ИНДУКТИВНЫЕ ПРЕДЕЛЫ НАПРАВЛЕННОСТЕЙ НЕПРЕРЫВНЫХ МЕР

Г. В. НЕДОГИБЧЕНКО, Л. Я. САВЕЛЬЕВ

Непрерывной мерой называется непрерывное аддитивное отображение топологической булевой алгебры в топологическую абелеву полугрупну [1]. В статье определяется индуктивный предел направленности непрерывных мер и описываются некоторые его свойства. Индуктивные пределы последовательностей непрерывных мер рассматривались в заметке [2].

1. Индуктивные пределы топологических булевых алгебр и колец

Топологическая алгебра определяется как алгебра с топологией, при которой каждая операция непрерывна по каждой переменной.

1.1. Топологические булевы алгебры и кольца

Назовем булевой алгеброй $(A, \vee, \wedge, \setminus)$ множество A, для которого определены порядок \leq , верхняя грань \vee , нижняя грань \wedge и относительное дополнение \wedge . Булева алгебра $(A, \vee, \wedge, \setminus)$ определяет булево кольцо $(A, +, \cdot)$ с суммой + и произведением \cdot . Сумма + в булевом кольце $(A, +, \cdot)$ равна разности -, а произведение \cdot идемпотентно: x + x = 0, $x \cdot x = x$ $(x \in A)$.

Операции V, ∧ , \ и +, · выражаются друг через друга равенствами

$$\begin{aligned} x+y &= (x\backslash y) \vee (y\backslash x), \ x\cdot y = x \, \wedge \, y; \\ x\vee y &= x+y+xy, \ x\wedge y = x\cdot y, \ x\backslash y = x+x\cdot y. \end{aligned}$$

Относительное дополнение \ не куммутативно.

Для булевой алгебры $(A, \vee, \wedge, \setminus)$ существует наименьший элемент 0. Он является нулем кольца $(A, +, \cdot)$. Если для булевой алгебры $(A, \vee, \wedge, \setminus)$ существует наибольший элемент 1, то он является единицей кольца $(A, +, \cdot)$. Поэтому такой элемент называется единицей булевой алгебры $(A, \vee, \wedge, \setminus)$. Для булевой алгебры с единицей определено дополнение ': $x' = 1 \setminus x = 1 + x$, $x \setminus y = x \cdot y'$.

нение ': $x' = 1 \setminus x = 1 + x$, $x \setminus y = x \cdot y'$.

Рассмотрим булеву алгебру $(A, \vee, \wedge, \setminus)$, булево кольцо $(A, +, \cdot)$ и топологию $\mathcal F$ для множества A. Условимся, что топология $\mathcal F$ согласована с операцией \circ для A, если и только если преобразования $x \to a \circ x$ и $x \to x \circ a$ множества A непрерывны при каждом $a \in A$. Булева алгебра $(A, \vee, \wedge, \setminus)$ и топология $\mathcal F$, согласованная с каждой из операций \vee , \wedge , \wedge для множества A, образуют топологическую булеву алгебру $(A, \vee, \wedge, \setminus, \mathcal F)$. Булево кольцо $(A, +, \cdot)$ и топология $\mathcal F$, согласованная с каждой из операций +, + для множества A, образуют топологическое булево кольцо $(A, +, \cdot, \mathcal F)$.

Скажем, что топология \mathcal{T} (секвенциально) согласована с порядком \leq для множества A, если и только если для каждой ограниченной сверху возрастающей (последовательности) направленности в A существует верхняя грань множества значений и (последовательность) направленность сходится к ней, а для каждой ограниченной снизу убывающей (последовательности) направленности в A существует нижняя грань множества значений (B, \vee, \wedge, \vee) и (последовательность) направленность сходится к ней (ср. [3]).

Рассмотрим подалгебру $(B, \vee, \wedge, \setminus)$ булевой алгебры $(A, \vee, \wedge, \setminus)$ и булево кольцо $(B, +, \cdot)$, определяемое этой подалгеброй. Условимся, что $(B, \vee, \wedge, \setminus)$ — идеал для $(A, \vee, \wedge, \setminus)$, если и только если кольцо $(B, +, \cdot)$ является идеалом для кольца $(A, +, \cdot)$.

Некоторые элементарные свойства топологических булевых алгебр и колец описаны в статье [1].

1.2. Индуктивные пределы топологических булевых алгебр и колец

Рассмотрим возрастающую направленность булевых алгебр (C_i , \vee_i , \wedge_i , \vee_i) и ее индуктивный предел (C, \vee , \wedge , \vee):

$$C_{i} \subseteq C_{h}, \ \forall_{i} \subseteq \forall_{h}, \ \land_{i} \subseteq \land_{h}, \ \land_{i} \subseteq \backslash_{h} \ (i \leqslant k);$$

$$C = \bigcup C_{i}, \ \forall = \bigcup \bigvee_{i}, \ \land = \bigcup \land_{i}, \ \backslash = \bigcup \backslash_{i}.$$

$$(1)$$

Замечание. Операции являются частями декартовых произведений множеств. Поэтому для них определены включение и объединение.

Для множества C_i возьмем топологию \mathcal{T}_i , согласованную с каждой из операций \vee_i , \wedge $_i$, \setminus_i . Будем предполагать, что топология \mathscr{T}_i для C_i индуцируется топологией \mathcal{F}_h для C_k при каждых $i \leq k$:

$$\mathcal{F}_i = C_i \cap \mathcal{F}_k. \tag{2}$$

Класс

$$\mathcal{T} = \{ T | C_i \cap T \in \mathcal{T}_i \quad (\forall i) \}$$
 (3)

частей T множества C, следы $C_i \cap T$ которых на каждом множестве C_i принадлежат топологиям \mathcal{F}_i , является наибольшей из топологий для C, при которых каждое тождественное вложение $e_i:C_i o C$ непрерывно [4, гл. 1, § 2, п. 4]. Топология $\mathcal F$ называется индуктивным пределом направленности топологий \mathcal{F}_i и обозначается $\liminf \mathcal{F}_i$.

Рассмотрим отображение $f: C \to H$ пространства (C, \mathcal{F}) в произвольное топологическое пространство (H, \mathscr{U}). Из определения индуктивного

предела следует [4, гл. 1, § 2, предложение 6] такой

Критерий непрерывности. Отображение f непрерывно, если и только если каждая композиция $f \circ e_i$ непрерывна.

Используя этот критерий, легко доказать

Предложение 1. T опология $\mathcal F$ согласована c каждой из операций

 \vee , \wedge , \wedge для множества C.

 Π оказательство. Рассмотрим $a \in C$, операцию \circ для C и преобразования $s,\ t$ множества C, определяемые равенствами $s(x)=a\circ x,$ $t(x) = x \circ a \ (x \in C).$

Пусть $a \in C_i$. Для каждого $j \in J$ существует $k \in J$ такой, что $i \le k$, $j\leqslant k$ и $C_i\subseteq C_k,\ C_j\subseteq C_k$. Композиции $s\circ e_j,\ t\circ e_j$ являются сужениями на C_j преобразований множества C_k и вместе с ними непрерывны. Следовательно, непрерывны s, t.

Таким образом, (C, \vee , \wedge , \wedge , \mathscr{T}) является топологической булевой алгеброй. Она называется индуктивным пределом направленности топологических булевых алгебр $(C_i, \bigvee_i, \bigwedge_i, \bigvee_i, \mathcal{F}_i)$ и обозначается limind $(C_i, \bigvee_i, \bigvee_i, \mathcal{F}_i)$

 $\bigvee_{i}, \bigwedge_{i}, \setminus_{i}, \mathscr{T}_{i}$).

