking k' = (0, %,0), we have

(k)K= k(K')Ltk' = k(K')"L(K') 't

; ((0,0,2z) - (0,%,0) + (0,5, ~2))t = (0,0,0)t =t

K =Y _yr =l na" . _E E —
A = K ak = KK a—<(0, 2,0)+(0,20))a a,

which forces LK = H, completing the proof. O



Step 3: Determination of suborbits of A relative to H

Lemma

Let [A : H] be the set of right cosets of H in A. Then, in its right
multiplication action on [A : H], A has p — 1 suborbits of length p
not contained in [M : H), which correspond to the p — 1 double
cosets Hg(0,y,0)H for any y € GF(p)* and g = ¢(g1), where

[ 01
1=\ -1 0 )




Proof Suppose that the double coset D corresponds to a suborbit
of A of length p relative to H not contained in [M : H]. Since H
has only one conjugacy class of subgroups of order p — 1, a must
fix a point in this suborbit.

Noting that T is 2-transitive on [T : H], we may choose

D = HgkH such that Hgk = Hgka, in other words,

Hg = Hga='k?, which forces that Hg = Hga~! and k? = k.
Hence, we may fix g = ¢(g1). Assume k = (x,y,z). From
(0x,y,071z) = k? = k = (x,y,z), we have x = z = 0 as 0 # +1,
and so k = (0, y,0), where y # 0. Therefore, we get p — 1 choices
for k and so for D. O



Step 4: Determination of Coset graphs

Now, M = K x H = Afg for a fibre F. For any u € F, we have

M, =2 H and M, N K = 1. Since M has only one conjugacy class of
subgroups isomorphic to (a), there exists a vertex v € F such that
(a) < M,. By Lemma ??, M, is conjugate to H in M. It follows
that H fixes a vertex in F. Therefore, X is isomorphic to one of
X(A,H, D), where D = Hg(0,y,0)H is as in Lemma 0.6.
Moreover, it is easy to see that the p — 1 graphs corresponding to
the p — 1 choices for D are isomorphic to each other, by changing
the basis of V/(3,p). Now, we may choose k = (0,1, 0). Note that

0 0 2
g=9¢(g)=| 0 -10
1/2 0 0

Since (gk)?> = 1, we get D = HgkH = H(gk)™*H = D~1. So,

X(A, H,D) is an undirected graph. Clearly, A acts

2-arc-transitively on X (A, H, D), because T is 3-transitive on

V(K»).
I



Step 5: Determination of the voltage assignment

X(A,H,D) = X(p), and its group of fibre-preserving
automorphisms acts 2-arc-transitively.

Proof Considering the action of PGL(2, p) on PG(1, p), one can
easily check that for £ € GF(p)* both git{giti and g;lt:{_ﬁ1 map
oo to i — €71, respectively. Since (PGL(2, p))oso = H1, we have
that for any i € GF(p), H1g1tfg1t;{ = Higy ="' and so under the
homomorphism ¢ mentioned before Hgtgt’ = Hgt"_ﬁl. In
addition, (Hg)gt' = H.

By the arguments before the lemma, we know that in the coset
graph X(A, H, D), H is adjacent to Hgkt’ for any £ € GF(p).
Hence, for any i € GF(p), Hgt' is adjacent to

Hgktgt! = Hgt!gt'k(t'e®) for any ¢ € GF(p).



If ¢ = 0, then
Hgt'gt' kK(t'e®) = H(0,1,0)gt’ = H(0, —1, —2i).

Hence, Hgt' is adjacent to H(0, —1,—2i) for any i € GF(p), or
equivalently, H is adjacent to Hgt/(0, 1,2j) for any j € GF(p).
Assume £ € GF(p)* and let i — £~ = j. Then,

Hgt'gt'k(t'et) = Hgti=¢7"(0,1,0)t'gt’
j—p—1 . ) N . 1 it 2if
Hgt'=* " (¢,2i¢ — 1,2i°¢ — 2i) = Hgt/ (;,%,%
Hence, Hgt' is adjacent to Hgt/ (i 5%} 24) for any

i #j € GF(p).

