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Motivation: Graph symmetry and hamiltonicity

General problem.
Which combinatorial properties of graphs are implied by graph symmetry?

Question (Lovész, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e,
a simple path going through all vertices?
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Motivation: Graph symmetry and hamiltonicity

General problem.
Which combinatorial properties of graphs are implied by graph symmetry?

Question (Lovész, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e,
a simple path going through all vertices?

Only five connected vertex-transitive graphs with no Hamilton cycle
are known (but they do have a Hamilton path), namely, K3, Petersen
graph, Coxeter graph, the truncations of the Petersen and Coxeter graphs
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Non-hamiltonian cubic vertex-transitive graphs
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Non-hamiltonian cubic vertex-transitive graphs
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Hamilton cycles in Cayley graphs

All known non-hamiltonian vertex-transitive graphs are cubic, and none of

them is a Cayley graph.There are different opinions about the
hamiltonicity of vertex-transitive graphs!

(Thomassen, 1978,1991)

All but finitely many vertex-transitive graphs are hamiltonian.
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Hamilton cycles in Cayley graphs

All known non-hamiltonian vertex-transitive graphs are cubic, and none of

them is a Cayley graph.There are different opinions about the
hamiltonicity of vertex-transitive graphs!

(Thomassen, 1978,1991)

All but finitely many vertex-transitive graphs are hamiltonian.

Counter-conjecture (Babai, 1995)

For some ¢ > 0, there are infinitely many vertex-transitive graphs G,
even Cayley graphs, without cycles of length > (1 — ¢)|G|.
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Hamilton cycles in Cayley graphs

All known non-hamiltonian vertex-transitive graphs are cubic, and none of
them is a Cayley graph.There are different opinions about the
hamiltonicity of vertex-transitive graphs!

(Thomassen, 1978,1991)

All but finitely many vertex-transitive graphs are hamiltonian.

Counter-conjecture (Babai, 1995)

For some ¢ > 0, there are infinitely many vertex-transitive graphs G,
even Cayley graphs, without cycles of length > (1 — ¢)|G|.

Conjecture (Folklore)

Every Cayley graph (of order > 3) has a Hamilton cycle.
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Hamilton cycles in Cayley graphs: current status

Hamilton cycles or paths exist, if strong restrictions on the structure of the
base groups are introduced, for instance: in the following types
of vertex-transitive graphs:

@ Graphs of specific order:
p, 2p, 3p, 4p, 5p, 6p, 2p?, ... (where p a prime)
o Cayley graphs of p-groups

o Cayley graphs of groups with a cyclic commutator subgroup
of order pX.
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Hamilton cycles in Cayley graphs: current status

Hamilton cycles or paths exist, if strong restrictions on the structure of the
base groups are introduced, for instance: in the following types
of vertex-transitive graphs:

@ Graphs of specific order:
p, 2p, 3p, 4p, 5p, 6p, 2p?, ... (where p a prime)
o Cayley graphs of p-groups

o Cayley graphs of groups with a cyclic commutator subgroup
of order pX.

Until 2009, very little was known about Hamilton cycles or paths
in cubic vertex-transitive graphs including Cayley cubic graphs.
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Hamiltonicity of cubic graphs in general?

@ To decide whether a cubic graph is hamiltonian is an NP-complete
problem even if we are restricted to planar cubic graphs,

@ Hamiltonicity implies 3-edge colourability, there infinitely many
non-3-edge-colourable cubic graphs, called snarks. These are by the
four colour theorem non-planar.

@ All known cubic non-hamiltonian graphs have cyclic-connectivity at
most 7. Only one cyclically 7-connected example is known.

@ Thomassen's conjecture: Cubic graphs with sufficiently large cyclic
connectivity (> 8) are hamiltonian!
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Hamiltonicity of cubic graphs in general?

@ To decide whether a cubic graph is hamiltonian is an NP-complete
problem even if we are restricted to planar cubic graphs,

@ Hamiltonicity implies 3-edge colourability, there infinitely many
non-3-edge-colourable cubic graphs, called snarks. These are by the
four colour theorem non-planar.