1.3. Свойства индуктивных пределов направленностей

Предложения этого раздела описывают некоторые элементарные свой-

ства топологии $\mathcal{F} = \operatorname{limind} \mathcal{F}_i$.

Критерий замкнутости. Множество T' замкнуто при топологии \mathcal{F} , если u только если $C_i \cap T'$ замкнуто при топологии \mathcal{F}_i для каждого i.

Этот критерий следует непосредственно из определений.

Условимся называть отделимыми топологические пространства, в которых каждая точка отделяется от любой другой некоторой окрестностью. Это свойство эквивалентно замкнутости одноточечных множеств пространства (T_1) .

Следствие. Пространство (C, \mathcal{F}) отделимо, если и только если про-

странство (C_i, \mathcal{F}_i) отделимо для каждого i.

Доказательство. В самом деле, пересечение $C_i \cap \{c\}$ равно 0или $\{c\}$ для каждых индекса i и точки $c \in C$.

Обозначим \mathcal{F}'_i и \mathcal{F}' классы замкнутых частей множеств C_i и C при топологиях \mathcal{F}_i и \mathcal{F} . Равенства (2), (3) эквивалентны равенствам

$$\mathcal{F}'_{i} = C_{i} \cap \mathcal{F}'_{k} \qquad (i \leqslant k), \tag{2'}$$

$$\mathcal{T}' = \{ T' \mid C_i \cap T' \in \mathcal{T}'_i \quad (\forall i) \}. \tag{3'}$$

Предложение 2. Если C_i замкнуто в пространстве (C_k, \mathcal{T}_k) при каж-дых $i \leq k$, то C_i замкнуто в пространстве (C, \mathcal{T}) при каждом i.

Доказательство. В самом деле, если выполнено условие предложения 2, то $C_i \subseteq \mathcal{T}_k'$ и $C_i \cap C_j \subseteq C_j \cap \mathcal{T}_k' = \mathcal{T}_j'$ для каждых $i \leq k$, $j \leq k$. Следовательно, $C_i \subseteq \mathcal{T}'$.

Предложение 3. Если C_i замкнуто в пространстве (C_k, \mathcal{F}_k) при каждых $i \leq k$, то $\mathcal{F}_i = C_i \cap \mathcal{F}$ при каждом i.

Доказательство. Из непрерывности тождественного вложения $e_i:C_i\to C$ вытекает, что $C_i\cap \mathcal{T}\subseteq \mathcal{T}_i$ для каждого i. Докажем обратное включение. Возьмем произвольное $T_i\subseteq \mathcal{T}_i$ и рассмотрим $T=T_i\cup (C\setminus C_i)$. Ясно, что $T_i=C_i\cap T$. Покажем, что $T\subseteq \mathcal{T}$. Вследствие равенства (2) для каждых $i\leqslant k, j\leqslant k$ и некоторого $T_k\subseteq \mathcal{T}_k$ имеем

$$\begin{split} C_j \cap T &= C_j \cap C_k \cap T = C_j \cap (T_i \cup (C_k \setminus C_i)) = \\ &= C_j \cap ((C_i \cap T_k) \cup (C_k \setminus C_i)) = C_j \cap (T_k \cup (C_k \setminus C_i)) \in \mathcal{T}_i. \end{split}$$

Значит, $T \subseteq \mathcal{T}$, $T_i \subseteq C_i \cap \mathcal{T}$ и $\mathcal{T}_i \subseteq C_i \cap \mathcal{T}$.

Предложение 4. Если $(C_i, \bigvee_i, \bigwedge_i)$ является идеалом для $(C_h, \bigvee_k, \bigwedge_h)$ при каждых i < k, а топология \mathcal{T}_i (секвенциально) согласована с порядком \leq_i для C_i при каждом i, то топология \mathcal{T} (секвенциально) согласована с порядком \leq для C.

Доказательство. Из условия вытекает, что ограниченность (последовательности) направленности x в C влечет ее ограниченность в некотором C_i . Действительно, пусть $x_{\alpha} \leq a$ для каждого индекса α , $a \in C_i$ и x_{α} , $a \in C_j$. Тогда $x_{\alpha} = a \cdot x_{\alpha} \in C_i$.

Так как топология \mathcal{T}_i (секвенциально) согласована с порядком \leq_i для множества C_i , то ограниченная возрастающая (последовательность) направленность x сходится в пространстве (C_i, \mathcal{T}_i) к верхней грани u множества своих значений. Следовательно, x сходится к u в пространстве (C, \mathcal{T}) . Аналогично обстоит дело с убывающими (последовательностями) направленностями.

1.4. Свойства индуктивных пределов последовательностей

Рассмотрим индуктивный предел $(C, \vee, \wedge, \vee, \mathscr{T})$ возрастающей последовательности топологических булевых алгебр $(C_n, \vee_n, \wedge_n, \setminus_n, \mathscr{T}_n)$:

$$C_n \subseteq C_{n+1}, \ \forall_n \subseteq \forall_{n+1}, \ \land_n \subseteq \land_{n+1}, \ \land_n \subseteq \land_{n+1};$$

$$C = \bigcup C_n, \ \forall = \bigcup \forall_n, \ \land = \bigcap \land_n, \ \lor = \bigcup \land_n;$$

$$(4)$$

$$\mathcal{F}_n = C_n \cap \mathcal{F}_{n+1}. \tag{5}$$

Нетрудно доказать, что $\mathcal{T} = \operatorname{limind} \mathcal{T}_n$ обладает еще некоторыми свойствами, кроме указанных в разделе 1.3 (ср. [5]).

Предложение 5. $\mathcal{F}_n = C_n \cap \mathcal{F}$ для каждого n.

Доказательство. Из непрерывности тождественного вложения $e_n: C_n \to C$ вытекает, что $C_n \cap \mathcal{T} \subseteq \mathcal{T}_n$ для каждого n. Докажем обратное включение. Пусть $T_n \subseteq \mathcal{T}_n$. По принципу индукции из равенства (5) вытекает существование последовательности множеств $T_{n+p} \subseteq \mathcal{T}_{n+p}$ таких, что

$$T_{n+p} = C_{n+p} \cap T_{n+p+q} \quad (p, q \geqslant 0).$$

Возьмем $T=\cup T_{n+q}$ $(q\geqslant 0)$. Так как последовательность множеств T_{n+p} $(p\geqslant 0)$ возрастает, то $T=\cup T_{n+p+q}$ $(q\geqslant 0)$ при каждом p. Поэтому $C_{n+p}\cap T=\cup (C_{n+p}\cap T_{n+p+q})=T_{n+p}$ $(q\geqslant 0)$.

В частности, $C_n \cap T = T_n$. В то же время

$$C_m \cap T = C_m \cap (C_n \cap T) \in C_m \cap \mathcal{F}_n = \mathcal{F}_m \quad (m \leqslant n).$$

Следовательно, $T \subseteq \mathcal{F}$ и $\mathcal{F}_n \subseteq C_n \cap \mathcal{F}$.

Рассмотрим последовательность x точек C и точку $a \in C$. Из предложения 5 вытекает

Следствие. Если каждое пространство (C_n, \mathcal{F}_n) отделимо, то $x \to a$ в пространстве (C, \mathcal{F}) тогда и только тогда, когда $x \to a$ в некотором из пространств (C_n, \mathcal{F}_n) .

 $\hat{\mathcal{H}}$ о казательство. Предположим, что множество значений последовательности x не содержится ни в одном из множеств C_n и $a \in C_m$. В этом случае существует строго возрастающая последовательность номеров k(n) такая, что $x(k(n)) \notin C_{m+n}$ для каждого n. Рассмотрим множество X всех этих значений последовательности x и его дополнение $T = C \setminus X$.

