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Preliminaries

Previously on G252

v

Cayley objects, Cayley isomorphisms (Dobson)

v

Group ring C[H], regular representation (Betten)

v

Association schemes, adjacency algebra (Ponomarenko et al.)

v

P-polynomial schemes and distance regular graphs (Ito)
Coherent graphs (Ziv-Av)

v
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Preliminaries

The group ring

» Let G be a finite group.
» Let C[H] be the set of formal sums over H.
» Then C[H] forms a ring.
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Preliminaries

More formally

C[H] is the set of functions ¢ : H — C, together with the
operations
> (4 0)(x) = w(x) + p(x);
> (p-p)(x) = ZyeH o(y)p(y~1x) (convolution)
> (pop)(x) = ¢(x)p(x) (pointwise product)
for ¢, p € C[H], x € H.
We also define o ~1(x) := ¢(x71)
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Preliminaries

» For x € H we define x: H— C as

x(y) = 0xy-

v

Then every ¢ € C[H] can be represented as

¢ =Y ¢(x)x.

xeH

v

For x,y € H we have

KX:X-)/

v

Hence we get an embedding of H into C[H].

v

Therefore every ¢ can be considered a formal sum over H.
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Preliminaries

Simple quantities

We extend this notation to subsets of H:

For S C H we let
§:Z&

XES

v

v

v

So S is the characteristic function of S in H.
We also write S~ := {5_1]5 €S}

v
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Preliminaries

Definition of S-rings

A C-submodule of C[H] is an S-ring if it closed under convolution,
pointwise multiplication, and inversion, and contains the neutral
elements 1 and H.

For each S-ring A there is a unique partition

S={S,51,...,S4-1}
of H such that that
A= <@,...,5d_1>.

We call this the standard basis of A. Any set appearing in such a
basis is called coherent (cf. Ziv-Av).
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Preliminaries

Example

> Let H = Z¢ = {0,1,2,3,4,5}.
» Then 0,3,{1,5},{2,4} generate an S-ring over H.

» For example,

{1,5}-{2,4} = {1,5} +2-3.
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Preliminaries

Correspondence of schemes and S-rings

v

A partition of H generates an S-ring if and only if the
corresponding Cayley relations Cay(H, S;) form an association
scheme.

» This scheme is invariant under the left-regular action of H.

» Vice versa, a scheme W which admits a regular group of
automorphisms is a Cayley scheme (by Sabidussi) and hence
yields an S-ring A.

» The adjacency algebra of W is just the regular representation

of A.
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Preliminaries

The isomorphism problem

» As was mentioned, it is desirable to classify S-rings over a
given group H.

» This helps in solving the isomorphism problem of Cayley
objects over H.

» There are standard catalogs of small abstract groups (up to
isomorphism).

» Program: Enumerate S-rings over small groups.
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Previous work

There have been three serious attempts to classify S-rings over all
small groups.

> Fiedler (2003) n < 31.
» Pech, R (2007) n < 47.
» Ziv-Av (2013) n < 63.
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» Why these numbers?

» For orders 32, 48, 64 there exist groups with many involutions
and many automorphisms

» These are the elementary abelian groups E3> and Egg, as well
as 3 x Eg.

» They are particularly difficult for current approaches.

» Ziv-Av stated: "For the groups of order 64 (especially for Egs )
an innovative approach is necessary, as the current algorithms
cannot finish the calculations in a reasonable time."

» This is the goal.
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Algorithm outline

v

All attempts so far used a similar general strategy:

v

Any S-ring can be described by a partition of the group H.

» Determine all subsets of H which can appear as a simple
quantity. (Coherent sets).

v

Search for partitions of H consisting of coherent sets.

v

Known symmetries were used to varying degrees.

Sven Reichard
S-Rings over the elementary abelian group of order 64



Algorithm and results

Algorithm and results

> In the previous approaches all coherent sets needed to be kept
in memory at some point.

» This is not feasible for H = Eg4 since the total number is too
big. (1,104,838,608,132)

» So an intermediate step was introduced.
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Algorithm and results

Algorithm

» Enumerate all coherent sets, up to isomorphism.

v

For each simple quantity, enumerate all compatible simple
quantities.

v

Extend each pair to independent generating sets.

v

From each generating set construct an S-ring.

v

Classify the S-rings up to isomorphism.
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Algorithm and results

Enumerating simple quantities

» We need to consider all subsets of H \ {e}.
» We can use symmetries in Aut(H) = GL(6, 2).

