HAMILTON CYCLES IN MAPS

Roman Nedela

Pilsen, Czech republic

joint work with Michal Kotrbčík & Martin Škoviera

Conference G2S2

Novosibirsk, August 2016

Motivation: Graph symmetry and hamiltonicity

General problem.

Which combinatorial properties of graphs are implied by graph symmetry?

Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e., a simple path going through all vertices?

Motivation: Graph symmetry and hamiltonicity

General problem.

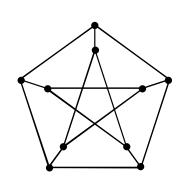
Which combinatorial properties of graphs are implied by graph symmetry?

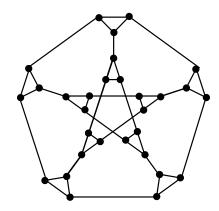
Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e., a simple path going through all vertices?

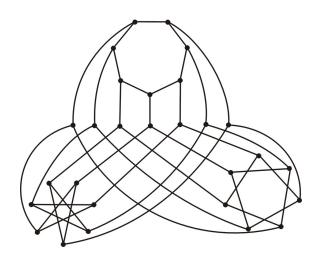
Only five connected vertex-transitive graphs with no Hamilton cycle are known (but they do have a Hamilton path), namely, K_2 , Petersen graph, Coxeter graph, the truncations of the Petersen and Coxeter graphs

Non-hamiltonian cubic vertex-transitive graphs





Non-hamiltonian cubic vertex-transitive graphs



Hamilton cycles in Cayley graphs

All known non-hamiltonian vertex-transitive graphs are cubic, and none of them is a Cayley graph. There are different opinions about the hamiltonicity of vertex-transitive graphs!

(Thomassen, 1978,1991)

All but finitely many vertex-transitive graphs are hamiltonian.

Hamilton cycles in Cayley graphs

All known non-hamiltonian vertex-transitive graphs are cubic, and none of them is a Cayley graph. There are different opinions about the hamiltonicity of vertex-transitive graphs!

(Thomassen, 1978,1991)

All but finitely many vertex-transitive graphs are hamiltonian.

Counter-conjecture (Babai, 1995)

For some c > 0, there are infinitely many vertex-transitive graphs G, even Cayley graphs, without cycles of length > (1 - c)|G|.

Hamilton cycles in Cayley graphs

All known non-hamiltonian vertex-transitive graphs are cubic, and none of them is a Cayley graph. There are different opinions about the hamiltonicity of vertex-transitive graphs!

(Thomassen, 1978,1991)

All but finitely many vertex-transitive graphs are hamiltonian.

Counter-conjecture (Babai, 1995)

For some c > 0, there are infinitely many vertex-transitive graphs G, even Cayley graphs, without cycles of length > (1 - c)|G|.

Conjecture (Folklore)

Every Cayley graph (of order \geq 3) has a Hamilton cycle.

Hamilton cycles in Cayley graphs: current status

Hamilton cycles or paths exist, if strong restrictions on the structure of the base groups are introduced, for instance: in the following types of vertex-transitive graphs:

- Graphs of specific order: p, 2p, 3p, 4p, 5p, 6p, $2p^2$, ... (where p a prime)
- Cayley graphs of *p*-groups
- Cayley graphs of groups with a cyclic commutator subgroup of order p^k .

Hamilton cycles in Cayley graphs: current status

Hamilton cycles or paths exist, if strong restrictions on the structure of the base groups are introduced, for instance: in the following types of vertex-transitive graphs:

- Graphs of specific order: p, 2p, 3p, 4p, 5p, 6p, $2p^2$, ... (where p a prime)
- Cayley graphs of *p*-groups
- Cayley graphs of groups with a cyclic commutator subgroup of order p^k .

Until 2009, very little was known about Hamilton cycles or paths in cubic vertex-transitive graphs including Cayley cubic graphs.

Hamiltonicity of cubic graphs in general?