Considering the action of PGL(2, p) on PG(1, p), we may define a
bijection from [PGL(2, p) : Hi] to PG(1, p) by sending H; to oo
and Higit' to i. Accordingly, we may define a bijection from

[T : H] to PG(1, p) by sending H to oo and Hgt' to i.



Finally, we may define a map o from V(X(A, H, D)) to

V(X(p)) = PG(1,p) x K by sending Hk to (oo, k) and Hgt'k to
(i, k). In viewing the above arguments and the definition of X(p),
we find that o is an isomorphism from X (A, H, D) to X(p).
Moreover, since A acts 2-arc-transitively on X(A, H, D), it follows
that for the graph X(p), its group of fibre-preserving
automorphisms acts 2-arc-transitively. O



Step 6: Generalize to X(p) to X(g), using Lifting Theorem

For each cover in X(q), the group of fibre-preserving
automorphisms acts 2-arc-transitively.

Proof Recall that V(Kiiq) is identified with the projective line
PG(1,q) = GF(q) U{oo}. We will adopt the usual computations
between oo and the elements in GF(q), that is, oo + i = oo for

i € GF(q); coi = oo for i € GF(q)*; and 2 = 1. Let K be the
corresponding additive group of V/(3,q). Then, X(q) = Ki4+q xr K

s defined by fij = (4, 74, 2) forall i # j in PG(1,q).
To prove the lemma, it suffices to show that PGL(2, q) lifts. For a
computation, we identify the element co and any i € GF(q) in
PG(1,q) with ((1,0)) and {(/,1)) respectively. For a matrix g in
GL(2, g), we denote by g the image of g in PGL(2, p*) under the
natural homomorphism.



Then, the action of g € PGL(2, p*) on oo and any i € PG(1, p’)
can be written respectively as follows:

oof = (g(1,0)) and & := (g(i,1)).

Let

[x 0 (10 /(10 (x0
81 = 0 X1 y 82 = 0 1 , 83 = 1 1 , 84 = 0 1

where x is a primitive element in GF(q). Then, all of these
elements generate PGL(2, g). In addition, it is easy to check that

= . = . = i = .
Bl=ix?, B=i41 B=_— 8=
i+1

)

where i € PG(1, q). In what follows, we show that for 1 < k < 4,
gk lifts.

Let W be a closed walk in Y with fi,, = 0, and for any arc

(i,j) € A(Y), let £; ; has the same notation as above.



Now, we get

1 i+j 2if

fw = Z liifij= Z gi,j([-_jal-_jvl-_j):o'
(ij)eA(Y) (iJ)EA(Y)
Therefore, we have
f,',j (I'-f-j)f,"j _ 2ij€,‘d
Z ,'_J'ZO’ Z ﬁ_o’ Z i—j
(iJ)EA(Y) (iJ)EA(Y) (iJ)EA(Y)

Also, we have



Now, we get

(]

fwa = lij fiﬁ,ja

(i

—

€A(Y)

|
(]

gl’,jf;'x2,ix2
(iJ)EA(Y)

= > ! ( 1 X2+ jx% 2ix2jx? >
= i\ 52 _ 2" 72 20 12 2
IXs — IX IXs — IX IXs — |X
(1/)EA(Y) J s J

A

_ Ui (i+j) 2ijl; ;
_ 2 ) 2J 2 J
- X Z i— ) Z i—j " Z i—j

(i) EA(Y) (i/)EA(Y) (i) EA(Y) ,
— 0.

Similarly, we get that f,z = 0, for k = 2,3 and 4. Then gy lifts,
and so PGL(2, q) lifts. O



Example 5.3: Jump obstacles of group theories

Main ldea:

When meeting some difficulties from usual group theoretical
analysis, we try to start from a small subgroup of Aut(Y), to find
nice voltage assignments f, so that Lifting Theorem can be
possibly and easily used to show our desired groups (insuring our
symmetrical properties) lift.