@ All known cubic non-hamiltonian graphs have cyclic-connectivity at
most 7. Only one cyclically 7-connected example is known.

@ Thomassen's conjecture: Cubic graphs with sufficiently large cyclic
connectivity (> 8) are hamiltonian!

@ Known technique: lifting Hamilton cycle along a graph covering.

@ In what follows we analyse a new technique to prove hamiltonicity
introduced in 2009 by Glover and Marusic.

Roman Nedela (University of West Bohemia) Hamilton cycles in maps 21/11/2013 7 /34



Cubic Cayley graphs

There are of two types: if X = Cay(G;S), then either

@ S ={x,y,z}, where x> = y?> = z2 = 1 are involutions, or
@ S ={x,y}, where x> =1 and |x| > 2.
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Theorem by Glover & Marusi¢

Let H = (r./) be a (2,3, s)-presented finite group; i.e.,
rs=1?=(rl)®=1.

Then H is a finite quotient of the modular group PSL(2,7Z).

Theorem (Glover & Marusi¢, 2009)

Let K = Cay(H; r,r=1,1) be a cubic Cayley graph, where

H={(r,l|r*=1=(rl)>=1,...) is a finite quotient

of the modular group PSL(2,7.). Then K has a Hamilton path. Moreover,
o if |[H| =2 (mod 4), then K has a Hamilton cycle

e if |[H| =0 (mod 4), then K has a cycle through all but two adjacent
vertices.
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Sample of new results: Cayley graphs

Let G = (x,y|ly?> = (xy)3 =1,...). Then Cay(G;x,x"1,y) admits a
bounding H.C. with respect to standard embedding if and only if |G| = 2
mod 4, or |x| =0,1,3 mod 4.
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Sample of new results: Cayley graphs

Let G = (x,y|ly?> = (xy)3 =1,...). Then Cay(G;x,x"1,y) admits a
bounding H.C. with respect to standard embedding if and only if |G| = 2
mod 4, or |x| =0,1,3 mod 4.

The implication = was proved in years 2009-2012 by Glover, Marusic,
Kutnar, Malni¢ in series of paper.
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Sample of new results: Cayley graphs

Let G = (x,y|ly?> = (xy)3 =1,...). Then Cay(G;x,x"1,y) admits a
bounding H.C. with respect to standard embedding if and only if |G| = 2
mod 4, or |x| =0,1,3 mod 4.

The implication = was proved in years 2009-2012 by Glover, Marusic,
Kutnar, Malni¢ in series of paper.

Let G = (x,y,z|x* =y?> =22 = (xy)® = (yz)> =1,...). Then
Cay(G; x,y, z) admits a contractible H.C. with respect to standard
embedding if |G| = 2 mod 4, and a contractible cycle missing two
adjacent vertices otherwise.
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Example: Cayley graphs from toroidal regular maps

Coxeter maps {3,6} ¢, regular 6-valent triangulations,
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Example: Cayley graphs from toroidal regular maps

Coxeter maps {3,6} ¢, regular 6-valent triangulations,
Associated group of orientation presererving automorphisms

<X,y]y2 = x5 = (xy)3 =1,...)

satisfies the conditions of Theorem |.
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Example: Cayley graphs from toroidal regular maps

Coxeter maps {3,6} ¢, regular 6-valent triangulations,
Associated group of orientation presererving automorphisms

oyl =x=()’=1,...)
satisfies the conditions of Theorem |I.

|G| = 6(b? + bc + c?) thus |G| = 0 mod 4 iff both b and c are even,
|x| =6 =2 mod 4 implies, No bounding H.C.!
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Example: Cayley graphs from toroidal regular maps

Coxeter maps {3,6} ¢, regular 6-valent triangulations,
Associated group of orientation presererving automorphisms

oyl =x=()’=1,...)
satisfies the conditions of Theorem |I.

|G| = 6(b? + bc + c?) thus |G| = 0 mod 4 iff both b and c are even,
|x| =6 =2 mod 4 implies, No bounding H.C.!