- To decide whether a cubic graph is hamiltonian is an NP-complete problem even if we are restricted to planar cubic graphs,
- Hamiltonicity implies 3-edge colourability, there infinitely many non-3-edge-colourable cubic graphs, called snarks. These are by the four colour theorem non-planar.
- All known cubic non-hamiltonian graphs have cyclic-connectivity at most 7. Only one cyclically 7-connected example is known.
- Thomassen's conjecture: Cubic graphs with sufficiently large cyclic connectivity (≥ 8) are hamiltonian!

Hamiltonicity of cubic graphs in general?

- To decide whether a cubic graph is hamiltonian is an NP-complete problem even if we are restricted to planar cubic graphs,
- Hamiltonicity implies 3-edge colourability, there infinitely many non-3-edge-colourable cubic graphs, called snarks. These are by the four colour theorem non-planar.
- All known cubic non-hamiltonian graphs have cyclic-connectivity at most 7. Only one cyclically 7-connected example is known.
- Thomassen's conjecture: Cubic graphs with sufficiently large cyclic connectivity (≥ 8) are hamiltonian!
- Known technique: lifting Hamilton cycle along a graph covering.
- In what follows we analyse a new technique to prove hamiltonicity introduced in 2009 by Glover and Marušič.

Cubic Cayley graphs

There are of two types: if X = Cay(G; S), then either

- $S = \{x, y, z\}$, where $x^2 = y^2 = z^2 = 1$ are involutions, or
- ② $S = \{x, y\}$, where $x^2 = 1$ and |x| > 2.

Theorem by Glover & Marušič

Let $H = \langle r, l \rangle$ be a (2, 3, s)-presented finite group; i.e., $r^s = l^2 = (rl)^3 = 1$.

Then H is a finite quotient of the modular group $PSL(2,\mathbb{Z})$.

Theorem (Glover & Marušič, 2009)

Let $K = \operatorname{Cay}(H; r, r^{-1}, I)$ be a cubic Cayley graph, where $H = \langle r, I \mid r^s = I^2 = (rI)^3 = 1, \dots \rangle$ is a finite quotient of the modular group $PSL(2, \mathbb{Z})$. Then K has a Hamilton path. Moreover,

- if $|H| \equiv 2 \pmod{4}$, then K has a Hamilton cycle
- if $|H| \equiv 0 \pmod{4}$, then K has a cycle through all but two adjacent vertices.

Sample of new results: Cayley graphs

Theorem (I.)

Let $G = \langle x, y | y^2 = (xy)^3 = 1, ... \rangle$. Then $Cay(G; x, x^{-1}, y)$ admits a bounding H.C. with respect to standard embedding if and only if $|G| \equiv 2 \mod 4$, or $|x| \equiv 0, 1, 3 \mod 4$.

Sample of new results: Cayley graphs

Theorem (I.)

Let $G = \langle x, y | y^2 = (xy)^3 = 1, ... \rangle$. Then $Cay(G; x, x^{-1}, y)$ admits a bounding H.C. with respect to standard embedding if and only if $|G| \equiv 2 \mod 4$, or $|x| \equiv 0, 1, 3 \mod 4$.

The implication \Rightarrow was proved in years 2009-2012 by Glover, Marušič, Kutnar, Malnič in series of paper.

Sample of new results: Cayley graphs

Theorem (I.)

Let $G = \langle x, y | y^2 = (xy)^3 = 1, ... \rangle$. Then $Cay(G; x, x^{-1}, y)$ admits a bounding H.C. with respect to standard embedding if and only if $|G| \equiv 2 \mod 4$, or $|x| \equiv 0, 1, 3 \mod 4$.

The implication \Rightarrow was proved in years 2009-2012 by Glover, Marušič, Kutnar, Malnič in series of paper.

Theorem (II.)

