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Computer tools

In this project we use computer tools extensively.

The main computer system in use is GAP.

GAP packages: GRAPE, DESIGN, FinInG.

The GAP package COCO-II is a work in progress.

External tools with some interfacing to GAP: COCO, stabil, bliss.

Database of known cages: web page of Gordon Royle.
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Color graphs

Let Ω be a finite set.

A color graph with vertex set Ω is a coloring of the arcs of the complete digraph on Ω
(with loops).

In other words, (Ω,R) is a color graph if R = {R0, . . . ,Rd} is a partition of Ω× Ω.

The order of the color graph is |Ω|.
Its rank is d + 1.
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Coherent configurations

A color graph M = (Ω,R) is called a coherent configuration if the following holds:

1 There is a subset T ⊆ R such that the diagonal ∆Ω =
⋃
T .

In other words, a loop and a non-loop arc don’t have the same color.
2 For every R ∈ R, the opposite relation R−1 ∈ R.

In other words, if two arcs’ colors differ, their opposites’ colors also differ.
3 For every Ri ,Rj ,Rk ∈ R and for all (x , y) ∈ Rk , the number of z such that (x , z) ∈ Ri and

(z , y) ∈ Rj does not depend on x , y .

The relations R0, . . . ,Rd are called the basic relations of M. The corresponding digraphs
(Ω,Ri ) are called the basic graphs.
An association scheme is a coherent configuration with ∆Ω as a basic relation.
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Coherent algebras

A matrix subalgebra A of Cn×n is called a coherent algebra if A contains In, Jn (the all-1
matrix), and is closed under transposition and under Schur-Hadamard product (entry-wise
product).

A coherent algebra has a basis B = {A0, . . . ,Ad} of 0, 1 matrices, called the first
standard basis of A.

The matrices A0, . . . ,Ad are the adjacency matrices of graphs Γ0, . . . , Γd which are the
basic graphs of a coherent configuration.

If In is a member of the first standard basis, the coherent algebra is called homogeneous.

If C is a coherent algebra which is a subalgebra of a coherent algebra A, we say that C is
a coherent subalgebra of A.

Corresponding combinatorial language: merging (or fusion) of a coherent configuration,
merging some relations together.
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Schurian coherent configurations

A source for coherent configurations is permutation groups.
If G ≤ Sym(Ω) is a permutation group, an orbit of G of Ω× Ω is called a 2-orbit of G .
The set 2− Orb(G ,Ω) of all 2-orbits of G is a coherent configuration.
In algebraic language, this is the centralizer algebra of G .
If G is transitive, we get an association scheme.
A coherent configuration which can be represented as the 2-orbits of a permutation group
is called Schurian.
Not all coherent configurations are Schurian (the smallest example for non-Schurian
coherent configuration has order 14).

12
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2− Orb (〈(2, 3), (2, 3, 4)〉, {1, 2, 3, 4})
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Weisfeiler-Leman algorithm

Every n × n matrix A, belongs to a smallest (rank) coherent algebra.

This algebra � A� is called the coherent closure of A.

The Weisfeiler-Leman algorithm calculates the coherent closure in polynomial time.

In short: replace distinct entries of A with distinct non-commuting variables, and
calculate A2. Repeat until number of distinct entries does not increase.0 1 2

2 0 2
1 4 0

→
x0 x1 x2

x2 x0 x2

x1 x3 x0

→
x2

0 + x1x2 + x2x1 x0x1 + x1x0 + x2x3 · · ·
. . .

→ · · ·

In the first step after replacing entries with variables, we use (A ◦ AT + yI ), where ◦ is
Schur-Hadamard product, and y is a new variable.

The coherent closure of a graph is the coherent closure of its adjacency matrix.

The coherent closure of a graph Γ is a merging of 2− Orb(Aut(Γ)).
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Coherent graph

The arc set of every graph is a union of relations of its coherent closure.

If the whole graph is a basic graph of its coherent closure, we call it a coherent graph.

A (simple) coherent graph (with no isolated vertices) is regular.

A strongly regular graph is coherent (in fact, the graph and its complement are the
classes of a rank 3 association scheme).

Thus the coherency property is between regularity and strong regularity.

For comparison: a vertex transitive graph is regular, an arc-transitive graph is coherent, a
rank 3 graph is strongly regular.
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Extremal graph theory

Extremal graph theory (EGT) studies graphs which are extreme with respect to some
prescribed properties.

For example: (Turán) Maximal number of edges in a graph of order n not with no

k-clique is n2(k−2)
2(k−1) .

EGT is connected with AGT by the fact that in many cases, extremal graphs are highly
symmetric.
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Cages

A (k , g)-cage is a regular graph of valency k and girth g with a minimal number of
vertices.

The number of vertices in a (k, g)-cage is denoted by n(k , g).