Question: Y = K, ,, K = Z2, find the covers X = Y¢ x K such
that the fibre-preserving subgroup acts 2-arc-transitively

V(Y)=UUV

Aut(Y) = (Sp x Sp) X Zs.
A : a 2-arc-transitive subgroup, G < A: fixing two biparts
A/K~A G/K~G

G, acts 2-tran. on W = G is a 2-transitive group of X on W
and so on U.



Here consider a special case:
GY is an affine group: GV < AGL(s, p) = Zz x GL(s, p)
Y = Kps ps, s > 2, K:Zf,, V=UuW

U={a|aeV(sp)} W={a|aeV(sp)}
Ty Tw 275
?U/K: Tu, T_W/K: Tw, ?/K:(TU X Tw)/K

G=(Tyx Tw) x H, H<GL(s, p) x GL(s, p)

A = G(0), o exchanges two biparts of K, ,.



Group problem:

G/Z2 = (Z5 x Z3) x H, H < GL(s, p) x GL(s, p),
where H is tran on V(s, p) \ {0}.

Usual Way:

; o 2 _ .
1. Determine p-subgroups P of G such that P/Zp =Ly X Ly,

2. Determine G = P.H, where H/K = H.



2 _
P/Z; = 73 X 73,
c=2 exp(P)=p, Z(P)= P =173.
About meta-abelian p-groups,

1. P! =7, extra-special p-group

2. P'=17F,

Sergeicuk, V. V. The classification of metabelian p -groups.
(Russian) Matrix problems (Russian), pp. 150-161. Akad. Nauk
Ukrain. SSR Inst. Mat., Kiev, 1977.

Visneveckii, A. L., Groups class 2 and exponent p with
commutator group 72, Doll, Akad. Nauk Ukrain. SSR Ser, 1980,
No 9, 9-11. 1980.

Scharlau, Rudolf, Paare alternierender Formen. Math. Z. 147
(1976), no. 1, 13-19.



G/Z2 = (Z5 x L3) x H, H < GL(s, p) x GL(s,p), G = P.H
Transitive subgroups H; of GL(S, p):
SL(d,q) < Hy < PT'L(d,q), q° = p°

(
(d,
G2(q )<H1 q
SL(2,3) <t Hy, g = 52,7%,112,232

PSU(3,3), 2°
SL(2,13), 3.



1. Huppert, Bertram Zweifach transitive, auflsbare
Permutationsgruppen. (German) Math. Z. 68 1957 126-150.

2. Hering, Christoph, Transitive linear groups and linear groups
which contain irreducible subgroups of prime order. Geometriae
Dedicata 2 (1974), 425-460.

3. Hering, Christoph Zweifach transitive Permutationsgruppen, in
denen 2 die maximale Anzahl von Fixpunkten von Involutionen ist.
(German) Math. Z. 104 1968 150-174.



T/K:ZZXZZ,

T =(Ta Tz) = (K x Ta) x Tz,
K=(n2)=T=2(T)=1,

Li=Ty=(a|1<i<s), Ri=Ty=(b|1<j<s),

[al'7b_l']:Z]_'J22U7 au,ﬁUE]Fp7

A= (aij)SXS and B := (Bij)sxs-
Forany £ =M% _;a" € Land r = ”le}g" €R,

[0, 1] = 20A97 70B8",



We may take A =1 and B = M,

0 00 ... 0 —a

100 ... 0 —a
Mg=|0 1 0 0 —a

0 0O 1 —dd—1 d5d)

Mq O O 0

M — 0 Mg O 0 ’

0 0 0 ... Mg/,
whered > 2, d | s and p(x) = x9 + ag_1x9 1 + -+ a1x + a is
an irreducible polynomial of degree d over .
X = X(s,p,0(x)) =Y x¢ K: fop = (BaT, fMaT”),




Step 1: Show that |A|,|B| # 0.