Let $G = \langle x, y, z | x^2 = y^2 = z^2 = (xy)^3 = (yz)^3 = 1, \dots \rangle$. Then Cay(G; x, y, z) admits a contractible H.C. with respect to standard embedding if $|G| \equiv 2 \mod 4$, and a contractible cycle missing two adjacent vertices otherwise.

Coxeter maps $\{3,6\}_{b,c}$, regular 6-valent triangulations,

Coxeter maps $\{3,6\}_{b,c}$, regular 6-valent triangulations,

Associated group of orientation presererving automorphisms

$$\langle x, y | y^2 = x^6 = (xy)^3 = 1, \dots \rangle$$

satisfies the conditions of Theorem I.

Coxeter maps $\{3,6\}_{b,c}$, regular 6-valent triangulations,

Associated group of orientation presererving automorphisms

$$\langle x, y | y^2 = x^6 = (xy)^3 = 1, \dots \rangle$$

satisfies the conditions of Theorem I.

 $|G| = 6(b^2 + bc + c^2)$ thus $|G| \equiv 0 \mod 4$ iff both b and c are even, $|x| = 6 \equiv 2 \mod 4$ implies, No bounding H.C.!

Coxeter maps $\{3,6\}_{b,c}$, regular 6-valent triangulations,

Associated group of orientation presererving automorphisms

$$\langle x, y | y^2 = x^6 = (xy)^3 = 1, \dots \rangle$$

satisfies the conditions of Theorem I.

$$|G| = 6(b^2 + bc + c^2)$$
 thus $|G| \equiv 0 \mod 4$ iff both b and c are even, $|x| = 6 \equiv 2 \mod 4$ implies, No bounding H.C.!

Altshuler: All Coxeter maps are hamiltonian, thus in case b and c is even, all H.C. must be unbounding!

Sample of new results: Non-Cayley graphs

Theorem (A)

A truncation of a triangulation with degrees bounded by 7 are hamiltonian. In particular, Leapfrog fullerines are hamiltonian.

Sample of new results: Non-Cayley graphs

Theorem (A)

A truncation of a triangulation with degrees bounded by 7 are hamiltonian. In particular, Leapfrog fullerines are hamiltonian.

The statement on fullerines was proved by Marušič.

Theorem (B)

Truncated triangulations without separating triangles admit hamilton paths.

Sample of new results: Non-Cayley graphs

Theorem (A)

A truncation of a triangulation with degrees bounded by 7 are hamiltonian. In particular, Leapfrog fullerines are hamiltonian.

The statement on fullerines was proved by Marušič.

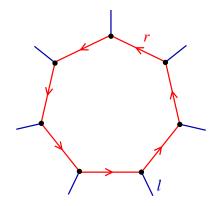
Theorem (B)

Truncated triangulations without separating triangles admit hamilton paths.

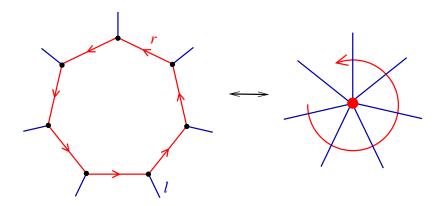
Theorem (C)

(Dipendu Maity) Triangulations with constant degree of vertices are hamiltonian.

Method: Standard embedding of a cubic Cayley graph



Method: Standard embedding of a cubic Cayley graph



Method: How to find a hamilton cycle?

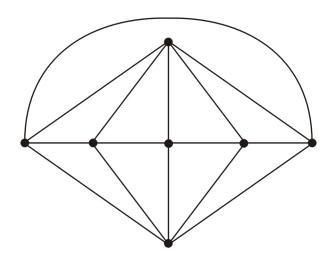
1 Embed your graph into a surface S such that boundaries of faces are simple cycles, in case of Cayley cubic graphs use the standard embedding,

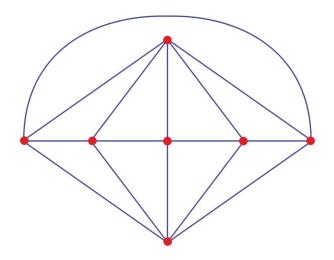
Method: How to find a hamilton cycle?

