Minimum supports of eigenfunctions of Hamming graphs

Alexandr Valyuzhenich

Sobolev Institute of Mathematics, Novosibirsk

G2S2, Novosibirsk, 26 August, 2016

$$\Sigma_q = \{0, 1, \dots, q-1\}.$$

Definition

The Hamming distance d(x, y) between vectors $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ from Σ_q^n is the number of positions i such that $x_i \neq y_i$.

Definition

The Hamming graph H(n,q) is a graph whose vertex set is Σ_q^n and two vertices are adjacent if the Hamming distance between them equals 1.

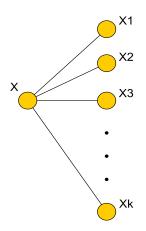
G = (V, E) — is a simple graph.

Definition

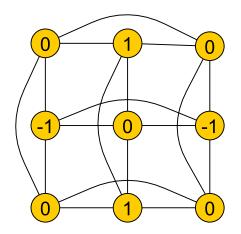
A function $f:V\longrightarrow \mathbb{R}$ is called an *eigenfunction* of the graph G corresponding to an eigenvalue λ if

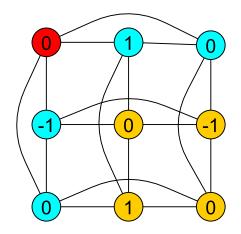
$$\lambda \cdot f(x) = \sum_{y \in N(x)} f(y)$$

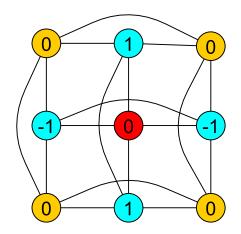
for any vertex x.

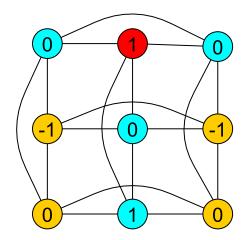


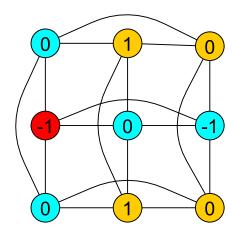
$$\lambda \cdot f(x) = f(x_1) + f(x_2) + \ldots + f(x_k)$$











$$V = \{v_1, v_2, \dots, v_n\}.$$

Equivalent definition

f is an eigenfunction of G corresponding to λ if the vector $(f(v_1), \ldots, f(v_n))^T$ is an eigenvector of the adjacency matrix of G.

 A set C of vertices of a regular graph G is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.

- A set C of vertices of a regular graph G is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.
- C_1 , C_2 1-perfect codes in a k-regular graph G. $f = \chi(C_1 \setminus C_2) \chi(C_2 \setminus C_1)$.

- A set C of vertices of a regular graph G is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.
- C_1 , $C_2 1$ -perfect codes in a k-regular graph G. $f = \chi(C_1 \setminus C_2) \chi(C_2 \setminus C_1)$. Then $f: V \longrightarrow \{-1,0,1\}$ is an eigenfunction corresponding to the eigenvalue -1.
- 1-perfect code C can be considered as an eigenfunction with two values corresponding to the eigenvalue -1.

- A set C of vertices of a regular graph G is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.
- C_1 , $C_2 1$ -perfect codes in a k-regular graph G. $f = \chi(C_1 \setminus C_2) \chi(C_2 \setminus C_1)$. Then $f: V \longrightarrow \{-1, 0, 1\}$ is an eigenfunction corresponding to the eigenvalue -1.
- 1-perfect code C can be considered as an eigenfunction with two values corresponding to the eigenvalue -1. Let f(x) = a for $x \in C$ and f(x) = b for $x \in G \setminus C$.

- A set C of vertices of a regular graph G is called a 1-perfect code iff every ball of radius 1 contains exactly one element of C.
- C_1 , $C_2 1$ -perfect codes in a k-regular graph G. $f = \chi(C_1 \setminus C_2) \chi(C_2 \setminus C_1)$. Then $f: V \longrightarrow \{-1,0,1\}$ is an eigenfunction corresponding to the eigenvalue -1.
- 1-perfect code C can be considered as an eigenfunction with two values corresponding to the eigenvalue -1. Let f(x) = a for $x \in C$ and f(x) = b for $x \in G \setminus C$. Then (-1)a = kb and (-1)b = (k-1)b + a.