Так как $C_m \cap X = 0$, то $a \in T$. При каждом p множество $C_p \cap X = \{x(k(n)) | n конечно. Вследствие отделимости пространства <math>(C_p, \mathcal{F}_p)$ оно замкнуто при топологии \mathcal{F}_p . Значит, множество X замкнуто при топологии \mathcal{F} и $T \in \mathcal{F}$. Таким образом, множество T является открытой окрестностью точки a в пространстве (C, \mathcal{F}) . Отсюда вытекает, что последовательность x вместе с выбранной подпоследовательностью не сходится к точке a в пространстве (C, \mathcal{F}) .

Предположим, что множество значений последовательности x содержится в множестве C_m и $a \in C_m$ при некотором m. Из предложения 5 следует, что в этом случае сходимость последовательности x к точке a в пространстве (C, \mathcal{F}) эквивалентна сходимости x к a в пространстве (C_m, \mathcal{F}_m) .

1.5. Секвенциальные топологии

Топологии, при которых каждое секвенциально замкнутое множество замкнуто, условимся называть секвенциальными. Среди секвенциальных гопологий для множества C, содержащих топологию $\mathcal T$ для C, есть наименьшая. Назовем ее секвенциальной топологией, порожденной $\mathcal T$, и обозначим $\mathcal T$. Класс замкнутых множеств при топологии $\mathcal T$ равен классу секвенциально замкнутых множеств при топологии $\mathcal T$. Секвенциальная топология $\mathcal T$ является наибольшей из топологий для множества C, при которых секвенциальный предел содержит секвенциальный предел при топологии $\mathcal T$ [6, гл. 1, § 7]. Секвенциальные пределы при топологиях $\mathcal T$ и $\mathcal T$ равны. Если $(C, \vee, \wedge, \setminus, \mathcal T)$ — топологическая булева алгебра, то и $(C, \vee, \wedge, \setminus, \mathcal T)$ — топологическая булева алгебра [1, п. 5.3].

Рассмотрим индуктивный предел $(C, \vee, \wedge, \cdot, \mathcal{F})$ последовательности топологических булевых алгебр $(C_n, \vee_n, \wedge_n, \cdot_n, \mathcal{F}_n)$; секвенциальную топологию \mathcal{F} , порожденную топологией \mathcal{F} , и топологическую булеву алгебру $(C, \vee, \wedge, \cdot, \mathcal{F})$; последовательность секвенциальных топологий \mathcal{F}_n , норожденных топологиями \mathcal{F}_n , и последовательность топологических булевых алгебр $(C_n, \vee_n, \wedge_n, \cdot_n, \mathcal{F}_n)$. Предположим, что для каждого n множество C_n замкнуто в пространстве $(C_{n+1}, \mathcal{F}_{n+1})$ и пространство (C_n, \mathcal{F}_n) отделимо. Из замкнутости C_n в $(C_{n+1}, \mathcal{F}_{n+1})$ следует замкнутость C_n в $(C_{n+1}, \mathcal{F}_{n+1})$, а из отделимости (C_n, \mathcal{F}_n) — отделимость (C_n, \mathcal{F}_n) .

Лемма. $\mathscr{S}_n = C_n \cap \mathscr{S}_{n+1}$ для каждого n.

Доказательство. След Y на C_n каждой секвенциально открытой при \mathcal{F}_{n+1} части Z множества C_{n+1} секвенциально открыт при топологии \mathcal{F}_n . Вместе с тем $\mathcal{F}_n = C_n \cap \mathcal{F}_{n+1}$. Поэтому $C_n \cap \mathcal{P}_{n+1} \subseteq \mathcal{P}_n$. В то же время

каждая секвенциально открытая при топологии \mathcal{F}_n часть Y множества C_n является следом на C_n множества $Z=Y\cup (C_{n+1}\backslash C_n)$. Из замкнутости множества C_n в пространстве $(C_{n+1},\ \mathcal{F}_{n+1})$ вытекает, что Z секвенциально открыто при топологии \mathcal{F}_{n+1} . Поэтому $\mathcal{S}_n\subseteq C_n\cap \mathcal{F}_{n+1}$. Следовательно, $\mathcal{S}_n=C_n\cap \mathcal{F}_{n+1}$.

Доказанная лемма и равенства (4) позволяют рассматривать индуктивный предел limind \mathcal{S}_n последовательности топологий \mathcal{S}_n .

Предложение 6. $\mathscr{G} = \text{limind } \mathscr{G}_n$.

Доказательство. Рассмотрим произвольные последовательность x и точку a в C. Из предложения 5 вытекает, что сходимость $x \to a$ в пространстве (C, \mathcal{F}) влечет сходимость $x \to a$ в некотором пространстве (C_n, \mathcal{F}_n) . Так как секвенциальные пределы при топологиях \mathcal{F}_n и \mathcal{F}_n равны, то $x \to a$ в пространстве $(C, \text{ limind } \mathcal{F}_n)$. Следовательно, $x \to a$ в пространстве $(C, \text{ limind } \mathcal{F}_n)$.

Секвенциальная топология $\mathscr S$ является наибольшей из топологий $\mathscr R$ для множества C, при которых сходимость $x \to a$ в пространстве $(C, \mathscr F)$ влечет сходимость $x \to a$ в пространстве $(C, \mathscr R)$ для каждых последовательности x и точки a в C. Поэтому из сказанного следует, что limind $\mathscr S_n \subseteq \mathscr S$.

Рассмотрим произвольные номер n, последовательность x и точку a в C_n . Так как сходимость $x \to a$ в пространстве (C_n, \mathcal{T}_n) влечет сходимость последовательности $e_n(x) = x$ к точке a в пространстве (C, \mathcal{T}) , то тождественное вложение $e_n: C_n \to C$ непрерывно при топологиях \mathcal{S}_n и \mathcal{S} [7, предложение 5.2, следствие 2]. Топология limind \mathcal{S}_n является найбольшей из топологий \mathcal{Q} для множества \mathcal{C} таких, что каждое тождественное вложение $e_n: C_n \to C$ непрерывно при топологиях \mathcal{S}_n и \mathcal{Q} . Поэтому из сказанного следует, что $\mathcal{S} = \liminf \mathcal{S}_n$. Предложение 6 доказано.

1.6. Индуктивный предел замыканий

Рассмотрим снова возрастающую направленность топологических булевых алгебр $(C_i, \vee_i, \wedge_i, \vee_i, \mathcal{F}_i)$ и ее индуктивный предел $(C, \vee, \wedge, \vee, \mathcal{F}_i)$. Возьмем $A_i \subseteq C_i$ так, чтобы $A_i = A_k \cap C_i$ при каждых $i \leq k$, и обозначим A индуктивный предел направленности множеств A_i . Он равен их объединению: $A = \bigcup A_i$. Заметим, что

$$A_i \cap C_j = A_k \cap C_i \cap C_j = A_k \cap C_i \cap C_i = A_i \cap C_i$$

для каждых $i \leq k, j \leq k$. Используя дистрибутивность объединения и эти равенства, убеждаемся в том, что при сделанных относительно A_j предположениях верна

Лемма. $A \cap C_j = A_j$ при каждом j.

Рассмотрим замыкание \bar{A}_i множества A_i в пространстве (C_i, \mathcal{F}_i) и замыкание \bar{A} множества A в пространстве (C, \mathcal{F}) .

