A family of regular coherent non-Schurian graphs, related to extremal graph theory

Matan Ziv-Av
(Joint work with Mikhail Klin and Guillermo Pineda-Villavicencio)

Ben-Gurion University of the Negev

G2S2, August 2016 (Akademgorodok, Novosibirsk, Russia)

Computer tools

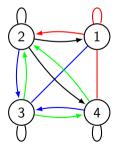
- In this project we use computer tools extensively.
- The main computer system in use is GAP.
- GAP packages: GRAPE, DESIGN, FinInG.
- The GAP package COCO-II is a work in progress.
- External tools with some interfacing to GAP: COCO, stabil, bliss.
- Database of known cages: web page of Gordon Royle.

Color graphs

- Let Ω be a finite set.
- A color graph with vertex set Ω is a coloring of the arcs of the complete digraph on Ω (with loops).
- In other words, (Ω, \mathcal{R}) is a color graph if $\mathcal{R} = \{R_0, \dots, R_d\}$ is a partition of $\Omega \times \Omega$.
- The order of the color graph is $|\Omega|$.
- Its rank is d+1.

Color graphs

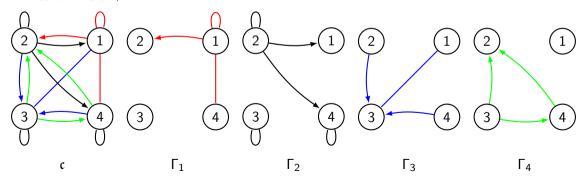
- Let Ω be a finite set.
- A color graph with vertex set Ω is a coloring of the arcs of the complete digraph on Ω (with loops).
- In other words, (Ω, \mathcal{R}) is a color graph if $\mathcal{R} = \{R_0, \dots, R_d\}$ is a partition of $\Omega \times \Omega$.
- The order of the color graph is $|\Omega|$.
- Its rank is d+1.



 \mathfrak{c}

Color graphs

- Let Ω be a finite set.
- A color graph with vertex set Ω is a coloring of the arcs of the complete digraph on Ω (with loops).
- In other words, (Ω, \mathcal{R}) is a color graph if $\mathcal{R} = \{R_0, \dots, R_d\}$ is a partition of $\Omega \times \Omega$.
- The order of the color graph is $|\Omega|$.
- Its rank is d+1.



• A color graph $\mathfrak{M}=(\Omega,\mathcal{R})$ is called a coherent configuration if the following holds:

- ullet A color graph $\mathfrak{M}=(\Omega,\mathcal{R})$ is called a coherent configuration if the following holds:

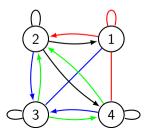
- A color graph $\mathfrak{M} = (\Omega, \mathcal{R})$ is called a coherent configuration if the following holds:
 - ① There is a subset $\mathcal{T} \subseteq \mathcal{R}$ such that the diagonal $\Delta_{\Omega} = \bigcup \mathcal{T}$. In other words, a loop and a non-loop arc don't have the same color.

- ullet A color graph $\mathfrak{M}=(\Omega,\mathcal{R})$ is called a coherent configuration if the following holds:
 - ① There is a subset $\mathcal{T} \subseteq \mathcal{R}$ such that the diagonal $\Delta_{\Omega} = \bigcup \mathcal{T}$. In other words, a loop and a non-loop arc don't have the same color.
 - ② For every $R \in \mathcal{R}$, the opposite relation $R^{-1} \in \mathcal{R}$.

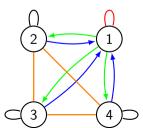
- ullet A color graph $\mathfrak{M}=(\Omega,\mathcal{R})$ is called a coherent configuration if the following holds:
 - ① There is a subset $\mathcal{T} \subseteq \mathcal{R}$ such that the diagonal $\Delta_{\Omega} = \bigcup \mathcal{T}$. In other words, a loop and a non-loop arc don't have the same color.
 - ② For every $R \in \mathcal{R}$, the opposite relation $R^{-1} \in \mathcal{R}$. In other words, if two arcs' colors differ, their opposites' colors also differ.