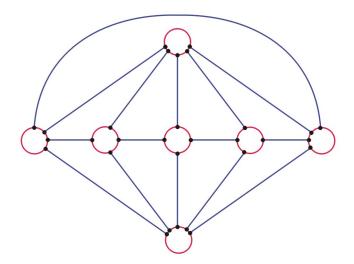
- 1 Embed your graph into a surface *S* such that boundaries of faces are simple cycles, in case of Cayley cubic graphs use the standard embedding,
- 2 Difficult in general! Find a decomposition $A^* \cup B^*$ of the dual graph into two induced one-sided subgraphs such that $\epsilon(S) = \beta(A^*) + \beta(B^*)$, ideally one of the subgraphs is a tree (this forces contractibility).

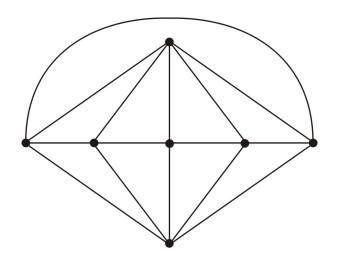
Method: How to find a hamilton cycle?

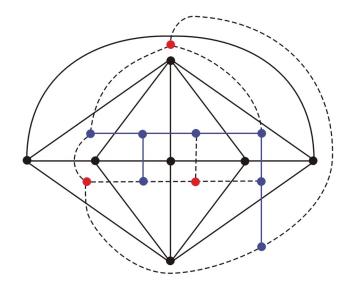
- 1 Embed your graph into a surface *S* such that boundaries of faces are simple cycles, in case of Cayley cubic graphs use the standard embedding,
- 2 Difficult in general! Find a decomposition $A^* \cup B^*$ of the dual graph into two induced one-sided subgraphs such that $\epsilon(S) = \beta(A^*) + \beta(B^*)$, ideally one of the subgraphs is a tree (this forces contractibility).
- 3 Boundary $\partial(\bigcup_{F\in\mathcal{A}}\overline{F})$ of the topological closure of the union of faces in A forms a bounding hamilton cycle.

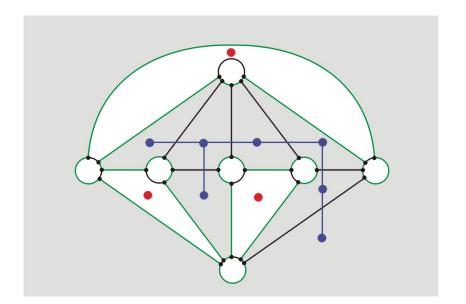




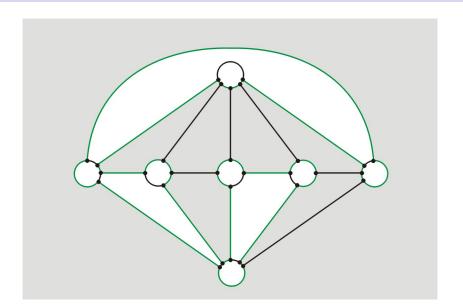




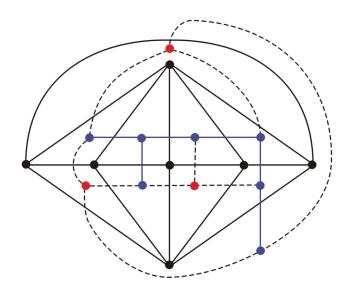




Example: The required Hamilton cycle



When does such a structure exist?