Consider the quotient graph induced by (zjz}) of order p, which is
a p-fold cover of Kps ps.

Then ?/(z{zﬁ) is an extraspecial p-group and Z(?’/(ziz@) is of
order p.

Take i=1and j =0. In T/{z), we have [(,7] = z,°B"

If |B] = 0, them take 31 # 0 such that BS{ = 0, which implies
aBﬁlT = 9 for any a.. Therefore, for the corresponding element ry,
we have [¢,71] =1 for any /.

Now, 71 € Z(T/{z1)) \ (K/{(z1)) and so Z(T/{z1)) is of order at
least p?, a contradiction.

Hence,

B| # 0. Similarly, |A| # 0.



Step 2: Show that A =L

For P = (Pu)s><57 Q= (C/ij)sxs S GL(S,[)), set
a,=M;_,a ;’@' and  b; =M5_; b;".

l ﬁl/
[al7 _]] =4 221’
where ( J)s><s = PTAQa (ﬁ,lj)sxs = PTBQ
Take P = (A~1)T and Q = L. Then we get (/} i)sxs =L
Hence, assume

[0, r] = zf"Bng‘B’BT.



Step 3: Find the conditions for the matrix B.

Recall H lifts to H and G = ((K x L) x R)H. Then for any h € H,

set
af = (M_ya kit b = ( 5 1b7" ki, =z, 2=z,
where i = 1,2,---s, ki1, ki € K and moreover, set g
P = (pfj)sxs, Q = (qj)sxs € GL(s, p).
Since [, r] = 2” ;BB we have
[Eh’ rﬁ] _ aPTQ,BT aPTBQBT 1aaBT+caBﬁT22baﬁT +daB,8T’
which forces that
PTQ=al+cB, PTBQ = bhl+ dB.
Then we have
(al + cB)Q'BQ = (bI + dB). (2)



e h— Q gives an homomorphism from Hto H = 5(ﬁl) Then H
acts transitively on V\{0}.

Let L = {f(B) | f(x) € Fp[x]}, a subalgebra of Homg, (V, V).
Let L* = {f(B) € L | |f(B)| #0} C L.
Then L* forms a group of GL(s, p) (finiteness of L) .
Since PTQ = al + ¢B € L*, we have (al + ¢B)~! is contained in
L*.

Q 'BQ = (al + cB) (bl + dB) € L*.

That is, H normalizes L.



Step 4: Show L is a field.
Consider L-right module V. For any v € V/, vL is irreducible.

In fact, let V4 be an irreducible L-submodule of vL.

Take g € H such that vg € V4. Then

dim(V1) < dim(vL) = dim(vLg) = dim(vgl) < dim(V1L) =
dim(Vl).

Hence, dim(V;) = dim(vL), that is vL = V;.

Take any £ € L\ L*. Then v{ =0 for some v € V' \ {0} and so
(vL) = veL = 0. For any w € V' \ vL, we have vL # wl If

wl = (v + w)L, then v € wL forcing wlL = vL, a contradiction.
Therefore, wl # (v + w)L, which means wL N (v + w)L = {0}.
Since v/ = 0, we have
wl=vl+wl=(v+w)lewlLn(v+w)L={0}. Bythe
arbitrary of w € V' \ vL and (vL){ =0, we get uf = 0 for any
vector u € V and so £ = 0.

Therefore, L is a field
I



Step 5: Determination of B.

Let p(x) = Z:d:o a;x" be the minimal monic polynomial for B.
Since L = F,(B) is a field, p(x) is irreducible, and
I,B,B2,---B9 1 is a base of L over Fp.

Set V = @, viL, where every v;L is an irreducible L-module of
dimension d. Clearly, d | ssothat 1 <7< 3.

Define B(v) = vB for any v € V. Then
(e1, -+ ,es)B = (er, -~ e)BT, e, - - e are unit vectors.