Предложение 7. Ecnu $\overline{A}_i = \overline{A}_h \cap C_i$ при $ka \# \partial \omega x$ $i \leqslant k$, то $\overline{A} = \bigcup \overline{A}_i$. Доказательство. Ясно, что $A = \bigcup A_i \subseteq \bigcup \overline{A}_i = B$. В то же время $A_i = A_i \cap C_i \subseteq A \cap C_i \subseteq \overline{A} \cap C_i$ для каждого i. Так как множество \overline{A} замкнуто в пространстве (C, \mathcal{F}) , то множество $\overline{A} \cap C_i$ замкнуто в пространстве (C_i, \mathcal{F}_i) . Поэтому из $A_i \subseteq \overline{A} \cap C_i$ следует $\overline{A}_i \subseteq \overline{A} \cap C_i$. Отсюда вытекает, что $B \subseteq \overline{A}$. Таким образом, $A \subseteq B \subseteq \overline{A}$. Следовательно, для доказательства предложения 7 достаточно показать, что множество B замкнуто в пространстве (C, \mathcal{F}) . По лемме из условия $\overline{A}_i = \overline{A}_h \cap C_i$ $(i \leqslant k)$ вытекает, что $B \cap C_j = \overline{A}_j$, и поэтому $B \cap C_j$ замкнуто в (C_j, \mathcal{F}_j) при каждом j. Значит, B замкнуто в (C, \mathcal{F}) . Предложение 7 доказано.

Скажем, что множество A_i ограничивает множество C_i тогда и только тогда, когда для каждого элемента c из C_i существует элемент $a \ge c$ из A_i . Предположим дополнительно, что $(A_i, \bigvee_i, \bigwedge_i, \setminus_i)$ является под-

алгеброй алгебры (C_i , \bigvee_i , \bigwedge_i , \bigvee_i) при каждом i. Из предложения 7 вытекает

 \setminus_{k}) и A_{i} ограничивает C_{i} при каждых $i \leq k$, то $\bar{A} = \bigcup \bar{A}_{i}$.

Доказательство. В самом деле, $A_i = A_h \cap C_i \subseteq \overline{A}_h \cap C_i$, множество $\overline{A}_k \cap C_i$ замкнуто в пространстве (C_i, \mathcal{F}_i) и, следовательно, $\overline{A}_i \subseteq \overline{A}_k \cap C_i$ при каждых $i \leqslant k$. Пусть $c \in \overline{A}_k \cap C_i$. Возьмем направленность xв A_k , сходящуюся к с в пространстве (C_k, \mathcal{F}_k) . Если A_i ограничивает C_i , то существует $a \in A_i$ такой, что $a \ge c$. В этом случае направленность axсходится к элементу ac=c в пространстве (C_k, \mathcal{F}_k) . Если $(A_i, \vee_i, \wedge_i,$ (A_h, V_h, A_h, h) , то все значения направленности ax принадлежат множеству A_i , и она сходится к c также в пространстве (C_i, \mathcal{F}_i) . Следовательно, $c \in \bar{A}_i$ и $\bar{A}_k \cap C_i \subseteq \bar{A}_i$. Таким образом, $\bar{A}_i = \bar{A}_k \cap C_i$ при каждых $i \leq k$. По предложению 7 отсюда вытекает, что $\bar{A} = \bigcup \bar{A}_i$.

Рассмотрим пример, который показывает, что замыкание $ar{A}$ в пространстве (C, \mathcal{F}) индуктивного предела A направленности множеств A_i может не быть равным индуктивному пределу $\cup \overline{A}_i$ направленности их

замыканий \overline{A}_i в пространствах (C_i, \mathcal{F}_i) .

Возьмем индуктивный предел (\mathscr{C} , \cup , \cap , \setminus , \mathbf{T}) возрастающей последовательности топологических булевых алгебр (\mathscr{C}_n , \cup_n , \cap_n , \setminus_n , \mathbf{T}), в которых \mathscr{C}_n — класс всех частей отрезка [0, n+1] вещественной прямой, а \mathbf{T}_n секвенциальная порядковая топология для этого класса [7, п. 1.7.2]. Пусть

$$J_m = [1/(m+1), 1/m!, Q_m = Q \cap [m, m+1];$$

 $J_K = \bigcup J_m, Q_K = \bigcup Q_m(m \in K), U_K = J_K + Q_K$

для каждых номера т и конечного множества номеров К. В частности, $U_{\kappa}=0$ при K=0. Обозначим \mathscr{A}_n класс всех объединений $U_{\kappa}\cup F$ множеств U_{κ} с индексами $K \subseteq \{1, \ldots, n\}$ и конечных множеств $F \subseteq Q \cap$ \cap [1, n+1[. Нетрудно проверить, что (\mathscr{A}_n , \cup_n , \cap_n , \setminus_n) является подалгеб-

рой алгебры $(\mathscr{C}_n, \cup_n, \cap_n, \setminus_n)$.

При каждом $K \subseteq \{1, ..., n\}$ множество Q_K — объединение некоторой возрастающей последовательности конечных множеств $F_h \in \mathscr{A}_n$. Поэтому множество $J_{\scriptscriptstyle K} = U_{\scriptscriptstyle K} \backslash Q_{\scriptscriptstyle K}$ является пересечением убывающей последовательности множеств $G_k = U_K \backslash F_k \in \mathcal{A}_n$. Следовательно, множество J_K принадлежит замыканию $\overline{\mathcal{A}}_n$ класса \mathcal{A}_n в пространстве (\mathscr{C}_n , \mathbf{T}_n). В частности, $H_n \doteq J_{\{1,\ldots,n\}} \in \overline{\mathscr{A}}_n$. В то же время $H_n \in \mathscr{C}_0$ при каждом n. Поэтому последовательность множества H_n сходится к своему объединению]0, 1[в пространстве (%, Т). Но интервал]0, 1[не принадлежит объединению $\bigcup \overline{\mathcal{A}}_n$ классов $\overline{\mathcal{A}}_n$, так как все множества класса $\overline{\mathcal{A}}_n$ вместе с множествами класса \mathcal{A}_n содержатся в интервале [1/(n+1), n+1]. Следовательно, объединение $\cup \mathscr{A}_n$ не замкнуто в пространстве $(\mathscr{C}, \mathbf{T})$ и не может быть равным замыканию $\overline{\mathcal{A}}$ в этом пространстве объединения \mathcal{A} клас-COB \mathcal{A}_n .

1.7. Присоединение единицы

Каждая топологическая булева алгебра изоморфна подалгебре некоторой топологической булевой алгебры с единицей. Это легко доказать, используя общее определение индуктивного предела семейства топологий и теорему Стоуна о представлении булевых алгебр. Пусть

 $(A, \lor, \land, \lor, \mathscr{T})$ — топологическая булева алгебра; (D, \lor, \land, \lor) — булева алгебра с множеством элементов $D = \{0, 1\}$;

H — множество всех гомоморфизмов A в D;

 \mathscr{P} — класс всех частей множества H; $(\mathcal{P}, \cup, \cap, \setminus)$ — булева алгебра, элементами которой являются все множества класса \mathscr{P} , а операциями — объединение, пересечение и отпосительное дополнение;

$$\varphi: A \to \mathcal{P}, \ \varphi(a) = \{h \in H | h(a) = 1\} \quad (a \in A);$$

$$\varphi': A \to \mathcal{P}, \ \varphi'(a) = \{h \in H | h(a) = 0\} \quad (a \in A);$$

$$\mathcal{A} = \varphi(A), \ \mathcal{A}' = \varphi'(A), \ \mathcal{B} = \mathcal{A} \cup \mathcal{A}';$$

 ${f U}$ — наибольшая топология для ${\cal B}$, при которых отображения ${f \phi}$ и ${f \phi}'$ непрерывны;

 $T = \mathcal{A} \cap U$ — топология для \mathcal{A} , индуцированная топологией U.

