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Basic definitions

Σq = {0, 1, . . . , q − 1}.

Definition

The Hamming distance d(x , y) between vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) from Σn

q is the number of positions i such
that xi 6= yi .

Definition

The Hamming graph H(n, q) is a graph whose vertex set is Σn
q and

two vertices are adjacent if the Hamming distance between them
equals 1.
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Basic definitions

G = (V ,E ) — is a simple graph.

Definition

A function f : V −→ R is called an eigenfunction of the graph G

corresponding to an eigenvalue λ if

λ · f (x) =
∑

y∈N(x)

f (y)

for any vertex x .
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Basic definitions

λ · f (x) = f (x1) + f (x2) + . . .+ f (xk)
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Basic definitions

V = {v1, v2, . . . , vn}.

Equivalent definition

f is an eigenfunction of G corresponding to λ if the vector
(f (v1), . . . , f (vn))

T is an eigenvector of the adjacency matrix of G .
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Eigenfunctions in combinatorial configurations

A set C of vertices of a regular graph G is called a 1-perfect
code iff every ball of radius 1 contains exactly one element of
C .
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Eigenfunctions in combinatorial configurations

A set C of vertices of a regular graph G is called a 1-perfect
code iff every ball of radius 1 contains exactly one element of
C .

C1, C2 — 1–perfect codes in a k–regular graph G .
f = χ(C1 \ C2)− χ(C2 \ C1).
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Eigenfunctions in combinatorial configurations

A set C of vertices of a regular graph G is called a 1-perfect
code iff every ball of radius 1 contains exactly one element of
C .

C1, C2 — 1–perfect codes in a k–regular graph G .
f = χ(C1 \ C2)− χ(C2 \ C1).
Then f : V −→ {−1, 0, 1} is an eigenfunction corresponding
to the eigenvalue −1.

1–perfect code C can be considered as an eigenfunction with
two values corresponding to the eigenvalue −1.
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Eigenfunctions in combinatorial configurations

A set C of vertices of a regular graph G is called a 1-perfect
code iff every ball of radius 1 contains exactly one element of
C .

C1, C2 — 1–perfect codes in a k–regular graph G .
f = χ(C1 \ C2)− χ(C2 \ C1).
Then f : V −→ {−1, 0, 1} is an eigenfunction corresponding
to the eigenvalue −1.

1–perfect code C can be considered as an eigenfunction with
two values corresponding to the eigenvalue −1.
Let f (x) = a for x ∈ C and f (x) = b for x ∈ G \ C .
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Eigenfunctions in combinatorial configurations

A set C of vertices of a regular graph G is called a 1-perfect
code iff every ball of radius 1 contains exactly one element of
C .

C1, C2 — 1–perfect codes in a k–regular graph G .
f = χ(C1 \ C2)− χ(C2 \ C1).
Then f : V −→ {−1, 0, 1} is an eigenfunction corresponding
to the eigenvalue −1.

1–perfect code C can be considered as an eigenfunction with
two values corresponding to the eigenvalue −1.
Let f (x) = a for x ∈ C and f (x) = b for x ∈ G \ C .
Then (−1)a = kb and (−1)b = (k − 1)b + a.
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Bitrades

Definition

A 1-perfect bitrade is a pair (T0,T1) of disjoint nonempty sets of
vertices of H(n, q) such that for every radius-1 ball B it holds
|B ∩ T0| = |B ∩ T1| = {0, 1}.

Example. If C1 and C2 are 1–perfect codes, then the pair
(C1 \ C2,C2 \ C1) is a 1–perfect bitrade.

χ(T0,T1) = χ(T0)− χ(T1) — characteristic function of a
bitrade (T0,T1).
χ(T0,T1) : V −→ {−1, 0, 1} is an eigenfunction corresponding
to the eigenvalue −1.
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Minimum support

Definition

The set S(f ) = {x ∈ V | f (x) 6= 0)} is called the support of f .

Problem

To find the minimum cardinality of the support of eigenfunctions
and 1–perfect bitrades in the Hamming graphs.
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Some results

The spectrum of H(n, q) is
{λm = n(q − 1)− qm | m = 0, 1, . . . , n}.

Theorem (Potapov, 2012)

Let f : H(n, q) −→ R be an eigenfunction corresponding to the
eigenvalue λm and f 6≡ 0. Then the following statements are true:

|S(f )| ≥ 2m.

If q = 2, then the minimum cardinality of the support f equals
max(2m, 2n−m).
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Some results

Theorem (Vorob’ev, Krotov, 2014)

Let f : H(n, q) −→ R be an eigenfunction corresponding to the
eigenvalue λm and f 6≡ 0. Then

|S(f )| ≥ 2m(q − 2)n−m

for mq2

2n(q−1) > 2 and

|S(f )| ≥ qn(
1

q − 1
)m/2(

m

n −m
)m/2(1 −

m

n
)n/2

for mq2

2n(q−1) ≤ 2.
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Some results

Theorem (Vorob’ev, Krotov, 2014)

Let f be a 1–perfect bitrade in H(n, q), q ≥ 3 and f 6≡ 0. Then

|S(f )| ≥ 2n−
n−1

q (q − 2)
n−1

q

for q ≥ 4 and

|S(f )| ≥ 3
n
2 (1 −

1

n
)
n
2 (1 +

3

2(n − 1)
)

2n+1

6

for q = 3.
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Minimum support of eigenfunction of H(n, q) corresponding

to λ1

Remark

If f : H(n, q) −→ R is an eigenfunction corresponding to
λ0 = n(q − 1), then f is a constant.
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Main theorem

The set of vertices x = (x1, x2, . . . , xn) of H(n, q) such that xi = k

is denoted by Tk(i , n).

Theorem (V., 2016)

Let f : H(n, q) −→ R be an eigenfunction corresponding to λ1,
f 6≡ 0 and q > 2. Then |S(f )| ≥ 2(q − 1)qn−2. Moreover, if
|S(f )| = 2(q − 1)qn−2, then

f (x) =











c , for x ∈ Tk(i , n) \ Tm(j , n);

−c , for x ∈ Tm(j , n) \ Tk(i , n);

0, otherwise.

,

where c 6= 0 is a constant, i , j , k ,m are some numbers and i 6= j .
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Main theorem

Theorem (V., 2016)

Let f : H(3, q) −→ R be an eigenfunction corresponding to λ2,
f 6≡ 0 and q > 4. Then |S(f )| ≥ 4(q − 1).
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