V has a base:
Vi, V1B7 T Vleil; V2, V2B7 Ty VZBdil; Ty V%? V§B7 Ty V§Bd71'
Under this base, the matrix of B is exactly M. Therefore,

B ~ BT ~ M, and we may let B =M.



Step 6: Show X is isomorphic to X(s, p,o(x)) = Y x¢ K,
aﬁ’ (504 ,5MCK )

X=X, :=B(T,L R;RL), recall T = (K x L) x R.

Connectedness and valency: ((LR)(LR)™!) = (L,R) = T and
|RL: L| =p°

Cover: the quotient graph X1 induced by the center K is Kps ps.

For any £ = aa32---a% € L and r = b by .- b2* € R,

define ¢(£) = (o) and ¢(r) = ().
L is adjacent to {R/ ‘ ¢ e L}; Lris adjacent to

{RUL, 1] | £ € L} = {Rezf O Z00MT | ey
Then X1 = X(s, p, ¢(x)) by the map :
W(Lrzfz)) = (8(r) (i), w(Rl{Z) = (s(0),(i.f)).

WhererER,EeLandz{zéEK. O
I



Step 7: Show that for X(s, p, p(x)), its fibre-preserving
automorphism group acts 2-arc-transitively.

For Y = Kps ps, let T1 = Tp = Zj such that Ty (resp. T)
translates the vectors in U (resp. W) and fixes W (resp. U)
pointwise.

(i) Clearly, for the graph X(s, p, ¢(x)), both T and T lifts.



(i) V is a space over L = F,(M), where M = B.

Let C be the centralizer of L* in GL(s, p). Then L* < C and for
any ce€C, ¢ e Land v eV, we have (vl)c = (vc)l, thatis ¢
induces a linear transformation on the L-space V. Therefore,

C < GL(V,L) = GL(3,|L]). In particular, C is transitive on V (C
contains a Single-subgroup).

For any P € C, define a map pp on V(Y) by
a’? =aP” and ()" = (aP)

for any a € V/(s, p), where 7 denotes the inverse transpose
automorphism of GL(s, p). Set

H:= (pp | P € C) < Aut(Y).

Then H =2 C and H acts transitively on nonzero vectors on both
biparts of Y.



For any pp € H, we have

fore (gryop = fapr (gpy = (BP(aP)T, BPM(aP7)T
= (Ba™,BPMPtaT) = (Ba®, pMaT) = £, 4.

Thus, we get fyyep = fyy for any closed walk W in Y. By Lifting
Theorem, pp lifts and so H lifts.



(iii) Take a matrix Q such that QMQ~! = M™. Define
o€ Aut(Y): o’ = (aQ) and 7 = BQT
for any a, 8 € V(s,p). Then

far 3y = flaqy,par = _fﬁQT (aQ
= —(aQ(BQN)T OéQM(/BQT)T)
= —(OéﬁT,OéQMQ IBT) (BaTaaMTBT)
= _(BaTa/BMO‘T) = —lap-

Thus, fywe = —fy for any closed walk W. So o lifts.



(iv) Check:
(ta)] = (ta@)2 € T2, (tg)3 = (tsqr)1 € T1, (pp)” = pg-1prq-

Set
A:=((T1 x Ta) x H){o) < Aut(Y).

Then, A acts 2-arc-transitively on Y. By (i)-(iii), we know that A
lifts so that the fibre-preserving automorphism group of the graph
X(s, p, p(x)) acts 2-arc-transitively. O



Examples 5.4: Application of permutation modules of

groups

Permutation Module:

G=trans group on 2, V=F-space with the base 2
G-permutation module V induced by natural action of G
X=repres, X(g) is permutation matrix, x(g)=numbet of fixed
points of g.



Theorem: Let H = G,. T=I1-repers of H. Then T¢ = KGR T is
the permutation reper.

Theorem: (1) rank r(G) =[x, x], where F = C
(2) G is 2-tran iff x = 1+ ¢, where ¢ € Irr(G).