Предложение 8. (\mathcal{B} , U, \cap , \, U) является топологической булевой алгеброй с единицей; (A, \vee , \wedge , \, \mathcal{F}) изоморфна ее подалгебре (\mathcal{A} , U,

Доказательство. По теореме Стоуна ф является изоморфизмом булевой алгебры (A, \vee, \wedge, \vee) на подалгебру $(\mathscr{A}, \vee, \cap, \vee)$ булевой алгебры $(\mathscr{P}, \vee, \cap, \vee)$ ([8], гл. VIII, § 40; [9], гл. I, § 2). Нетрудно проверить, что $(\mathscr{B}, \vee, \cap, \vee)$ — подалгебра булевой алгебры $(\mathscr{P}, \vee, \cap, \vee)$. Единица Hпринадлежит \mathcal{B} , так как $H = \varphi'(0)$. Следовательно, (\mathcal{A} , \cup , \cap , \setminus) является нодалгеброй булевой алгебры (Я, U, П, \) с единицей.

Докажем, что $(\mathcal{B}, \cup, \cap, \setminus, \mathbf{U})$ — топологическая булева алгебра. Возьмем $B \in \mathcal{B}$ и обозначим \cup_B , \cap_B , C_B , D_B переносы множества \mathcal{B} с коэффи-

циентом B:

$$\bigcup_{B}(X) = B \cup X$$
, $\bigcap_{B}(X) = B \cap X$, $C_{B}(X) = B \setminus X$, $D_{B}(X) = X \setminus B$.

Вместо C_H условимся писать также $C: C(X) = H \setminus X = X'$ $(X \in \mathcal{B})$.

Все рассматриваемые переносы представляют собой некоторые композиции \cap_B и C. Поэтому для доказательства непрерывности переносов достаточно показать непрерывность \bigcap_B и C. Из определения топологии ${\bf U}$ следует, что непрерывность этих отображений равносильна непрерывности композиций $\bigcap_B \varphi$, $\bigcap_B \varphi'$ и $C\varphi$, $C\varphi'$ [4, гл. 1, § 2, предложение 6]. Так как $C\varphi = \varphi'$ и $C\varphi' = \varphi$, то композиции $C\varphi$ и $C\varphi'$ непрерывны вместе с φ и φ' .

Для $\bigcap_{B} \varphi$ и $\bigcap_{B} \varphi'$ рассмотрим два случая: $B = \varphi(A)$ и $B = \varphi'(A)$ ($a \in A$). Пусть $B = \varphi(a)$ ($a \in A$). Тогда

$$\bigcap_{B}(\varphi(x)) = \varphi(a) \cap \varphi(x) = \varphi(a \wedge x) \quad (x \in A).$$

Непрерывность $\bigcap_{B} \varphi$ вытекает из непрерывности переноса $x \to a \land x$ множества A и отображения ϕ . Если $B = \phi'(a)$ $(a \in A)$, то

$$\bigcap_{B}(\varphi(x)) = \varphi'(a) \cap \varphi(x) = \varphi(x \backslash a) \ (x \in A)$$

и непрерывность $\bigcap_{B} \varphi$ следует из непрерывности переноса $x \to x \setminus a$ множества А и отображения ф. Аналогично доказывается непрерывность композиции Пвф'.

Для доказательства второй части предложения 8 достаточно показать, что $\varphi(\mathscr{T}) = \mathbf{T}$. Это следует из определения топологии \mathbf{U} , взаимной однозначности отображений φ , φ' и равенства $\mathcal{A} \cap \mathcal{A}' = 0$ [4, гл. 1, § 2, предложение 81. Предложение 8 доказано.

2. Индуктивные пределы непрерывных мер

Непрерывной мерой называется непрерывное аддитивное отображение топологической булевой алгебры в топологическую абелеву полугруппу. Индуктивный предел направленности непрерывных мер является непрерывной мерой, для которой существует непрерывное продолжение.

2.1. Определение индуктивного предела непрерывных мер

Рассмотрим булеву алгебру $(A, \vee, \wedge, \wedge)$ и абелеву полугруппу (H, +) с нулем. Отображение $m: A \to H$, для которого m(0) = 0 и $m(x \vee y) = m(x) + m(y)$ при каждых дизъюнктных x, y из A, называется аддитивным отображением A в H или мерой на A со значениями в H. Возьмем топологию $\mathcal T$ для множества A, согласованную с операциями \vee , \wedge , \wedge , и топологию $\mathcal U$ для множества H, согласованную с операцией + (преобразование $t \to h + t$ множества H непрерывно при каждом $h \in H$). Рассмотрим топологическую булеву алгебру $(A, \vee, \wedge, \wedge, \mathcal T)$ и топологическую абелеву полугруппу $(H, +, \mathcal U)$ с пулем. Непрерывное аддитивное отображение A в H называется непрерывной мерой на A со значениями в H.

Предположим, что существуют замкнутая часть F и часть G множества H, удовлетворяющие следующим условиям:

1) $0 \in F$:

2) $F + F \subseteq G$ $(F = 0 + F \subseteq G)$;

- 3) индуцированная топология $G \cap \mathcal{U}$ порождается некоторой равномерностью \mathcal{W} для G;
- 4) сужение суммы + для H на множество $F \times F$ равномерно непрерывно.

Будем в этом случае говорить, что (H, +, $\mathscr U$) и F, G, $\mathscr W$ образуют

равномерную абелеву полугруппу $(H, +, \mathcal{U}, F, G, \mathcal{W})$.

Когда F = G = H, образуется равномерная абелева полугруппа $(H, \mathcal{U}, \mathcal{W})$. Сумма + для H тогда равномерно непрерывна. Если равномерное пространство (G, \mathcal{W}) отделимо и (секвенциально) полно, то будем называть равномерную абелеву полугруппу $(H, +, \mathcal{U}, F, G, \mathcal{W})$ отделимой и (секвенциально) полной.

Если множество значений m(A) меры $m:A \to H$ содержится в замкнутом множестве F, то скажем, что мера m принимает значения в равномерной абелевой полугруппе $(H, +, \mathcal{U}, F, G, \mathcal{W})$.

Рассмотрим возрастающую направленность топологических булевых алгебр $(A_i, \vee_i, \wedge_i, \wedge_i, \mathcal{F}_i)$ и ее индуктивный предел $(A, \vee, \wedge, \wedge, \mathcal{F})$, топологическую абелеву полугруппу $(H, +, \mathcal{U})$ с нулем, возрастающую направленность непрерывных мер $m_i : A_i \to H$ и ее индуктивный предел $m : A \to H$, равный их объединению: $m = \liminf m_i = \bigcap m_i$.

Замечание. Меры $m_i: A_i \to H$ являются частями декартова произведения множеств A и H. Поэтому для них определены объединение и порядок по включению. Возрастание направленности мер m_i означает, что $m_i \subseteq m_k$ (m_i — сужение m_k) при $i \le k$.

Предложение 9. Индуктивный предел т возрастающей направленности непрерывных мер $m_i: A_i \to H$ является непрерывной мерой на $A = \bigcup A_i$ со значениями в H.

Доказательство. Так как для каждых i, j существует $k \ge i, k \ge j$ и $m_i \subseteq m_k, m_j \subseteq m_k$, то соответствие $m = \bigcup m_i$ однозначно. Из равенства $A = \bigcup A_i$ следует, что m определено на A. Из аддитивности каждой меры m_i вытекает аддитивность m, а непрерывность каждой меры m_i влечет непрерывность m вследствие критерия непрерывности и равенства $me_i = m_i$ для композиции тождественного вложения $e_i : A_i \to A$ с m.