- A color graph $\mathfrak{M} = (\Omega, \mathcal{R})$ is called a coherent configuration if the following holds:
 - ① There is a subset $\mathcal{T} \subseteq \mathcal{R}$ such that the diagonal $\Delta_{\Omega} = \bigcup \mathcal{T}$. In other words, a loop and a non-loop arc don't have the same color.
 - ② For every $R \in \mathcal{R}$, the opposite relation $R^{-1} \in \mathcal{R}$. In other words, if two arcs' colors differ, their opposites' colors also differ.
 - **③** For every $R_i, R_j, R_k ∈ \mathcal{R}$ and for all $(x, y) ∈ R_k$, the number of z such that $(x, z) ∈ R_i$ and $(z, y) ∈ R_j$ does not depend on x, y.
- The relations R_0, \ldots, R_d are called the basic relations of \mathfrak{M} . The corresponding digraphs (Ω, R_i) are called the basic graphs.
- ullet An association scheme is a coherent configuration with Δ_{Ω} as a basic relation.

- A color graph $\mathfrak{M} = (\Omega, \mathcal{R})$ is called a coherent configuration if the following holds:
 - ① There is a subset $\mathcal{T} \subseteq \mathcal{R}$ such that the diagonal $\Delta_{\Omega} = \bigcup \mathcal{T}$. In other words, a loop and a non-loop arc don't have the same color.
 - **②** For every $R \in \mathcal{R}$, the opposite relation $R^{-1} \in \mathcal{R}$. In other words, if two arcs' colors differ, their opposites' colors also differ.
 - **③** For every $R_i, R_j, R_k \in \mathcal{R}$ and for all $(x, y) \in R_k$, the number of z such that $(x, z) \in R_i$ and $(z, y) \in R_j$ does not depend on x, y.
- The relations R_0, \ldots, R_d are called the basic relations of \mathfrak{M} . The corresponding digraphs (Ω, R_i) are called the basic graphs.
- An association scheme is a coherent configuration with Δ_{Ω} as a basic relation.



- A color graph $\mathfrak{M} = (\Omega, \mathcal{R})$ is called a coherent configuration if the following holds:
 - ① There is a subset $\mathcal{T} \subseteq \mathcal{R}$ such that the diagonal $\Delta_{\Omega} = \bigcup \mathcal{T}$. In other words, a loop and a non-loop arc don't have the same color.
 - **②** For every $R \in \mathcal{R}$, the opposite relation $R^{-1} \in \mathcal{R}$. In other words, if two arcs' colors differ, their opposites' colors also differ.
 - **③** For every $R_i, R_j, R_k \in \mathcal{R}$ and for all $(x, y) \in R_k$, the number of z such that $(x, z) \in R_i$ and $(z, y) \in R_j$ does not depend on x, y.
- The relations R_0, \ldots, R_d are called the basic relations of \mathfrak{M} . The corresponding digraphs (Ω, R_i) are called the basic graphs.
- An association scheme is a coherent configuration with Δ_{Ω} as a basic relation.



Coherent algebras

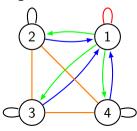
- A matrix subalgebra \mathcal{A} of $\mathbb{C}^{n\times n}$ is called a coherent algebra if \mathcal{A} contains I_n , \mathcal{J}_n (the all-1 matrix), and is closed under transposition and under Schur-Hadamard product (entry-wise product).
- A coherent algebra has a basis $B = \{A_0, \dots, A_d\}$ of 0,1 matrices, called the first standard basis of A.
- The matrices A_0, \ldots, A_d are the adjacency matrices of graphs $\Gamma_0, \ldots, \Gamma_d$ which are the basic graphs of a coherent configuration.
- \bullet If I_n is a member of the first standard basis, the coherent algebra is called homogeneous.
- If $\mathcal C$ is a coherent algebra which is a subalgebra of a coherent algebra $\mathcal A$, we say that $\mathcal C$ is a coherent subalgebra of $\mathcal A$.
- Corresponding combinatorial language: merging (or fusion) of a coherent configuration, merging some relations together.