Theorem: Let G be a primitive group of degree n and rank r on Q,
and let 7w be the permutation character of G associated with its
action on Q. Assume that m = xo + Z, 1 €Xi, where xq is the
principal character, x; is the irreducible constituent of degree f;,
and e; is the multiplicity of x;. Then

(1) r=1+X"}e?and 1+ T [efi = n.

(2) If r <5, then 7 is multiplicity-free.

(3) The suborbits of G are all self-paired if and only if 7 is
multiplicity-free and every irreducible constituent ; is real-valued.



Permutation Modules of 2-trans groups:

1. Brain Mortimer, The modular of permu repres of the 2-tran
groups, Proc. London Math. Soc (3) 41(1980), 1-20



Examples of Permutation Modules

G/K = AGL(3,2) = Z3 x GL(3,2), where K = Z}

Special case: G = Z§ x PSL(2,7)

T := PSL(2,7) < GL(6,2) ,

Q = PG(2,2);

V = V(Q): the characteristic functions x(A), A € P(Q);

V is a 7-dimensional PSL(2, 7)-module by natural action;

Vi: the subspaces of V generated by {/,j, i+ j | i,jeQi#j}

I =x(Q)



Y = Ks, V(Y) = V(372)1 K= (Vl/la+)
The cover Kg x¢ K as follows: fyj =0:=1/

fij = X{ij,i+jy = X{ij.i+jy T 1 forall i # jin Q.



Y = Kgg, G = AGL(3,2), K = Z2. Show there exists no cover.

Proof Let K = (z1,2) =272, G =2 AGL(3,2) and A= G x Z,.
Write G = T x H, where T 22 Z3 and H = G, = GL(3,2) for
some u € V(Y). Let G be the lift of G so that G/K = G.

Step 1: Show Ca(T) = Z4.

From A/Ca(T) < GL(3,2) we know that [Ca(T): T| =2 and
Ca(T) is abelian, where Ca(T) is isomorphic to either Z3 or

73 x Z4. Suppose that Ca(T) 2 73 x Z4. Take 0 € Ca(T)\ T
such that |o| = 4. Then, (0?) is characteristic in C4(T) so that it
is normal in A. Thus, 02 € Z(A)N T = 1, a contradiction.
Therefore, Co(T) = Z3 so that A= G x (o) and Y is a Cayley
graph of the elementary abelian group Z3.



Step 2: Show K < Z(G).

Let T, 7 and A  be the respective lifts of T, o and A so that
T/K =T and A= G(r), where 72 € K. Then G = T x G for
some u € V/(X). Since

Cz(K)/K <1 G/K = Z3 x GL(3,2),

we get Cz(K)/K = 1,Z3 or G/K. Since

G/Cz(K) < Aut(K) = GL(2,r) and since GL(2, r) contains no
nonabelian simple subgroup, we get G = Cz(K), namely

K < Z(G).



Step 3: Show r = 2.

Suppose that r # 2. Let F be a fibre and take a vertex v € F.
Then, Gr = K x Gy. Since (\G Gel,|K|)=(8,r?)=1and K is
an abelian normal subgroup of G, by Proposition ??, K has a
complement in G, say S. Thus, G =K x S, where S = G. For
any GL(3,2) @ L < G,since LNS> L, wehave LNS=1or L. If
LNS=1,then L= LS/S < KS/S = K, a contradiction. So

L <S. Thus, for an edge uw € E(X), both G and Gy are
contained in S so that (Gg, G;) < S # G, which follows that X is
disconnected. Therefore, r = 2.



Step 4: Show T = 73.

Suppose that T/K = (X1,X2,X3) = Z3. Taking into account,
G =T x H, where H := G; = GL(3,2), acting 2-transitively on
T/K = (x1,%2,x3) \ {1} by conjugacy. Then H acts transitively on

{[t,t]|t,t' € T\ K, tK # t'K}.