Из предложения 9 вытекает

Следствие. Каждая непрерывная мера m на $A = \cup A_i$ со значениями в H является индуктивным пределом возрастающей направленности своих сужений $m_i: A_i \to H$.

2.2. Топологическое продолжение индуктивного предела непрерывных мер

Рассмотрим возрастающую направленность топологических булевых алгебр $(C_i, \vee_i, \wedge_i, \setminus_i, \mathcal{F}_i)$ и ее индуктивный предел $(C, \vee, \wedge, \cdot, \mathcal{F})$. Возьмем $A_i \subseteq C_i$ так, чтобы A_i равнялось $A_k \cap C_i$ при каждых $i \leq k$ и являлось множеством элементов подалгебры булевой алгебры $(C_i, \vee_i, \wedge_i, \vee_i)$ при каждом i.

Пусть \overline{A}_i — замыкание множества A_i в пространстве (C_i, \mathcal{F}_i) , $B = \bigcup \overline{A}_i$, $A = \bigcup A_i$ \overline{A} — замыкание множества A в пространстве (C, \mathcal{F}) .

Рассмотрим топологическую абелеву полугруппу $(H, +, \mathcal{U})$ с нулем, возрастающую направленность непрерывных мер $m_i: A_i \to H$ и ее индуктивный предел $m: A \to H$. Предположим, что для каждого i существуют замкнутое множество $F_i \subseteq H$, множество $G_i \subseteq H$ и равномерность \mathcal{W}_i для G_i , которые удовлетворяют условиям 1-4 раздела 2.1 при $F = F_i$, $G = G_i$ и $\mathcal{W} = \mathcal{W}_i$. Предположим также, что для каждого i мера m_i принимает значения в равномерной абелевой полугруппе $(H, +, \mathcal{U}, F_i, G_i, \mathcal{W}_i)$ и что эта полугруппа хаусдорфова и полная.

При сделанных предположениях верна

Теорема 1. Существует единственная непрерывная мера $n: B \to H$, продолжающая непрерывную меру $m: A \to H$.

Доказательство. Для каждых $i \leq k$ обозначим $\overline{A}_i^{(k)}$ замыкание множества A_i в пространстве (C_k, \mathcal{T}_k) . Так как $A_i = C_i \cap A_k$ и $\mathcal{T}_i = C_i \cap \mathcal{T}_k$, то $\overline{A}_i = \overline{A}_i^{(i)} \subseteq \overline{A}_i^{(k)} \subseteq \overline{A}_k^{(k)} = \overline{A}_k$. По теореме о продолжении непрерывных мер [1, теорема 1] существует единственная непрерывная при топологиях \mathcal{T}_k и \mathcal{U} мера $\overline{m}_i^{(k)}: \overline{A}_i^{(k)} \to H$, продолжающая меру $m_i: A_i \to H$, причем $\overline{m}_i = \overline{m}_i^{(i)} \subseteq \overline{m}_i^{(k)} \subseteq \overline{m}_k^{(k)} = \overline{m}_k$.

Возьмем индуктивный предел n возрастающей направленности непрерывных мер $\overline{m}_i: \overline{A}_i \to H$. По предложению 9 он является непрерывной при топологиях $\mathcal T$ и $\mathcal U$ мерой на $B=\cup \overline{A}_i$ со значениями в H. Так как \overline{m}_i продолжает m_i при каждом i, то $n=\cup \overline{m}_i$ продолжает $m=\cup m_i$. При этом $B\subseteq \overline{A}$ и единственность такого продолжения следует из его непрерывности. Теорема 1 доказана.

Предположим дополнительно, что $\overline{A}_i = C_i \cap \overline{A}_k$ при каждых $i \leqslant k.$

В этом случае из предложения 7 и теоремы 1 вытекает

Следствие 1. Существует единственная непрерывная мера $\overline{m}: \overline{A} \to H$,

продолжающая непрерывную меру $m:A \to H$.

Это следствие остается верным, если вместо $\bar{A}_i = C_i \cap \bar{A}_k$ предположить, что $(A_i, \bigvee_i, \bigwedge_i, \bigvee_i)$ является идеалом для $(A_k, \bigvee_k, \bigwedge_k, \bigvee_k)$ при каждых $i \leq k$ и A_i ограничивает C_i при каждом i.

Рассмотрим возрастающую направленность булевых алгебр $(C_i, \bigvee_i, \bigwedge_i)$, ее индуктивный предел $(C, \bigvee, \bigwedge, \bigvee)$, топологию $\mathscr S$ для C, согласованную с операциями $\bigvee, \bigwedge, \bigvee$, возрастающую направленность топологических булевых алгебр $(C_i, \bigvee_i, \bigwedge_i, \bigvee_i, \mathscr F_i)$ с индуцированными топологиями $\mathscr F_i = C_i \cap \mathscr S$ для C_i , ее индуктивный предел $(C, \bigvee, \bigwedge, \bigvee, \mathscr F)$. Из определений вытекает, что каждое тождественное вложение $e_i: C_i \to C$ непрерывно при топологиях $\mathscr F_i$ и $\mathscr S$. Следовательно, $\mathscr S \subseteq \mathscr F$.

Возьмем подалгебру $(A, \vee, \wedge, \wedge)$ алгебры $(C, \vee, \wedge, \wedge)$; топологическую абелеву полугруппу $(H, +, \mathcal{U})$ с нулем; непрерывную при топологиях \mathscr{T} и \mathscr{U} меру $m:A\to H$; возрастающую направленность непрерывных при топологиях \mathscr{T}_i и \mathscr{U} мер $m_i:A_i\to H$, являющихся сужениями меры m на множества $A_i=C_i\cap A$. Предположим, что для m_i выполнены все условия, при которых была доказана теорема 1. В этом случае из нее вытекает

Следствие 2. Существует единственная непрерывная при топологиях \mathcal{F} и \mathcal{U} мера $n: B \to H$, продолжающая непрерывную при топологиях \mathcal{F} и \mathcal{U} меру $m: A \to H$.

Замечание. Так как $\mathcal{S} \subseteq \mathcal{T}$ и $B \subseteq \overline{A}$, то следствие 2 описывает и единственное непрерывное при топологиях ${\mathscr S}$ и ${\mathscr U}$ продолжение меры m на множество B, если такое продолжение существует.

2.3. Секвенциальное продолжение индуктивного предела непрерывных мер

Снова рассмотрим возрастающую направленность топологических булевых алгебр $(C_i, \bigvee_i \wedge_i, \bigvee_i, \mathcal{T}_i)$ и ее индуктивный предел $(C, \bigvee, \wedge, \bigvee, \mathcal{T})$. Возьмем $A_i \subseteq C_i$ так, чтобы A_i равнялось $A_k \cap C_i$ при каждых $i \leq k$ и являлось множеством элементов подалгебры булевой алгебры (C_i , \vee_i , \bigwedge_i , \setminus_i) при каждом i.

Пусть \mathscr{S}_i — секвенциальная топология, порожденная топологией \mathscr{F}_i для C_i ; \widetilde{A}_i — замыкание множества A_i в пространстве (C_i, \mathcal{S}_i) ; $D = \bigcup \widetilde{A}_i$; $A = \bigcup A_i$; \overline{A} — замыкание множества A в пространстве (C, \mathcal{F}) .

Рассмотрим топологическую абелеву полугруппу $(H, +, \mathcal{U})$ с нулем, возрастающую направленность непрерывных при топологиях \mathscr{T}_i и \mathscr{U} мер $m_i:A_i\to H$ и ее индуктивный предел $m:A\to H$. Предположим, что для m_i выполнены все условия, при которых была доказана теорема 1, кроме условия о полноте равномерной абелевой полугруппы $(H, +, \mathcal{U},$ F_{i} , G_{i} , W_{i}). Будем предполагать, что эта полугруппа секвенциально полная.