Schurian coherent configurations

- A source for coherent configurations is permutation groups.
- If $G \leq Sym(\Omega)$ is a permutation group, an orbit of G of $\Omega \times \Omega$ is called a 2-orbit of G.
- The set $2 Orb(G, \Omega)$ of all 2-orbits of G is a coherent configuration.
- ullet In algebraic language, this is the centralizer algebra of G.
- ullet If G is transitive, we get an association scheme.
- A coherent configuration which can be represented as the 2-orbits of a permutation group is called Schurian.
- Not all coherent configurations are Schurian (the smallest example for non-Schurian coherent configuration has order 14).

Schurian coherent configurations

- A source for coherent configurations is permutation groups.
- If $G \leq Sym(\Omega)$ is a permutation group, an orbit of G of $\Omega \times \Omega$ is called a 2-orbit of G.
- The set $2 Orb(G, \Omega)$ of all 2-orbits of G is a coherent configuration.
- \bullet In algebraic language, this is the centralizer algebra of G.
- ullet If G is transitive, we get an association scheme.
- A coherent configuration which can be represented as the 2-orbits of a permutation group is called Schurian.
- Not all coherent configurations are Schurian (the smallest example for non-Schurian coherent configuration has order 14).



$$2 - Orb(\langle (2,3), (2,3,4) \rangle, \{1,2,3,4\})$$

Weisfeiler-Leman algorithm

- Every $n \times n$ matrix A, belongs to a smallest (rank) coherent algebra.
- This algebra $\ll A \gg$ is called the coherent closure of A.
- The Weisfeiler-Leman algorithm calculates the coherent closure in polynomial time.
- In short: replace distinct entries of A with distinct non-commuting variables, and calculate A^2 . Repeat until number of distinct entries does not increase.

$$\begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 & x_1 & x_2 \\ x_2 & x_0 & x_2 \\ x_1 & x_3 & x_0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0^2 + x_1x_2 + x_2x_1 & x_0x_1 + x_1x_0 + x_2x_3 & \cdots \\ & & \ddots & & \\ & & & \ddots & & \\ & & & & & \end{pmatrix} \rightarrow \cdots$$

Weisfeiler-Leman algorithm

- Every $n \times n$ matrix A, belongs to a smallest (rank) coherent algebra.
- This algebra $\ll A \gg$ is called the coherent closure of A.
- The Weisfeiler-Leman algorithm calculates the coherent closure in polynomial time.
- In short: replace distinct entries of A with distinct non-commuting variables, and calculate A^2 . Repeat until number of distinct entries does not increase.

$$\begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 & x_1 & x_2 \\ x_2 & x_0 & x_2 \\ x_1 & x_3 & x_0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0^2 + x_1x_2 + x_2x_1 & x_0x_1 + x_1x_0 + x_2x_3 & \cdots \\ & & \ddots & & \\ & & & \ddots & & \\ & & & & & \end{pmatrix} \rightarrow \cdots$$

- In the first step after replacing entries with variables, we use $(A \circ A^T + yI)$, where \circ is Schur-Hadamard product, and y is a new variable.
- The coherent closure of a graph is the coherent closure of its adjacency matrix.

Weisfeiler-Leman algorithm

- Every $n \times n$ matrix A, belongs to a smallest (rank) coherent algebra.
- This algebra $\ll A \gg$ is called the coherent closure of A.
- The Weisfeiler-Leman algorithm calculates the coherent closure in polynomial time.
- In short: replace distinct entries of A with distinct non-commuting variables, and calculate A^2 . Repeat until number of distinct entries does not increase.

$$\begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0 & x_1 & x_2 \\ x_2 & x_0 & x_2 \\ x_1 & x_3 & x_0 \end{pmatrix} \rightarrow \begin{pmatrix} x_0^2 + x_1x_2 + x_2x_1 & x_0x_1 + x_1x_0 + x_2x_3 & \cdots \\ & & \ddots & & \\ & & & \ddots & & \\ & & & & & \end{pmatrix} \rightarrow \cdots$$

- In the first step after replacing entries with variables, we use $(A \circ A^T + yI)$, where \circ is Schur-Hadamard product, and y is a new variable.
- The coherent closure of a graph is the coherent closure of its adjacency matrix.
- The coherent closure of a graph Γ is a merging of $2 Orb(Aut(\Gamma))$.