Altshuler: All Coxeter maps are hamiltonian, thus in case b and c is even,
all H.C. must be unbounding!
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Sample of new results: Non-Cayley graphs

Theorem (A)

A truncation of a triangulation with degrees bounded by 7 are hamiltonian.
In particular, Leapfrog fullerines are hamiltonian.
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Sample of new results: Non-Cayley graphs

Theorem (A)

A truncation of a triangulation with degrees bounded by 7 are hamiltonian.
In particular, Leapfrog fullerines are hamiltonian.

The statement on fullerines was proved by Marusic.

Theorem (B)

Truncated triangulations without separating triangles admit hamilton
paths.
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Sample of new results: Non-Cayley graphs

Theorem (A)

A truncation of a triangulation with degrees bounded by 7 are hamiltonian.
In particular, Leapfrog fullerines are hamiltonian.

The statement on fullerines was proved by Marusic.

Theorem (B)

Truncated triangulations without separating triangles admit hamilton
paths.

(Dipendu Maity) Triangulations with constant degree of vertices are
hamiltonian.
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Method: Standard embedding of a cubic Cayley graph
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Method: How to find a hamilton cycle?

1 Embed your graph into a surface S such that boundaries of faces are
simple cycles, in case of Cayley cubic graphs use the standard
embedding,
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Method: How to find a hamilton cycle?

1 Embed your graph into a surface S such that boundaries of faces are
simple cycles, in case of Cayley cubic graphs use the standard
embedding,

2 Difficult in general! Find a decomposition A* U B* of the dual graph
into two induced one-sided subgraphs such that
€(S) = B(A*) + B(B*), ideally one of the subgraphs is a tree (this
forces contractibility).
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Method: How to find a hamilton cycle?

1 Embed your graph into a surface S such that boundaries of faces are
simple cycles, in case of Cayley cubic graphs use the standard
embedding,

2 Difficult in general! Find a decomposition A* U B* of the dual graph
into two induced one-sided subgraphs such that
€(S) = B(A*) + B(B*), ideally one of the subgraphs is a tree (this
forces contractibility).

3 Boundary d(UrcaF) of the topological closure of the union of faces
in A forms a bounding hamilton cycle.
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Example: Construction of a Hamilton cycle in t(7")
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Example: Construction of a Hamilton cycle in t(7")
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Example: The required Hamilton cycle

Roman Nedela (University of West Bohemia) Hamilton cycles in maps 21/11/2013 21/ 34



When does such a structure exist?
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Two important concepts

1—sided subgraph in the dual of a map, an induced subgraph embedded
with a connected complement, generalisation of a plane tree from the
spherical case,

weak 2-face colouring = colouring of faces of a (cubic) map by two
colours such every vertex is incident to faces of two colour,
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Two important concepts

1—sided subgraph in the dual of a map, an induced subgraph embedded
with a connected complement, generalisation of a plane tree from the
spherical case,

weak 2-face colouring = colouring of faces of a (cubic) map by two
colours such every vertex is incident to faces of two colour,
This introduces the separation property!
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H.C. in embedded graphs: investigate the dual!

The following theorem generalises an observation from the spherical case:

A sperical map admits H.C. iff the dual admits a decomposition into two
induced trees.

Theorem

The following statements are equivalent for a polytopal map M on a
closed surface S.

(i) M has a bounding Hamilton cycle.

(ii) The vertex set of M* admits a partition into two subsets which
induce one-sided subgraphs H and K such that 5(H) + S(K) = €(S).

(iii) M has a weak 2-face-colouring ¢ such that the vertices of M* that
receive colour 1 from ¢ induce a one-sided subgraph of M*.

Furthermore, if (iii) is fulfilled, then the set of faces of colour 1 is bounded
by a Hamilton cycle.

v
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Weak 2-face colouring - tool to find co-hamiltonian
decomposition

Let M be a cubic polytopal map on a closed surface endowed with a fixed
weak 2-face-colouring.
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Weak 2-face colouring - tool to find co-hamiltonian
decomposition

Let M be a cubic polytopal map on a closed surface endowed with a fixed
weak 2-face-colouring.

(i) If the set of 1-vertices of M* has a partition {A, J} where A induces
a tree and J is an independent set, then M has a Hamilton cycle.

v
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Weak 2-face colouring - tool to find co-hamiltonian
decomposition

Theorem

Let M be a cubic polytopal map on a closed surface endowed with a fixed

weak 2-face-colouring.