При сделанных предположениях верна

Теорема 2. Существует единственная непрерывная мера $s: D \to H$,

продолжающая непрерывную меру $m:A \to H$.

Доказательство. По теореме о секвенциальном продолжении непрерывной меры [1, теорема 2] для каждого *i* существует непрерывная при топологиях \mathcal{F}_i и \mathcal{U} мера $\widetilde{m}_i:\widetilde{A}_i\to H$, продолжающая $m_i:A_i\to H$. Обозначим $\widetilde{A}_i^{(k)}$ замыкание множества A_i в пространстве (C_k, \mathscr{S}_k) для каждых $i \leq k$. Так как $A_i = C_i \cap A_k$ и $\mathscr{F}_i = C_i \cap \mathscr{F}_k$, то $\mathscr{F}_i \supseteq C_i \cap \mathscr{F}_k$ (см. доказательство леммы в разделе 1.5) и $\widetilde{A}_i = \widetilde{A}_i^{(i)} \subseteq \widetilde{A}_i^{(k)} \subseteq \widetilde{A}_k^{(k)} = \widetilde{A}_k$ при $i \leq k$. Из $\widetilde{A}_i \subseteq \widetilde{A}_k$ и $m_i \subseteq \widetilde{m}_k$ вытекает, что $\widetilde{m}_i \subseteq \widetilde{m}_k$ при $i \leq k$.

Возьмем индуктивный предел в возрастающей направленности непрерывных мер $\widetilde{m}_i: \widetilde{A}_i \to H$. По предложению 9 он является непрерывной при топологиях $\mathscr T$ и $\mathscr U$ мерой на $D=\cup\widetilde A_i$ со значениями в H. Так как \widetilde{m}_i продолжает m_i при каждом i, то $s=\bigcup \widetilde{m}_i$ продолжает $m=\bigcup m_i$. При этом $D \subseteq \overline{A}$ и единственность такого продолжения следует из его непре-

рывности. Теорема 2 доказана.

Предположим дополнительно, что C_i замкнуто в пространстве (C_k, \mathcal{F}_k) и $\widetilde{A}_i = C_i \cap \widetilde{A}_k$ при каждых $i \leq k$. Рассуждение, аналогичное проведенному при доказательстве леммы в разделе 1.5, показывает, что в этом случае $\mathscr{S}_i = C_i \cap \mathscr{S}_h$ при каждых $i \leqslant k$. Следовательно, можно рассмотреть топологию $\mathscr{S} = \liminf \mathscr{S}_i$ для множества C. Обозначим \widetilde{A} замыкание множества $A=\cup A_i$ в пространстве $(C,\,\mathcal{G})$. Так как $\mathcal{G}_i \supseteq \mathcal{T}_i$ при каждом i, то $\mathcal{S} \supseteq \mathcal{T}$ и $\widetilde{A} \subseteq \overline{A}$.

При сделанных дополнительных предположениях из предложения 7 и теоремы 2 вытекает

Следствие. Существует единственная непрерывная мера $\widetilde{m}:\widetilde{A}\to H$,

продолжающая непрерывную меру $m:A\to H$.

Это следствие остается верным, если вместо $\widetilde{A}_i = C_i \cap \widetilde{A}_k$ предположить, что $(A_i, \bigvee_i, \bigwedge_i, \setminus_i)$ является идеалом для $(A_k, \bigvee_k, \bigwedge_k, \bigwedge_k)$ при каждых $i \leq k$ и A_i ограничивает C_i при каждом i.

Замечание. В частном случае, когда рассматриваемая направленность — последовательность отделимых топологических булевых алгебр, топология S будет секвенциальной топологией, порождаемой топологией \mathcal{F} (предложение 6).

Приведем пример продолжения индуктивного предела направленности непрерывных мер. Рассмотрим множество E, класс $\mathscr P$ всех его частей и топологическую булеву алгебру $(\mathscr P, \cup, \cap, \setminus, S)$ со стандартными операциями \cup, \cap, \setminus и секвенциальной порядковой топологией S ([7, 1.7.2; [10], § 2). Возьмем возрастающую направленность множеств $E_i \subseteq E$. Она определяет возрастающую направленность подалгебр $(\mathscr C_i, \cup_i, \cap_i, \setminus, T_i)$ топологической булевой алгебры $(\mathscr P, \cup, \cap, \setminus, S)$, в которых $\mathscr C_i$ равно классу всех частей множества E_i , а операции $\cup_i, \cap_i, \setminus_i$ и топология T_i индуцированы. Рассмотрим индуктивный предел $(\mathscr C, \cup, \cap, \setminus, T)$ этой направленности.

Множество \mathscr{C}_i замкнуто в пространстве (\mathscr{P}, S) при каждом i. Следовательно, \mathscr{C}_i замкнуто в (\mathscr{C}_k, T_k) при каждых $i \leq k$ [4, гл. 1, § 3]. Пространство (\mathscr{P}, S) хаусдорфово [10, § 2]. Следовательно, пространство (\mathscr{C}_i, T_i) хаусдорфовы. Из предложений 2 и 3 вытекает, что при каждом i множество \mathscr{C}_i замкнуто в пространстве (\mathscr{C}, T) и является подпространством (\mathscr{C}, T) . Так как при каждых $i \leq k$ булева алгебра $(\mathscr{C}_i, U_i, \cap_i, \setminus_i)$ — идеал для $(\mathscr{C}_k, U_k, \cap_k, \setminus_k)$ и топология T_i секвенциально согласована с порядком \subseteq_i для \mathscr{C}_i , то топология T секвенциально согласована с поряд-

ком ⊆ для \mathscr{C} (предложение 4).

Замечание. Булева алгебра (\mathscr{C} , \cup , \cap , \setminus) является подалгеброй булевой алгебры (\mathscr{P} , \cup , \cap , \setminus). Но топология \mathbf{T} может не совпадать с топологией $\mathscr{C} \cap \mathbf{S}$ для \mathscr{C} , индуцированной топологией \mathbf{S} для \mathscr{P} , т. е. (\mathscr{C} , \mathbf{T}) может не быть подпространством топологического пространства (\mathscr{P} , \mathbf{S}). Для того чтобы убедиться в этом, достаточно рассмотреть строго возрастающую последовательность множеств E_n и заметить, что последовательность $X_n = E_{n+1} \setminus E_n$ сходится к 0 при топологии $\mathscr{C} \cap \mathbf{S}$ и расходится при топологии \mathbf{T} (следствие предложения $\mathbf{5}$).

Из равенств $\mathbf{T}_i = \mathscr{C}_i \cap \mathbf{S} = \mathscr{C}_i \cap \mathbf{T}$ следует только, что $\mathscr{C} \cap \mathbf{S} \subseteq \mathbf{T}$. В то же время \mathbf{T}_i равна секвенциальной порядковой топологии \mathbf{S}_i для множества \mathscr{C}_i . Это показывает рассуждение, аналогичное проведенному при

доказательстве леммы раздела 1.5.