Coherent graph

- The arc set of every graph is a union of relations of its coherent closure.
- If the whole graph is a basic graph of its coherent closure, we call it a coherent graph.
- A (simple) coherent graph (with no isolated vertices) is regular.
- A strongly regular graph is coherent (in fact, the graph and its complement are the classes of a rank 3 association scheme).
- Thus the coherency property is between regularity and strong regularity.
- For comparison: a vertex transitive graph is regular, an arc-transitive graph is coherent, a rank 3 graph is strongly regular.

Extremal graph theory

- Extremal graph theory (EGT) studies graphs which are extreme with respect to some prescribed properties.
- For example: (Turán) Maximal number of edges in a graph of order n not with no k-clique is $\frac{n^2(k-2)}{2(k-1)}$.
- EGT is connected with AGT by the fact that in many cases, extremal graphs are highly symmetric.

Cages

- A (k,g)-cage is a regular graph of valency k and girth g with a minimal number of vertices.
- The number of vertices in a (k, g)-cage is denoted by n(k, g).

Cages

- A (k,g)-cage is a regular graph of valency k and girth g with a minimal number of vertices.
- The number of vertices in a (k, g)-cage is denoted by n(k, g).
- For g = 3, a (k, g)-cage is K_{k+1} , so n(k, 3) = k + 1.
- For g=4, a (k,g)-cage is the complete bipartite graph $K_{k,k}$, so n(k,4)=2k.
- For k = 2, a (k, g)-cage is a g-cycle, so n(2, g) = g.

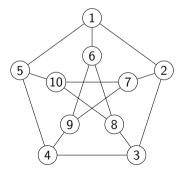
g

Cages

- A (k,g)-cage is a regular graph of valency k and girth g with a minimal number of vertices.
- The number of vertices in a (k, g)-cage is denoted by n(k, g).
- For g = 3, a (k, g)-cage is K_{k+1} , so n(k, 3) = k + 1.
- For g=4, a (k,g)-cage is the complete bipartite graph $K_{k,k}$, so n(k,4)=2k.
- For k = 2, a (k, g)-cage is a g-cycle, so n(2, g) = g.
- The problem is more interesting for higher k's and g's.
- A regular graph of valency k and girth g always exists. Furthermore, $n(k,g) \leq 2kq^{\frac{3g-a}{4}}$, where q is the smallest odd prime power such that $k \leq q$, and a = 16, 11, 14, 13 for $g \cong 0, 1, 2, 3 \pmod{4}$.

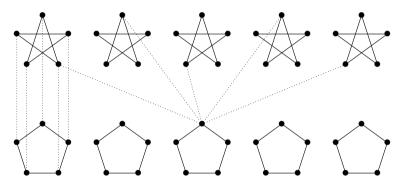
Moore bound

- Moore bound: for odd g, $n(k,g) \ge 1 + k + k(k-1) + \dots + k(k-1)^{\frac{g-3}{2}}$. For even g: $n(k,g) \ge 2 + (k-1) + (k-1)^2 + \dots + (c-1)^{\frac{g-2}{2}}$.
- Graphs which attain this lower bound are called Moore graphs.
- For g = 5, $n(k, 5) \ge k^2 + 1$.
- Moore graphs of girth 5 are possible only for $k \in \{2, 3, 7, 57\}$.
- For k = 3, the unique (3, 5)-cage is the Petersen graph.



Moore bound

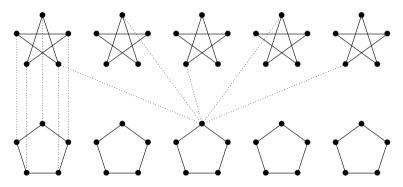
• For k = 7, the unique (7,5)-cage is the Hoffman-Singleton graph.



• This is the Robertson model.

Moore bound

• For k = 7, the unique (7,5)-cage is the Hoffman-Singleton graph.



- This is the Robertson model.
- For k = 57 the existence of the Moore graph is unknown.

Geometric cages, g = 6, 8, 12

- The incidence (Levi) graph of a projective plane of order q is a (q + 1, 6)-cage which attains the Moore bound.
- For example, the Heawood graph is the unique (3,6)-cage.
- ullet Conversely, a (q+1,6)-cage which attains the Moore bound is the Levi graph of a projective plane.