Take h such that [x1, x]" = [x1, x3]. Since T' < K < Z(G), we get
[x1,x2] = [x1, x3]. Similarly, we have [x1, x2] = [x2, x3] = [x1, x2x3].
However, [xi, xox3] = [x1, x2][x1, x3] = [x1,x3]> = 1 and then
[x1,x2] = [X2,X3] — 1. Therefore, T is abelian. Further, let g € H
such that x = X1X2. Then, we have x1 x1xok for some k € K,
which deduces that x2 = (x2)& = x2x3k? = x2x3 so that x5 = 1.
With the same discussion as above, one may get x? = x2 = 1.
Therefore, T = (x1,x2,X3,21,22) = 73.



Step 5: Show T(r) = 75.

Recall that 7 is a lift of 0 € Ca(T). Since T(7) acts regularly on
V(X), we may assume that X = Cay(T(7),S) for some subset S
of T(r). Write S := (74;|¢; € T,1 <i<8).

As X is undirected, we have S~ = S, that is,
(r6;) "t = (rt;)?7t; € S,

where 1 </ < 8. Since (74;)? =1, we get (7¢;)~% € K. Suppose
that k = (7¢;)72 # 1. Then the vertex 1 in Cay(T(7),S) is
adjacent to two different vertices (7¢;)~! = k7¢; and 7¢;, which
are contained in the same fibre, a contradiction. So

k= (14;)7% =1, that is

(r¢;)>=1 forany 1<i<8. (3)



From 1 = (7¢;)? = 772(7¢;, we get

(T =720 forany 1<i<8, (4)

1

recalling 72 € K.
By Eq(4) and 72 € K, we get

[rei,76] = G rlimly = G070 G = G000 =1, (5)
forany 1 <j,j <8.

Since X is connected, we get T(7) = (S) = (14;|1 < i < 8), which
is an elementary abelian group by Eq(3) and Eq(5).



Step 6: Show the nonexistence of the covering graph.

Now, since T x (1) 22 7§, which acts regularly on X, we may
identify V(X) with V(6,2). Let H = Ao, where

0 € V(X) = V(6,2). Then, H acts 2-transitively on the
neighborhood § = X1(0) of 0 with cardinality 8. As X is
connected, T x (7) is generated by S. Since Ca(T) <t A, we know
that (T x (7))/K <<A/K. Thus, T x (r) < A so that

A= (T x (1)) x H=78§ x PSL(2,7).



For S, let V = V(S) be the corresponding permutation H-module.

Also, consider T x (1) = 7§ as an H-module in the conjugacy
action.

Thus we get two ltl—modules, thj)t is, the 8-dimensional module V
and the 6-dimensional module T x (7). Furthermore, define a map
¢:V — T x (1) by the rule

Z k,'X{,'} — Z kii, ki € Z».

ieS i€S

Obviously, ¢ is an H-module epimorphism, where the kernel Ker¢
should be an H-module with dimension 2. Note that Ker¢
contains four elements, we know that H = PSL(2,7) acts trivially
on Ker¢. Then H fixes at least three 1 dimensional subspaces.
However, it was proved that (1) is the only 1-dimensional
Itl—subspace, where 1 denotes the constant function. Therefore,
our covering graph X does not exist. O



6 Further Researches

1. Elementary covers:

G = Z,f.T, where T may be simple group, affine group and so on,
depending on your base graph. If we want to go further in this
problem, we have to understand more from the related tools, such
as

(1). Classical group extension theory, Central extension theory, as
well as Cohomology Theory

(2). p-group theory

(3). (ordinary and modular)-representation theory, permutation
modular (in particular, that of 2-tran groups) theory

(4). Investigate new methods from different branches.



2. Covers of regular maps:
Study the covers of regular maps.

Gareth Jones Classified all elementary abelian Z[’,‘ regular covers of
platonic maps (ordinary case, p # 2,3 5). The modular case is
still in preparation.



End

Thank You Very Much !