For g = 3, a (k , g)-cage is Kk+1, so n(k , 3) = k + 1.

For g = 4, a (k , g)-cage is the complete bipartite graph Kk,k , so n(k , 4) = 2k .

For k = 2, a (k , g)-cage is a g -cycle, so n(2, g) = g .

The problem is more interesting for higher k ’s and g ’s.

A regular graph of valency k and girth g always exists. Furthermore, n(k, g) ≤ 2kq
3g−a

4 ,
where q is the smallest odd prime power such that k ≤ q, and a = 16, 11, 14, 13 for
g ∼= 0, 1, 2, 3 (mod 4).
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Moore bound

Moore bound: for odd g , n(k , g) ≥ 1 + k + k(k − 1) + · · ·+ k(k − 1)
g−3

2 .

For even g : n(k, g) ≥ 2 + (k − 1) + (k − 1)2 + · · ·+ (c − 1)
g−2

2 .

Graphs which attain this lower bound are called Moore graphs.

For g = 5, n(k, 5) ≥ k2 + 1.

Moore graphs of girth 5 are possible only for k ∈ {2, 3, 7, 57}.
For k = 3, the unique (3, 5)-cage is the Petersen graph.

1

2

34

5
6
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89

10
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Moore bound

For k = 7, the unique (7, 5)-cage is the Hoffman-Singleton graph.
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This is the Robertson model.

For k = 57 the existence of the Moore graph is unknown.
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Geometric cages, g = 6, 8, 12

The incidence (Levi) graph of a projective plane of order q is a (q + 1, 6)-cage which
attains the Moore bound.

For example, the Heawood graph is the unique (3, 6)-cage.

Conversely, a (q + 1, 6)-cage which attains the Moore bound is the Levi graph of a
projective plane.

The Levi graph of a generalized quadrangle of order q, GQ(q) is a (q + 1, 8)-cage which
attains the Moore bound.

The Levi graph of a generalized hexagon of order q is a (q + 1, 12)-cage which attains the
Moore bound.
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Status of search for cages
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Coherency

There are 38 known values of n(k , g) for k ≤ 14.

Of the known cages, seven are coherent:

the (3, 5)-cage (Petersen graph on 10 vertices),
the (3, 6)-cage (Heawood graph on 14 vertices),
the (3, 8)-cage (Tutte’s 8-cage on 30 vertices),
the (3, 12)-cage (generalized hexagon on 126 vertices),
the (6, 5)-cage (Robertson graph on 40 vertices),
the (7, 5)-cage (Hoffman-Singleton graph on 50 vertices)
and the (7, 6)-cage (on 90 vertices).

Of those, three are geometric, and two are the Petersen and Hoffman-Singleton graphs.

The remaining two have non-Schurian coherent closure.

We will look at them with more details.
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Robertson graph (6, 5)-cage

The unique (6, 5)-cage is known as the Robertson graph.

It has 40 vertices, 3 more than the Moore bound 62 + 1 = 37.

A simple model for this cage: Remove a (visible) Petersen graph from the
Hoffman-Singleton graph.

It is a non-Schurian coherent graph.

Its coherent closure is a rank 5 association scheme with valencies 1, 6, 3, 12, 18.

1 6 18 3

12

6 1 3 1 1 6

2

1

2

3

Its automorphism group of order 480 is of rank 7.
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Baker graph (7, 6)-cage

The unique (7, 6)-cage is a graph Γ on 90 vertices discovered by Baker.

The graph is actually the incidence graph of Baker’s semiplane on 45 points.

This cage is coherent, its coherent closure is a non Schurian scheme of rank 6 with
valencies 1, 7, 2, 14, 24, 42.

1 7 42 14 2

24

7 1 6 1 2 6 1 7

4

7

The coherent closure is non-Schurian. Its automorphism group of order 15120, the same
group as the action of 3.S7 on 90 points as it appears in the Atlas of finite group
representations.

The group has rank 8 with valencies 1, 7, 1, 1, 7, 7, 24, 42.
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A new construction for the Baker cage

We start with the group G = S5 ⊕ S3 = 〈(0, 1, 2, 3, 4), (0, 1), (5, 6, 7), (5, 6)〉.
Let O be the orbit O = ({{0, 1}, {2, 3}}, (5, 6))G . Then |O| = 90.

The association scheme V (G ,O) has rank 24, with valencies 16, 26, 46, 86.

The Baker coherent closure is a merging of this scheme.

This gives us a different, perhaps simpler, construction for the Baker semiplane.
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n(11, 6)

The Moore bound for the case k = 11, g = 6 is 222.

The existence of a Moore graph with those parameters is equivalent to the existence of a
projective plane of order 10.

Thus, the lower bound for n(11, 6) is 223.

The upper bound by the given formula is 2 · 11 · 11 = 242.

Finding a graph with more than 223 vertices and less than 242 vertices improves the
upper bound, even without proof of minimality.