Geometric cages, g = 6, 8, 12

- The incidence (Levi) graph of a projective plane of order q is a (q + 1, 6)-cage which attains the Moore bound.
- For example, the Heawood graph is the unique (3,6)-cage.
- ullet Conversely, a (q+1,6)-cage which attains the Moore bound is the Levi graph of a projective plane.
- The Levi graph of a generalized quadrangle of order q, GQ(q) is a (q+1,8)-cage which attains the Moore bound.
- ullet The Levi graph of a generalized hexagon of order q is a (q+1,12)-cage which attains the Moore bound.

Status of search for cages

0 *				Higher	r valency caç	jes - Mozilla Firefox						
File <u>E</u> dit <u>V</u> iew H			•									
© http://staffhome.ecm.uwa.edu.au/~00013890/remote/cages/alicages.html □ □ □ □ ■ □ ▼ □ ▼ □ ▼ □ ▼ □ No Proxy▼ □ Search												
	k\g	5	6	7	8	9	10	11	12	13	14	15
	3	<u>=10</u>	<u>=14</u>	=24	<u>=30</u>	<u>=58</u>	<u>=70</u>	<u>=112</u>	=126	<u>272</u>	<u>384</u>	620
	4	<u>=19</u>	=26	67 [Exoo]	<u>=80</u>	275[Exoo]	384[Exoo]		=728			
	5	<u>=30</u>	=42	152[McK/Yan]	=170				=2730			
	6	<u>=40</u>	=62	294[McK/Yan]	<u>=312</u>				=7812			
	7	<u>=50</u>	<u>=90</u>									
	8	80[Roy01]	=114		<u>=800</u>				=39216			
	9	98[Mur 79]	=146		<u>=1170</u>				=74898			
	10	126[Exo 01b]	=182		<u>=1640</u>				=132860			
	11	160[Exo 01b]	240[Won 86]									
	12	203[Exoo]	=266		<u>=2928</u>				=354312			
	13	240[Exo 01b]										
	14	312[Exo 01b]	=366		<u>=4760</u>				=804468			
	15	406[Wil 03]										
	16	480[Exo 03]										
	17	576 [Exo03]	more	<u>more</u>	more	more						

Coherency

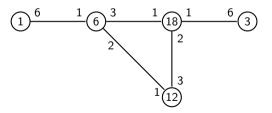
- There are 38 known values of n(k,g) for $k \le 14$.
- Of the known cages, seven are coherent:
 - the (3,5)-cage (Petersen graph on 10 vertices),
 - the (3,6)-cage (Heawood graph on 14 vertices),
 - the (3,8)-cage (Tutte's 8-cage on 30 vertices),
 - the (3,12)-cage (generalized hexagon on 126 vertices),
 - the (6,5)-cage (Robertson graph on 40 vertices),
 - the (7,5)-cage (Hoffman-Singleton graph on 50 vertices)
 - and the (7,6)-cage (on 90 vertices).
- Of those, three are geometric, and two are the Petersen and Hoffman-Singleton graphs.
- The remaining two have non-Schurian coherent closure.
- We will look at them with more details.

Robertson graph (6, 5)-cage

- The unique (6,5)-cage is known as the Robertson graph.
- It has 40 vertices, 3 more than the Moore bound $6^2 + 1 = 37$.
- A simple model for this cage: Remove a (visible) Petersen graph from the Hoffman-Singleton graph.

Robertson graph (6, 5)-cage

- The unique (6,5)-cage is known as the Robertson graph.
- It has 40 vertices, 3 more than the Moore bound $6^2 + 1 = 37$.
- A simple model for this cage: Remove a (visible) Petersen graph from the Hoffman-Singleton graph.
- It is a non-Schurian coherent graph.
- Its coherent closure is a rank 5 association scheme with valencies 1, 6, 3, 12, 18.



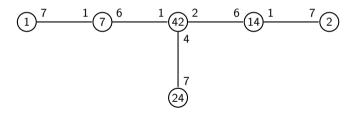
• Its automorphism group of order 480 is of rank 7.

Baker graph (7,6)-cage

- The unique (7,6)-cage is a graph Γ on 90 vertices discovered by Baker.
- The graph is actually the incidence graph of Baker's semiplane on 45 points.