Bitrades

Definition

A 1-perfect bitrade is a pair (T_0, T_1) of disjoint nonempty sets of vertices of H(n, q) such that for every radius-1 ball B it holds $|B \cap T_0| = |B \cap T_1| = \{0, 1\}.$

- Example. If C_1 and C_2 are 1-perfect codes, then the pair $(C_1 \setminus C_2, C_2 \setminus C_1)$ is a 1-perfect bitrade.
- $\chi_{(T_0,T_1)} = \chi(T_0) \chi(T_1)$ characteristic function of a bitrade (T_0,T_1) . $\chi_{(T_0,T_1)}: V \longrightarrow \{-1,0,1\}$ is an eigenfunction corresponding
 - $\chi_{(T_0,T_1)}: V \longrightarrow \{-1,0,1\}$ is an eigenfunction corresponding to the eigenvalue -1.

Minimum support

Definition

The set $S(f) = \{x \in V \mid f(x) \neq 0\}$ is called the support of f.

Problem

To find the minimum cardinality of the support of eigenfunctions and 1-perfect bitrades in the Hamming graphs.

Some results

The spectrum of H(n, q) is $\{\lambda_m = n(q-1) - qm \mid m = 0, 1, \dots, n\}.$

Theorem (Potapov, 2012)

Let $f: H(n,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to the eigenvalue λ_m and $f \not\equiv 0$. Then the following statements are true:

- $|S(f)| \ge 2^m$.
- If q = 2, then the minimum cardinality of the support f equals $\max(2^m, 2^{n-m})$.

Some results

Theorem (Vorob'ev, Krotov, 2014)

Let $f: H(n,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to the eigenvalue λ_m and $f \not\equiv 0$. Then

$$|S(f)| \ge 2^m (q-2)^{n-m}$$

for $\frac{mq^2}{2n(q-1)} > 2$ and

$$|S(f)| \ge q^n (\frac{1}{q-1})^{m/2} (\frac{m}{n-m})^{m/2} (1 - \frac{m}{n})^{n/2}$$

for $\frac{mq^2}{2n(q-1)} \le 2$.

Some results

Theorem (Vorob'ev, Krotov, 2014)

Let f be a 1-perfect bitrade in H(n,q), $q \ge 3$ and $f \not\equiv 0$. Then

$$|S(f)| \ge 2^{n-\frac{n-1}{q}} (q-2)^{\frac{n-1}{q}}$$

for $q \ge 4$ and

$$|S(f)| \ge 3^{\frac{n}{2}} (1 - \frac{1}{n})^{\frac{n}{2}} (1 + \frac{3}{2(n-1)})^{\frac{2n+1}{6}}$$

for q = 3.

Minimum support of eigenfunction of H(n,q) corresponding to λ_1

Remark

If $f: H(n,q) \longrightarrow \mathbb{R}$ is an eigenfunction corresponding to $\lambda_0 = n(q-1)$, then f is a constant.

Main theorem

The set of vertices $x = (x_1, x_2, ..., x_n)$ of H(n, q) such that $x_i = k$ is denoted by $T_k(i, n)$.

Theorem (V., 2016)

Let $f: H(n,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to λ_1 , $f \not\equiv 0$ and q>2. Then $|S(f)| \geq 2(q-1)q^{n-2}$. Moreover, if $|S(f)| = 2(q-1)q^{n-2}$, then

$$f(x) = \begin{cases} c, & \text{for } x \in T_k(i, n) \setminus T_m(j, n); \\ -c, & \text{for } x \in T_m(j, n) \setminus T_k(i, n); \\ 0, & \text{otherwise.} \end{cases}$$

where $c \neq 0$ is a constant, i, j, k, m are some numbers and $i \neq j$.

Main theorem

Theorem (V., 2016)

Let $f: H(3,q) \longrightarrow \mathbb{R}$ be an eigenfunction corresponding to λ_2 , $f \not\equiv 0$ and q > 4. Then $|S(f)| \ge 4(q-1)$.

References

- 1. K. Vorob'ev and D. Krotov. Bounds for the size of a minimal 1-perfect bitrade in a Hamming graph. J. Appl. Ind. Math., 9(1):141-146, 2015. translated from Diskretn. Anal. Issled. Oper. 6(21):3-10, 2014.
- 2. D. Krotov. The extended 1-perfect trades in small hypercubes. arXiv:1512.03421v2.
- 3. D. Krotov, I. Mogilnykh, V. Potapov. To the theory of q-ary Steiner and other-type trade. Discrete Mathematics. 2016. V. 339, N 3. P. 1150-1157.
- 4. V. Potapov. On perfect 2-colorings of the q-ary n-cube // Discrete Mathematics. 2012. Vol. 312, N8. P. 1269–1272.