Two important concepts

1—sided subgraph in the dual of a map, an induced subgraph embedded with a connected complement, generalisation of a plane tree from the spherical case,

weak 2-face colouring = colouring of faces of a (cubic) map by two colours such every vertex is incident to faces of two colour,

Two important concepts

1—sided subgraph in the dual of a map, an induced subgraph embedded with a connected complement, generalisation of a plane tree from the spherical case,

weak 2-face colouring = colouring of faces of a (cubic) map by two colours such every vertex is incident to faces of two colour, This introduces the separation property!

H.C. in embedded graphs: investigate the dual!

The following theorem generalises an observation from the spherical case: A sperical map admits H.C. iff the dual admits a decomposition into two induced trees.

Theorem

The following statements are equivalent for a polytopal map $\mathcal M$ on a closed surface S.

- (i) M has a bounding Hamilton cycle.
- (ii) The vertex set of \mathcal{M}^* admits a partition into two subsets which induce one-sided subgraphs H and K such that $\beta(H) + \beta(K) = \epsilon(S)$.
- (iii) \mathcal{M} has a weak 2-face-colouring ϕ such that the vertices of \mathcal{M}^* that receive colour 1 from ϕ induce a one-sided subgraph of \mathcal{M}^* .

Furthermore, if (iii) is fulfilled, then the set of faces of colour 1 is bounded by a Hamilton cycle.

Theorem

Let \mathcal{M} be a cubic polytopal map on a closed surface endowed with a fixed weak 2-face-colouring.

Theorem

Let $\mathcal M$ be a cubic polytopal map on a closed surface endowed with a fixed weak 2-face-colouring.

(i) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A, J\}$ where A induces a tree and J is an independent set, then \mathcal{M} has a Hamilton cycle.

Theorem

Let $\mathcal M$ be a cubic polytopal map on a closed surface endowed with a fixed weak 2-face-colouring.

- (i) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A, J\}$ where A induces a tree and J is an independent set, then \mathcal{M} has a Hamilton cycle.
- (ii) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A, J\}$ such that A induces a tree and J is near independent, then the underlying graph of \mathcal{M} contains a cycle through all but two adjacent vertices.

Theorem

Let $\mathcal M$ be a cubic polytopal map on a closed surface endowed with a fixed weak 2-face-colouring.

- (i) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A, J\}$ where A induces a tree and J is an independent set, then \mathcal{M} has a Hamilton cycle.
- (ii) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A,J\}$ such that A induces a tree and J is near independent, then the underlying graph of \mathcal{M} contains a cycle through all but two adjacent vertices.
- (iii) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A,J\}$ such that A induces a forest with two components and J is independent, then \mathcal{M} has a 2-factor with two components.

Theorem

Let $\mathcal M$ be a cubic polytopal map on a closed surface endowed with a fixed weak 2-face-colouring.

- (i) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A, J\}$ where A induces a tree and J is an independent set, then \mathcal{M} has a Hamilton cycle.
- (ii) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A,J\}$ such that A induces a tree and J is near independent, then the underlying graph of \mathcal{M} contains a cycle through all but two adjacent vertices.
- (iii) If the set of 1-vertices of \mathcal{M}^* has a partition $\{A,J\}$ such that A induces a forest with two components and J is independent, then \mathcal{M} has a 2-factor with two components.

In cases (ii) and (iii), the underlying graph of $\mathcal M$ has a Hamilton path.

Truncated maps = maps with a particular 2-face colouring

Truncation: Let M be a map on a closed surface, orientable, or not. By a truncation t(M) we mean the unique cubic map which arises from M by expanding every vertex v of M to a cycle of length deg(v).

Truncated maps = maps with a particular 2-face colouring

Truncation: Let M be a map on a closed surface, orientable, or not. By a truncation t(M) we mean the unique cubic map which arises from M by expanding every vertex v of M to a cycle of length deg(v).

Observation: A cubic map N is a truncation of a map M if and only if we can colour faces of N by two coloures such that one-coloured faces give rise to a facial 2-factor, a 2-factor where each component bounds a face.