Wong constructed a graph with valency 11 and girth 6 on 240 vertices.
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Excision

A standard process for constructing extremal (or nearly extremal) graphs is excision.

This process starts from a known cage, and removing some vertices from them.

Usually, the selection of the removed vertices is natural in some way.

For example, the Robertson cage is constructed by removing a Petersen graph from the
Hoffman-Singleton graph.

Removing another Petersen, we get the (5, 5)-cage on 30 vertices.
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Infinite family of small graphs

This infinite family includes the Wong graph on 240 vertices.

This construction goes back to Dembowski (1968).

We start with the Levi graph of a projective plane of order q. It has 2(q2 + q + 1) vertices
and valency q + 1.

We pick a pair on non-incident point and line, and remove them, as well as all q + 1
points and q + 1 lines incident to them.

We are left with 2(q2 − 1) vertices of valency q.

The girth is still 6.

In the context of cages, this construction is interesting only for valencies q which are
prime powers such that q − 1 is not a prime power.

For q = 7 we get a graph on 96 vertices, while we already saw Baker graph on 90 vertices
with these parameters.

For q = 11 we get the Wong graph on 240 vertices.
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The girth is still 6.

In the context of cages, this construction is interesting only for valencies q which are
prime powers such that q − 1 is not a prime power.

For q = 7 we get a graph on 96 vertices, while we already saw Baker graph on 90 vertices
with these parameters.

For q = 11 we get the Wong graph on 240 vertices.
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AGT view

We get an association scheme of rank 6.

Its intersection array is:

1 q q(q-1) q(q-2) q-2

q-1

q 1 q-1 1 q-2 q-1 1 q

1

q
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q = 2

1 q q(q-1) q(q-2) q-2

q-1

q 1 q-1 1 q-2 q-1 1 q

1

q

For q = 2, we start from the Levi graph of Fano plane.

The last two classes disappear.

After the excision of 8 vertices, we are left with

1 2 2 1
2 1 1 1 1 2

This is the hexagon.
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Desarguesian planes

Let us consider only Desarguesian projective planes.

For a q = ps , let Π = PG (2, q) be the Desarguesian plane of order q and ∆ be the Levi
graph of Π, G = Aut(∆).

Γ is the excised graph, H = Aut(Γ).

|G | = 2q3(q3 − 1)(q2 − 1)s.

There are (q2 + q + 1)q2 anti-flags, and G is transitive on anti-flags, thus the stabilizer of
an anti-flag in G has order 2q(q − 1)(q2 − 1)s.

H ≤ Aut(Γ).

H acts transitively on V (Γ).

H is 2-closed, thus H = Aut(Γ).
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Computational results

For small q we calculated the group H and its rank for q ≤ 11. The results are
summarized below:

q |H| v rank Schurian

2 12 6 4 yes
3 96 16 6 yes
4 720 30 6 yes
5 960 48 10 not
7 4032 96 14 not
8 21168 126 8 not
9 23040 160 12 not

11 26400 240 22 not
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Computational results

For q ≥ 5, we get a non-Schurian association scheme.

Computer search reveals that for 5 ≤ q ≤ 11, the centralizer algebra admits other
non-Schurian mergings.

Some of them have the same group H as automorphism group.

Study of those extra non-Schurian mergings might prove useful in context of both AGT
and EGT.
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General case

Using a computer, we calculated the structure constants of the rank 6 coherent algebra.

1 2 3 4 5
q 0 0 0 0
0 0 0 0 q − 1

1 0 0 0 0 q
0 0 0 1 q − 1
0 0 q 0 0
1 1 q − 2 0 0
0 q − 1 0 0 0
0 0 0 0 q − 1

2 0 0 0 q − 2 0
0 0 0 0 q − 1
0 q − 1 0 0 0
1 0 q − 2 0 0

0 0 q2 − 2q 0 0

0 0 0 q − 2 q2 − 3q + 2

3 0 0 0 0 q2 − 2q

0 0 0 q − 3 q2 − 3q + 2

q 0 q2 − 3q 0 0

q − 2 q − 2 q2 − 4q + 4 0 0

1 2 3 4 5
0 0 0 q − 2 0
0 0 q − 2 0 0

4 0 q − 2 0 0 0
1 0 q − 3 0 0
0 0 0 q − 3 0
0 0 0 0 q − 2

0 0 0 0 q2 − q

q − 1 q − 1 q2 − 3q + 2 0 0

5 q 0 q2 − 2q 0 0

q − 1 q − 1 q2 − 3q + 2 0 0

0 0 0 0 q2 − q

0 0 0 q − 2 q2 − 2q + 1

While we only prove this for Desarguesian planes, it is also correct for the three
non-Desarguesian planes of order 9.

It seems that the proof may be extended to arbitrary projective plane.
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Thank you for your attention
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