(i) If the set of 1-vertices of M* has a partition {A, J} where A induces
a tree and J is an independent set, then M has a Hamilton cycle.

(i) If the set of 1-vertices of M* has a partition {A, J} such that A

induces a tree and J is near independent, then the underlying graph
of M contains a cycle through all but two adjacent vertices.
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Weak 2-face colouring - tool to find co-hamiltonian
decomposition

Let M be a cubic polytopal map on a closed surface endowed with a fixed

weak 2-face-colouring.

(i) If the set of 1-vertices of M* has a partition {A, J} where A induces
a tree and J is an independent set, then M has a Hamilton cycle.

(i) If the set of 1-vertices of M* has a partition {A, J} such that A
induces a tree and J is near independent, then the underlying graph
of M contains a cycle through all but two adjacent vertices.

(iii) If the set of 1-vertices of M* has a partition {A, J} such that A
induces a forest with two components and J is independent, then M
has a 2-factor with two components.
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Weak 2-face colouring - tool to find co-hamiltonian
decomposition

Let M be a cubic polytopal map on a closed surface endowed with a fixed
weak 2-face-colouring.

(i) If the set of 1-vertices of M* has a partition {A, J} where A induces

a tree and J is an independent set, then M has a Hamilton cycle.

(i) If the set of 1-vertices of M* has a partition {A, J} such that A
induces a tree and J is near independent, then the underlying graph
of M contains a cycle through all but two adjacent vertices.

(iii) If the set of 1-vertices of M* has a partition {A, J} such that A
induces a forest with two components and J is independent, then M
has a 2-factor with two components.

In cases (ii) and (iii), the underlying graph of M has a Hamilton path.
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Truncated maps = maps with a particular 2-face colouring

Truncation: Let M be a map on a closed surface, orientable, or not. By a
truncation t(M) we mean the unique cubic map which arises from M by
expanding every vertex v of M to a cycle of length deg(v).
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Truncated maps = maps with a particular 2-face colouring

Truncation: Let M be a map on a closed surface, orientable, or not. By a
truncation t(M) we mean the unique cubic map which arises from M by
expanding every vertex v of M to a cycle of length deg(v).

Observation: A cubic map N is a truncation of a map M if and only if we

can colour faces of N by two coloures such that one-coloured faces give
rise to a facial 2-factor, a 2-factor where each component bounds a face.
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Truncated maps = maps with a particular 2-face colouring

Truncation: Let M be a map on a closed surface, orientable, or not. By a
truncation t(M) we mean the unique cubic map which arises from M by
expanding every vertex v of M to a cycle of length deg(v).

Observation: A cubic map N is a truncation of a map M if and only if we
can colour faces of N by two coloures such that one-coloured faces give
rise to a facial 2-factor, a 2-factor where each component bounds a face.

Standard embedding: If X = Cay(G; x,x"1,y) is a Cayley cubic graph
we form the standard embedding X < S by gluing a face to the 2-factor
coloured by x, and by gluing a face to each cycle coloured alternatingly by
x and y. The standard embedding is the truncation of a regular map on
an orientable surface! We have a particular weak 2-face-colouring
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Vertex-bipartitions of the dual of a triangulation

Theorem (Payan & Sakarovitch, 1975)
Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then
the following hold:
(i) If n=2 (mod 4), then V(G) has a partition { A, J} where A induces
a tree and J is independent.
(ii) Ifn=0 (mod 4), then V(G) has a partition {A. J} where
either A induces a tree and J induces a graph with a single edge,
or A induces a forest with two components and J is independent.
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Vertex-bipartitions of the dual of a triangulation

Theorem (Payan & Sakarovitch, 1975)
Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then
the following hold:
(i) If n=2 (mod 4), then V(G) has a partition { A, J} where A induces
a tree and J is independent.
(ii) Ifn=0 (mod 4), then V(G) has a partition {A. J} where
either A induces a tree and J is near-independent,
or A induces a forest with two components and J is independent.
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Vertex-bipartitions of the dual of a triangulation

Theorem (Payan & Sakarovitch, 1975)
Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then
the following hold:
(i) If n=2 (mod 4), then V(G) has a partition { A, J} where A induces
a tree and J is independent.
(ii) Ifn=0 (mod 4), then V(G) has a partition {A. J} where
either A induces a tree and J is near-independent,
or A induces a forest with two components and J is independent.