Truncated maps = maps with a particular 2-face colouring

Truncation: Let M be a map on a closed surface, orientable, or not. By a truncation t(M) we mean the unique cubic map which arises from M by expanding every vertex v of M to a cycle of length deg(v).

Observation: A cubic map N is a truncation of a map M if and only if we can colour faces of N by two coloures such that one-coloured faces give rise to a facial 2-factor, a 2-factor where each component bounds a face.

Standard embedding: If $X = Cay(G; x, x^{-1}, y)$ is a Cayley cubic graph we form the standard embedding $X \hookrightarrow S$ by gluing a face to the 2-factor coloured by x, and by gluing a face to each cycle coloured alternatingly by x and y. The standard embedding is the truncation of a regular map on an orientable surface! We have a particular weak 2-face-colouring

Theorem (Payan & Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:

- (i) If $n \equiv 2 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where A induces a tree and J is independent.
- (ii) If $n \equiv 0 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where either A induces a tree and J induces a graph with a single edge, or A induces a forest with two components and J is independent.

Theorem (Payan & Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:

- (i) If $n \equiv 2 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where A induces a tree and J is independent.
- (ii) If $n \equiv 0 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where either A induces a tree and J is near-independent, or A induces a forest with two components and J is independent.

Theorem (Payan & Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:

- (i) If $n \equiv 2 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where A induces a tree and J is independent.
- (ii) If $n \equiv 0 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where either A induces a tree and J is near-independent, or A induces a forest with two components and J is independent.
- Case (i) implies a Hamilton cycle in $Cay(H; r, r^{-1}, I)$
- Case (ii) implies a Hamilton path in $Cay(H; r, r^{-1}, I)$

Theorem (Payan & Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:

- (i) If $n \equiv 2 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where A induces a tree and J is independent.
- (ii) If $n \equiv 0 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where either A induces a tree and J is near-independent, or A induces a forest with two components and J is independent.

```
Case (i) implies a Hamilton cycle in Cay(H; r, r^{-1}, I)
```

Case (ii) implies a Hamilton path in $Cay(H; r, r^{-1}, I)$

Symmetry is only used to derive cyclic connectivity \geq 4 (or \geq 6) (!!)

Theorem (Payan & Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:

- (i) If $n \equiv 2 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where A induces a tree and J is independent.
- (ii) If $n \equiv 0 \pmod{4}$, then V(G) has a partition $\{A, J\}$ where either A induces a tree and J is near-independent, or A induces a forest with two components and J is independent.

```
Case (i) implies a Hamilton cycle in Cay(H; r, r^{-1}, I)
```

Case (ii) implies a Hamilton path in $Cay(H; r, r^{-1}, I)$

Symmetry is only used to derive cyclic connectivity \geq 4 (or \geq 6) (!!)

Show idea of the proof!

Corollaries (samples)

Theorem (K., N. & S., 2013+)

Let \mathcal{T} be a triangulation of a closed surface by f triangles which is either edge-transitive or has no separating cycle of length ≤ 3 . Then $t(\mathcal{T})$ has a Hamilton path. Moreover,

- if $f \equiv 2 \pmod{4}$, then t(T) has a Hamilton cycle, and
- if $f \equiv 0 \pmod{4}$, then $t(\mathcal{T})$ has a cycle through all but two adjacent vertices.

Corollaries (samples)

Theorem (K., N. & S., 2013+)

Let \mathcal{T} be a triangulation of a closed surface by f triangles which is either edge-transitive or has no separating cycle of length ≤ 3 . Then $t(\mathcal{T})$ has a Hamilton path. Moreover,

- if $f \equiv 2 \pmod{4}$, then t(T) has a Hamilton cycle, and
- if $f \equiv 0 \pmod{4}$, then $t(\mathcal{T})$ has a cycle through all but two adjacent vertices.

Theorem (K., N. & S., 2013+)

Let $\mathcal T$ be a polyhedral triangulation of a closed surface by f triangles such that every vertex has valency ≤ 7 . Then $t(\mathcal T)$ has a Hamilton path, and if $f \equiv 2 \pmod{4}$, then $t(\mathcal T)$ has a Hamilton cycle.