Возьмем $\mathcal{A}_i \subseteq \mathcal{C}_i$ так, чтобы $\mathcal{A}_i = \mathcal{C}_i \cap \mathcal{A}_k$ при каждых $i \leq k$, $E_i \subseteq \mathcal{A}_i$ и \mathcal{A}_i являлось множеством элементов подалгебры булевой алгебры (\mathcal{C}_i , \cup , \cap , \setminus) (и, следовательно, (\mathcal{P} , \cup , \cap , \setminus)) при каждом i. Пусть $\overline{\mathcal{A}_i}$ — замыкание \mathcal{A}_i в пространстве (\mathcal{C}_i , \mathbf{T}_i); $\mathcal{A} = \cup \mathcal{A}_i$; $\overline{\mathcal{A}}$ — замыкание \mathcal{A} в пространстве (\mathcal{C} , \mathbf{T}). Замыкание $\overline{\mathcal{A}_i}$ равно классу $\sigma(\mathcal{A}_i)$ частей множества E_i — элементов σ -кольца, порожденного классом \mathcal{A}_i [7, предложение 10.2].

Из условий $E_i \in \mathcal{A}_i$ и $\mathcal{A}_i = \mathcal{C}_i \cap \mathcal{A}_k$ следует, что $(\mathcal{A}_i, \cup, \cap, \setminus)$ является идеалом для $(\mathcal{A}_k, \cup, \cap, \setminus)$ при каждых $i \leq k$ и что \mathcal{A}_i ограничивает \mathcal{C}_i при каждом i. В самом деле, так как $\mathcal{A}_i = \mathcal{C}_i \cap \mathcal{A}_k \subseteq \mathcal{A}_k$ при $i \leq k$, то $A_i \cap A_k \subseteq A_i \subseteq E_i$, $A_i \cap A_k \in \mathcal{C}_i$ и $A_i \in \mathcal{A}_k$, $A_i \cap A_k \in \mathcal{A}_k$, $A_i \cap A_k \in \mathcal{C}_i \cap \mathcal{A}_k = \mathcal{A}_k$ для каждых $A_i \in \mathcal{A}_i$, $A_k \in \mathcal{A}_k$ при $i \leq k$. Кроме того, $E_i \in \mathcal{A}_i$ является единицей булевой алгебры $(\mathcal{C}_i, \cup, \cap, \setminus)$ при каждом i. Следовательно, $\mathcal{A} = \cup \mathcal{A}_i$ (следствие предложения 7). Из секвенциальной согласованности топологии \mathbf{T} с порядком \subseteq вытекает, что замыкание \mathcal{A} содержит класс $\delta(\mathcal{A})$ частей множества E — элементов δ -кольца, порожденного классом \mathcal{A} (δ -кольцом называется кольцо множеств, замкнутое относительно счетных пересечений).

Рассмотрим хаусдорфову коммутативную полугруппу $(H, +, \mathcal{U})$ с нулем. Предположим дополнительно, что сумма непрерывна по обеим переменным сразу. Возьмем возрастающую направленность непрерывных мер $m_i: \mathcal{A}_i \to H$ и ее индуктивный предел $m: \mathcal{A} \to H$. Предположим, что для каждого i множество $m(\mathcal{A}_i)$ относительно компактно. Возьмем компактные множества $F_i = m_i(\mathcal{A}_i)$ и $G_i = F_i + F_i$. (Например, $F_i = m_i(\mathcal{A}_i)$ и $G_i = F_i + F_i$. Множество $F_i + F_i$ компактно, так как является образом

компакта $F_i \times F_i$ при непрерывном отображении $(x, y) \to x + y$.) Существует единственная равномерность \mathcal{W}_i , порождающая индуцированную топологию $G_i \cap \mathcal{U}$ для G_i . Сужение суммы для H на множестве $F_i \times F_i$ равномерно непрерывно как всякое непрерывное отображение компакта.

Таким образом, при $F = F_i$, $G = G_i$ и $\mathcal{W} = \mathcal{W}_i$ удовлетворяются условия 1—4 раздела 2.1. Следовательно, к непрерывной мере $m: \mathscr{A} \to H$ применимо следствие 1 теоремы 1 и существует единственная непрерывная мера $\overline{m}: \mathcal{A} \to H$, продолжающая m. Отсюда вытекает, что существует единственная непрерывная мера $n: \mathcal{B} \to H$ на $\mathcal{B} = \delta(\mathcal{A})$, продолжающая т.

2.5. Приложение к векторным мерам

Схема продолжения, описанная в разделе 2.4, применима, в частности, к векторным мерам. Пусть H — множество точек банахова пространства, обладающего свойством Радона — Никодима, и ${\mathcal U}$ — сильная топология для H. В этом случае из непрерывности меры m_i вытекает счетная аддитивность m_i и ограниченность ее вариации ([11], § 1, предложение 1; \S 2, лемма 4; \S 5, следствие 1 и [1], 2.2, предложение). Если мера m_i неатомическая, то относительная компактность $m_i(\mathcal{A}_i)$ необходима для существования непрерывной меры $\overline{m}_i: \mathcal{A}_i \to H$, продолжающей меру m_i . Это следует из теоремы Ляпунова для векторных мер, принимающих значения в банаховом пространстве со свойством Радона — Никодима [12, гл. IX, § 1, теорема 101.

Пусть теперь H — множество точек слабо секвенциально полного банахова пространства и \mathcal{U} — слабая топология для H. В этом случае из непрерывности мер вытекает их слабая счетная аддитивность. А из нее следует сильная ([12], гл. 1, § 4, следствие 1 теоремы 2; [13], теорема 2.3). Относительная слабая компактность $m_i(\mathcal{A}_i)$ необходима для существования непрерывной меры $\overline{m}_i: \mathcal{A}_i \to H$, продолжающей меру m_i . Это следует из теоремы о счетно аддитивном продолжении для векторных мер со значениями в банаховом пространстве ([12], гл. 1, § 5, следствие 7 теоремы 1 и теорема 2; [13], теорема 4.1; ср. [14], следствия 1 и 2; [15]).

ЛИТЕРАТУРА

- 1. Савельев Л. Я. Продолжение непрерывных мер.—Сиб. мат. ж., 1979, т. 20, № 5,
- 2. Савельев Л. Я. Индуктивные пределы последовательностей непрерывных мер.—
- Докл. АН СССР, 1979, т. 247, № 5, с. 1060—1063.

 3. Floyd E. E. Boolean algebras with pathological order topologies.— Pacific J. of Mathematics, 1955, v. 5, p. 687—689.

 4. Бурбаки Н. Общая топология (основные структуры). М.: Наука, 1968.

 5. Garling D. J. H. A generalized form of inductive limit topology for vector spaces.— Proc. of the London Mathematical Society, 1964, v. 14, N 53, p. 1—28.

- 6. Бурбаки Н. Общая топология (основные структуры). М.: Наука, 1958.
- 7. Савельев Л. Я. Лекции по математическому анализу. Ч. 4, приложение. Новосибирск: НГУ, 1975.
- 8. Халмош П. Теория меры. М., ИЛ, 1953.
- 9. Владимиров Д. А. Булевы алгебры. М.: Наука, 1969. 10. Савельев Л. Я. О порядковых топологиях и непрерывных мерах.— Сиб. мат. ж., 1965, т. 6, № 6, с. 1357—1364. 11. Савельев Л. Я. Некоторые условия продолжимости векторных мер.— Сиб. мат. ж.,
- 1968, **r.** 9, № 4, c. 937—950.
- 12. Diestel I., Uhl I. I. Vector measures.— AMS, Providence, Rhodt Island, 1977. 13. Клуванек И. К теории векторных мер. Ч. І.— Mat.-Fyz. Časopis SAV, 1961, т. 11, № 3, c. 173—191.
- 14. Клуванек И. К теории векторных мер. Ч. II.— Mat.-Fyz. Casopis SAV, 1966, т. 16, № 1, c. 76—81.
- 15. Bartle R. G., Dunford N., Schwartz I. T. Weak compactness and vector measures.— Canadian J. Math., 1955, v. 7, p. 289—305.