» Use “orderly generation”, canonicity test for subsets (Pech, R).
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Algorithm and results

» For a coherent set S we have the condition that
(S)*(S)| =1

» The product (S)? can be computed incrementally.

» Adding an element to S increases each value of (S)? by at
most 2; this allows to prune the search.

» In the group ring we can compute products more efficiently
than in general schemes.

» The search took around one week and found exactly 100
inequivalent coherent sets.
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Enumerating pairs

» Given a simple quantity S we can find the smallest S-ring
containing S. (Weisfeiler-Leman)

» Any set compatible with S has to be a subset of a basis
element of that ring.

» A variation of the previous program was used.
» We only consider sets not exceeding S in size.

» 1242 pairs were found in 3 hours.
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Enumerating bases

From the compatible pairs we can construct all sets
compatible with a given set.

v

Among these we construct independent generating sets.

v

Altogether we get approximately 400,000 such sets.

v

Time taken: 9 hours.

v
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Isomorphic rejection

» From each generating set we obtain an S-ring.
» We test the corresponding schemes for isomorphisms.

» Note: Schemes may be isomorphic even if S-rings are not
(Cayley-) isomorphic.
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Results
» There are 2082 S-rings over Egq, up to scheme isomorphism.
> 47 are primitive.
» 274 are non-schurian.
» 31 are both primitive and non-schurian.
» There are 10 non-schurian strongly regular graphs, with

valencies 21, 27 and 28.
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Algorithm and results

Correctness

v

This is a reasonably large search using involved algorithms.

v

There is a certain probability for error.

v

“Lam principle”: ldeally the results should be independently
duplicated.

v

However, we performed some plausibility checks.
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Plausibility 1: Coherent sets

» The solutions consists of partitions of H.

> In the first step we enumerated all possible parts of size less
than |H|/2.

» Each small class of a solution partition is isomorphic to one of
these original sets.
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Plausibility 2: Duality

» The group H is abelian.

» Hence all irreducible characters of H are linear.
» They form a group HH.

» The characters can be extended to functions

x:C[H] = C
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Plausibility 2: Duality

v

Given an S-ring A C C[H] we define an equivalence relation
on H:

X ~ & if x|a = ¢€|a
Let X; be the equivalence classes.

v

v

Theorem: The ¥; generate an S-ring A over H.

v
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Plausibility 2: Duality

v

The ranks of A and A coincide.

A=A

The isomorphism H & H gives us an S-ring over H isomorphic
to A.

Hence the set of isomorphism classes of S-rings is closed under
duality.

v

v

v
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Results

v

There are several known constructions of S-rings of order 64.

v

Subschemes of Hamming and cyclotomic schemes.

v

Constructions from “smaller” S-rings:
» Semidirect products (Hirasaka)
» Wedge (or generalized wreath) product (Muzychuk)
» Exponentiation, primitive wreath product
(Evdokimov-Ponomarenko)

v

These can explain around 600 of the S-rings.
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The Hamming scheme

v

The n-dimensional cube @, is distance regular.

v

The corresponding scheme is the Hamming scheme.

v

It is invariant under the group of translations, which is a
regular representation of Epn.

v

Hence it can be considered as an S-ring.
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The Hamming scheme

» The subschemes of the Hamming schemes were classified by
Muzychuk (1985).

» In the case of n = 6 we get nine proper subschemes. All of
them are schurian.

» Of those, three are primitive.
» Two strongly regular graphs of valencies 27 and 28.
» One distance regular graph of valency 21 and diameter 4.
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Cyclotomic schemes

» Let F be a finite field. Let H be a subgroup of F*, and let G
be generated by H and (F,+).

» The action of G on F yields a scheme and an S-ring over
(F,+).
» For F = GF(64) we get schemes of rank 1 + k, where k|63.
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Outlook

» Understand the structure of the S-rings.
» Duplicate Ziv-Av's results on 48-63 vertices.

» Consider other groups of order 64.
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Thank you!
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