Baker graph (7,6)-cage

- The unique (7,6)-cage is a graph Γ on 90 vertices discovered by Baker.
- The graph is actually the incidence graph of Baker's semiplane on 45 points.
- This cage is coherent, its coherent closure is a non Schurian scheme of rank 6 with valencies 1, 7, 2, 14, 24, 42.



- The coherent closure is non-Schurian. Its automorphism group of order 15120, the same group as the action of $3.S_7$ on 90 points as it appears in the Atlas of finite group representations.
- The group has rank 8 with valencies 1, 7, 1, 1, 7, 7, 24, 42.

A new construction for the Baker cage

- We start with the group $G = S_5 \oplus S_3 = \langle (0,1,2,3,4), (0,1), (5,6,7), (5,6) \rangle$.
- Let O be the orbit $O = (\{\{0,1\},\{2,3\}\},(5,6))^G$. Then |O| = 90.
- The association scheme V(G, O) has rank 24, with valencies $1^6, 2^6, 4^6, 8^6$.
- The Baker coherent closure is a merging of this scheme.
- This gives us a different, perhaps simpler, construction for the Baker semiplane.

n(11,6)

- The Moore bound for the case k = 11, g = 6 is 222.
- The existence of a Moore graph with those parameters is equivalent to the existence of a projective plane of order 10.
- Thus, the lower bound for n(11,6) is 223.
- The upper bound by the given formula is $2 \cdot 11 \cdot 11 = 242$.
- Finding a graph with more than 223 vertices and less than 242 vertices improves the upper bound, even without proof of minimality.
- Wong constructed a graph with valency 11 and girth 6 on 240 vertices.

Excision

- A standard process for constructing extremal (or nearly extremal) graphs is excision.
- This process starts from a known cage, and removing some vertices from them.
- Usually, the selection of the removed vertices is natural in some way.

Excision

- A standard process for constructing extremal (or nearly extremal) graphs is excision.
- This process starts from a known cage, and removing some vertices from them.
- Usually, the selection of the removed vertices is natural in some way.
- For example, the Robertson cage is constructed by removing a Petersen graph from the Hoffman-Singleton graph.
- Removing another Petersen, we get the (5,5)-cage on 30 vertices.

Infinite family of small graphs

- This infinite family includes the Wong graph on 240 vertices.
- This construction goes back to Dembowski (1968).
- We start with the Levi graph of a projective plane of order q. It has $2(q^2 + q + 1)$ vertices and valency q + 1.
- ullet We pick a pair on non-incident point and line, and remove them, as well as all q+1 points and q+1 lines incident to them.
- We are left with $2(q^2 1)$ vertices of valency q.
- The girth is still 6.
- ullet In the context of cages, this construction is interesting only for valencies q which are prime powers such that q-1 is not a prime power.

Infinite family of small graphs

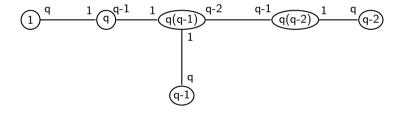
- This infinite family includes the Wong graph on 240 vertices.
- This construction goes back to Dembowski (1968).
- We start with the Levi graph of a projective plane of order q. It has $2(q^2 + q + 1)$ vertices and valency q + 1.
- We pick a pair on non-incident point and line, and remove them, as well as all q+1 points and q+1 lines incident to them.
- We are left with $2(q^2 1)$ vertices of valency q.
- The girth is still 6.
- In the context of cages, this construction is interesting only for valencies q which are prime powers such that q-1 is not a prime power.
- ullet For q=7 we get a graph on 96 vertices, while we already saw Baker graph on 90 vertices with these parameters.

Infinite family of small graphs

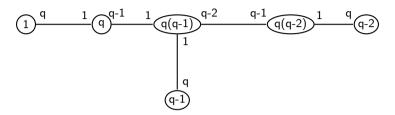
- This infinite family includes the Wong graph on 240 vertices.
- This construction goes back to Dembowski (1968).
- We start with the Levi graph of a projective plane of order q. It has $2(q^2 + q + 1)$ vertices and valency q + 1.
- We pick a pair on non-incident point and line, and remove them, as well as all q+1 points and q+1 lines incident to them.
- We are left with $2(q^2 1)$ vertices of valency q.
- The girth is still 6.
- In the context of cages, this construction is interesting only for valencies q which are prime powers such that q-1 is not a prime power.
- For q=7 we get a graph on 96 vertices, while we already saw Baker graph on 90 vertices with these parameters.
- ullet For q=11 we get the Wong graph on 240 vertices.