Case (i) implies a Hamilton cycle in Cay(H; r,r=1,1)
Case (i) implies a Hamilton path in Cay(H; r,r=1,/)
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Vertex-bipartitions of the dual of a triangulation

Theorem (Payan & Sakarovitch, 1975)
Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then
the following hold:
(i) If n=2 (mod 4), then V(G) has a partition { A, J} where A induces
a tree and J is independent.
(ii) Ifn=0 (mod 4), then V(G) has a partition {A. J} where
either A induces a tree and J is near-independent,
or A induces a forest with two components and J is independent.

Case (i) implies a Hamilton cycle in Cay(H; r,r=1,1)
Case (i) implies a Hamilton path in Cay(H; r,r=1,/)
Symmetry is only used to derive cyclic connectivity > 4 (or > 6) (!!)
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Vertex-bipartitions of the dual of a triangulation

Theorem (Payan & Sakarovitch, 1975)
Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then
the following hold:
(i) If n=2 (mod 4), then V(G) has a partition { A, J} where A induces
a tree and J is independent.
(ii) Ifn=0 (mod 4), then V(G) has a partition {A. J} where
either A induces a tree and J is near-independent,
or A induces a forest with two components and J is independent.

Case (i) implies a Hamilton cycle in Cay(H; r,r=1,1)
Case (i) implies a Hamilton path in Cay(H; r,r=1,/)
Symmetry is only used to derive cyclic connectivity > 4 (or > 6) (!!)

Show idea of the proof!
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Corollaries (samples)

Theorem (K., N. & S., 2013+)

Let T be a triangulation of a closed surface by f triangles which is either

edge-transitive or has no separating cycle of length < 3. Then t(T) has a
Hamilton path. Moreover,

e iff =2 (mod 4), then t(7) has a Hamilton cycle, and

e if f =0 (mod 4), then t(T) has a cycle through all but two adjacent
vertices.

v
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Corollaries (samples)

Theorem (K., N. & S., 2013+)

Let T be a triangulation of a closed surface by f triangles which is either

edge-transitive or has no separating cycle of length < 3. Then t(T) has a
Hamilton path. Moreover,

e iff =2 (mod 4), then t(7) has a Hamilton cycle, and

e if f =0 (mod 4), then t(T) has a cycle through all but two adjacent
vertices.

v

Theorem (K., N. & S., 2013+)

Let T be a polyhedral triangulation of a closed surface by f triangles such
that every vertex has valency < 7. Then t(7) has a Hamilton path, and if
f =2 (mod 4), then t(7) has a Hamilton cycle.
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H.C. in fullerines

(Marusi¢) Leapfrog fullerines are hamiltonian!
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H.C. in fullerines

(Marusi¢) Leapfrog fullerines are hamiltonian!
(Kardos, 2015, arxiv.org/pdf/1409.2440) All fullerines are hamiltonian!
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H.C. in fullerines

(Marusi¢) Leapfrog fullerines are hamiltonian!
(Kardos, 2015, arxiv.org/pdf/1409.2440) All fullerines are hamiltonian!

Method of proof: Kempe switches on weak 2-face colourings!
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An exercise (instead a summary)

Prove that the halved Buckminster fullerine is hamiltonian!
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An exercise (instead a summary)

Prove that the halved Buckminster fullerine is hamiltonian!

Observation 1: It is truncated triangular embedding of Ks in PP.
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An exercise (instead a summary)

Prove that the halved Buckminster fullerine is hamiltonian!
Observation 1: It is truncated triangular embedding of Ks in PP.

Dual of the triangular embedding of Kpg is the Petersen graph!
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An exercise (instead a summary)

Prove that the halved Buckminster fullerine is hamiltonian!
Observation 1: It is truncated triangular embedding of Ks in PP.
Dual of the triangular embedding of Kpg is the Petersen graph!