H.C. in fullerines

Theorem

(Marušič) Leapfrog fullerines are hamiltonian!

H.C. in fullerines

Theorem

(Marušič) Leapfrog fullerines are hamiltonian!

Theorem 1

(Kardoš, 2015, arxiv.org/pdf/1409.2440) All fullerines are hamiltonian!

H.C. in fullerines

Theorem

(Marušič) Leapfrog fullerines are hamiltonian!

Theorem

(Kardoš, 2015, arxiv.org/pdf/1409.2440) All fullerines are hamiltonian!

Method of proof: Kempe switches on weak 2-face colourings!

Prove that the halved Buckminster fullerine is hamiltonian!

Prove that the halved Buckminster fullerine is hamiltonian!

Observation 1: It is truncated triangular embedding of K_6 in PP.

Prove that the halved Buckminster fullerine is hamiltonian!

Observation 1: It is truncated triangular embedding of K_6 in PP.

Dual of the triangular embedding of K_6 is the Petersen graph!

Prove that the halved Buckminster fullerine is hamiltonian!

Observation 1: It is truncated triangular embedding of K_6 in PP.

Dual of the triangular embedding of K_6 is the Petersen graph!

 $\beta(Pet) = 15 - 10 + 1 = 6$ is even and the Petersen graph is cyclically 5-connected!

Prove that the halved Buckminster fullerine is hamiltonian!

Observation 1: It is truncated triangular embedding of K_6 in PP.

Dual of the triangular embedding of K_6 is the Petersen graph!

 $\beta(Pet) = 15 - 10 + 1 = 6$ is even and the Petersen graph is cyclically 5-connected!

Theorem(Payan-Sacharovich) implies, V(Pet) decomposes into a co-hamiltonian tree \mathcal{T} and independent set.

Prove that the halved Buckminster fullerine is hamiltonian!

Observation 1: It is truncated triangular embedding of K_6 in PP.

Dual of the triangular embedding of K_6 is the Petersen graph!

 $\beta(Pet) = 15 - 10 + 1 = 6$ is even and the Petersen graph is cyclically 5-connected!

Theorem(Payan-Sacharovich) implies, V(Pet) decomposes into a co-hamiltonian tree \mathcal{T} and independent set.

 $\partial(T^*)$ is hamiltonian cycle of the halved fullerine!

Few words about the result by Dipendu Maity

Theorem

All polyhedral maps of type $\{3, q\}$, $q = 3, 4, 5, 6, 7, \dots$ are hamiltonian.

Few words about the result by Dipendu Maity

Theorem

All polyhedral maps of type $\{3, q\}$, $q = 3, 4, 5, 6, 7, \dots$ are hamiltonian.

Note: Infinite families of vertex-transitive triangulations are included!

Few words about the result by Dipendu Maity

Theorem

All polyhedral maps of type $\{3, q\}$, $q = 3, 4, 5, 6, 7, \dots$ are hamiltonian.

Note: Infinite families of vertex-transitive triangulations are included!

Theorem

Archdeacon, Hardsfield, Little, J.Comb. Theory B 1996: There exists infinitely many non-hamiltonian triangulations of arbitrary large connectivity and arbitrary large planar width!

1. Take the universal map M of type $\{m, n\}$, m < n of hyperbolic type,

- 1. Take the universal map M of type $\{m,n\}$, m < n of hyperbolic type,
- 2. The group of orientation preserving symmetries is the triangle group $\Delta(2, m, n) = \langle x, y | x^n = y^2 = (xy)^m = 1 \rangle$, and it is regular on the darts of the associated tesselation of H of type $\{m, n\}$!