AGT view

- We get an association scheme of rank 6.
- Its intersection array is:



q=2



- For q = 2, we start from the Levi graph of Fano plane.
- The last two classes disappear.
- After the excision of 8 vertices, we are left with

• This is the hexagon.

22

Desarguesian planes

- Let us consider only Desarguesian projective planes.
- For a $q = p^s$, let $\Pi = PG(2, q)$ be the Desarguesian plane of order q and Δ be the Levi graph of Π , $G = Aut(\Delta)$.
- Γ is the excised graph, $H = Aut(\Gamma)$.
- $|G| = 2q^3(q^3 1)(q^2 1)s$.
- There are $(q^2 + q + 1)q^2$ anti-flags, and G is transitive on anti-flags, thus the stabilizer of an anti-flag in G has order $2q(q-1)(q^2-1)s$.
- $H \leq Aut(\Gamma)$.
- H acts transitively on $V(\Gamma)$.
- *H* is 2-closed, thus $H = Aut(\Gamma)$.

Computational results

• For small q we calculated the group H and its rank for $q \le 11$. The results are summarized below:

q	H	V	rank	Schurian
2	12	6	4	yes
3	96	16	6	yes
4	720	30	6	yes
5	960	48	10	not
7	4032	96	14	not
8	21168	126	8	not
9	23040	160	12	not
11	26400	240	22	not

24

Computational results

- For $q \ge 5$, we get a non-Schurian association scheme.
- Computer search reveals that for $5 \le q \le 11$, the centralizer algebra admits other non-Schurian mergings.
- \bullet Some of them have the same group H as automorphism group.
- Study of those extra non-Schurian mergings might prove useful in context of both AGT and EGT.

General case

• Using a computer, we calculated the structure constants of the rank 6 coherent algebra.

	1	2	3	4	5
	q	0	0	0	0
	0	0	0	0	q-1
1	0	0	0	0	q
	0	0	0	1	q-1
	0	0	q	0	0
	1	1	q-2	0	0
	0	q-1	0	0	0
	0	0	0	0	q-1
2	0	0	0	q-2	0
	0	0	0	0	q-1
	0	q-1	0	0	0
	1	0	q-2	0	0
	0	0	q^2-2q	0	0
	0	0	0	q-2	$q^2 - 3q + 2$ $q^2 - 2q$ $q^2 - 3q + 2$
3	0	0	0	0	$q^{2} - 2q$
	0	0	0	q - 3	$q^2 - 3q + 2$
	q	0	$q^2 - 3q$	0	0
	q-2	q - 2	$q^2 - 3q$ $q^2 - 4q + 4$	0	0
		7 -			_

	1	2	3	4	5
	0	0	0	q — 2	0
	0	0	q-2	0	0
4	0	q - 2	0	0	0
	1	0	q - 3	0	0
	0	0	0	q - 3	0
	0	0	0	0	q-2
	0	0	0	0	q^2-q
	q-1	q-1	$q^2 - 3q + 2$	0	0
5	q	0	q^2-2q	0	0
	q-1	q-1	$q^2 - 3q + 2$	0	0
	0	0	0	0	$q^2 - q$
	0	0	0	q-2	$q^2 - 2q + 1$

- While we only prove this for Desarguesian planes, it is also correct for the three non-Desarguesian planes of order 9.
- It seems that the proof may be extended to arbitrary projective plane.

References

- Bannai E., Ito T.: Algebraic Combinatorics I. Association Schemes. Benjamin/Cummings, Menlo Park, 1984.
- Exoo, Geoffrey, and Jajcay, Robert. "Dynamic cage survey." The Electronic Journal of Combinatorics DS16.
- B. Ju. Weisfeiler, A. A. Leman. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno - Technicheskaja Informatsia, Seria 2, 9 (1968), 12–16.

2

Thank you for your attention