B(Pet) =15 —10+ 1 = 6 is even and the Petersen graph is cyclically
5-connected!
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An exercise (instead a summary)

Prove that the halved Buckminster fullerine is hamiltonian!
Observation 1: It is truncated triangular embedding of Ks in PP.
Dual of the triangular embedding of Kpg is the Petersen graph!

B(Pet) =15 —10+ 1 = 6 is even and the Petersen graph is cyclically
5-connected!

Theorem(Payan-Sacharovich) implies, V(Pet) decomposes into a
co-hamiltonian tree T and independent set.
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An exercise (instead a summary)

Prove that the halved Buckminster fullerine is hamiltonian!
Observation 1: It is truncated triangular embedding of Ks in PP.
Dual of the triangular embedding of Kpg is the Petersen graph!

B(Pet) =15 —10+ 1 = 6 is even and the Petersen graph is cyclically
5-connected!

Theorem(Payan-Sacharovich) implies, V(Pet) decomposes into a
co-hamiltonian tree T and independent set.

O(T*) is hamiltonian cycle of the halved fullerine!
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Few words about the result by Dipendu Maity

All polyhedral maps of type {3,q}, g =3,4,5,6,7,... are hamiltonian.
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Few words about the result by Dipendu Maity

All polyhedral maps of type {3,q}, g =3,4,5,6,7,... are hamiltonian.

Note: Infinite families of vertex-transitive triangulations are included!
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Few words about the result by Dipendu Maity

All polyhedral maps of type {3,q}, g =3,4,5,6,7,... are hamiltonian.

Note: Infinite families of vertex-transitive triangulations are included!

Archdeacon, Hardsfield, Little, J.Comb.Theory B 1996: There exists
infinitely many non-hamiltonian triangulations of arbitrary large
connectivity and arbitrary large planar width!
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Short argument to prove A.H.L. result

1. Take the universal map M of type {m, n}, m < n of hyperbolic type,
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A(2,m,n) = (x,y|x" = y?> = (xy)™ = 1), and it is regular on the darts of
the associated tesselation of H of type {m, n}!
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3. A(2,m, n) is a matrix group! Enough to find two matrices X and Y
satisfying: |X| = n, |Y| =2 and |XY| = m, can be done using 3 x 3
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4. Maltsev: Matrix groups are residually finite!

5. Let M be a quotient M/N, where N is a normal subgroup of finite
index missing arbitrary large disk of M = {m, n},
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Short argument to prove A.H.L. result
1. Take the universal map M of type {m, n}, m < n of hyperbolic type,

2. The group of orientation preserving symmetries is the triangle group
A(2,m,n) = (x,y|x" = y?> = (xy)™ = 1), and it is regular on the darts of
the associated tesselation of H of type {m, n}!

3. A(2,m, n) is a matrix group! Enough to find two matrices X and Y
satisfying: |X| = n, |Y| =2 and |XY| = m, can be done using 3 x 3
matrices.

4. Maltsev: Matrix groups are residually finite!

5. Let M be a quotient M/N, where N is a normal subgroup of finite
index missing arbitrary large disk of M = {m, n},

6. Insert a new vertex inside every face and join it to all old vertices on the
boundary! The triangulation T cannot be hamiltonian, since the new
vertices form an independent set of size > |V/(T)|/2.
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Open problems

© Complete the proof of hamiltonicity of Cay(G; x,y), where
G = (x,yly?=(xy)>=1,...), in case |G| = 0 mod 4 and |x| =2
mod 4. Change of the embedding could help!
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@ In view of the Thomassen conjecture, try other families of cubic
Cayley graph satisfying a short non-trivial relation.
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Open problems

© Complete the proof of hamiltonicity of Cay(G; x,y), where
G = (x,yly?=(xy)>=1,...), in case |G| = 0 mod 4 and |x| =2
mod 4. Change of the embedding could help!

@ In view of the Thomassen conjecture, try other families of cubic
Cayley graph satisfying a short non-trivial relation.

© Confirm the result on hamiltonicity of g-valent triangulations.
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Thank you!
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