- 1. Take the universal map M of type $\{m, n\}$, m < n of hyperbolic type,
- 2. The group of orientation preserving symmetries is the triangle group $\Delta(2, m, n) = \langle x, y | x^n = y^2 = (xy)^m = 1 \rangle$, and it is regular on the darts of the associated tesselation of H of type $\{m, n\}$!
- 3. $\Delta(2, m, n)$ is a matrix group! Enough to find two matrices X and Y satisfying: |X| = n, |Y| = 2 and |XY| = m, can be done using 3×3 matrices.

- 1. Take the universal map M of type $\{m, n\}$, m < n of hyperbolic type,
- 2. The group of orientation preserving symmetries is the triangle group $\Delta(2, m, n) = \langle x, y | x^n = y^2 = (xy)^m = 1 \rangle$, and it is regular on the darts of the associated tesselation of H of type $\{m, n\}$!
- 3. $\Delta(2, m, n)$ is a matrix group! Enough to find two matrices X and Y satisfying: |X| = n, |Y| = 2 and |XY| = m, can be done using 3×3 matrices.
- 4. Maltsev: Matrix groups are residually finite!

- 1. Take the universal map M of type $\{m,n\}$, m < n of hyperbolic type,
- 2. The group of orientation preserving symmetries is the triangle group $\Delta(2, m, n) = \langle x, y | x^n = y^2 = (xy)^m = 1 \rangle$, and it is regular on the darts of the associated tesselation of H of type $\{m, n\}$!
- 3. $\Delta(2, m, n)$ is a matrix group! Enough to find two matrices X and Y satisfying: |X| = n, |Y| = 2 and |XY| = m, can be done using 3×3 matrices.
- 4. Maltsev: Matrix groups are residually finite!
- 5. Let \overline{M} be a quotient M/N, where N is a normal subgroup of finite index missing arbitrary large disk of $M = \{m, n\}$,

- 1. Take the universal map M of type $\{m, n\}$, m < n of hyperbolic type,
- 2. The group of orientation preserving symmetries is the triangle group $\Delta(2, m, n) = \langle x, y | x^n = y^2 = (xy)^m = 1 \rangle$, and it is regular on the darts of the associated tesselation of H of type $\{m, n\}$!
- 3. $\Delta(2, m, n)$ is a matrix group! Enough to find two matrices X and Y satisfying: |X| = n, |Y| = 2 and |XY| = m, can be done using 3×3 matrices.
- 4. Maltsev: Matrix groups are residually finite!
- 5. Let \overline{M} be a quotient M/N, where N is a normal subgroup of finite index missing arbitrary large disk of $M = \{m, n\}$,
- 6. Insert a new vertex inside every face and join it to all old vertices on the boundary! The triangulation T cannot be hamiltonian, since the new vertices form an independent set of size > |V(T)|/2.

Open problems

• Complete the proof of hamiltonicity of Cay(G; x, y), where $G = \langle x, y | y^2 = (xy)^3 = 1, \dots \rangle$, in case $|G| \equiv 0 \mod 4$ and $|x| \equiv 2 \mod 4$. Change of the embedding could help!

Open problems

- Complete the proof of hamiltonicity of Cay(G; x, y), where $G = \langle x, y | y^2 = (xy)^3 = 1, \dots \rangle$, in case $|G| \equiv 0 \mod 4$ and $|x| \equiv 2 \mod 4$. Change of the embedding could help!
- ② In view of the Thomassen conjecture, try other families of cubic Cayley graph satisfying a short non-trivial relation.

Open problems

- Complete the proof of hamiltonicity of Cay(G; x, y), where $G = \langle x, y | y^2 = (xy)^3 = 1, \dots \rangle$, in case $|G| \equiv 0 \mod 4$ and $|x| \equiv 2 \mod 4$. Change of the embedding could help!
- ② In view of the Thomassen conjecture, try other families of cubic Cayley graph satisfying a short non-trivial relation.
- 3 Confirm the result on hamiltonicity of q-valent triangulations.

Thank you!